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A MARKOV JUMP PROCESS
MODELLING ANIMAL GROUP SIZE STATISTICS∗

PIERRE DEGOND† , MAXIMILIAN ENGEL‡ , JIAN-GUO LIU§ , AND ROBERT L. PEGO¶

Abstract. We translate a coagulation-fragmentation model, describing the dynamics of animal
group size distributions, into a model for the population distribution and associate the nonlinear evo-
lution equation with a Markov jump process of a type introduced in classic work of H. McKean. In
particular this formalizes a model suggested by [H.-S. Niwa, J. Theo. Biol., 224:451–457, 2003] with
simple coagulation and fragmentation rates. Based on the jump process, we develop a numerical scheme
that allows us to approximate the equilibrium for the Niwa model, validated by comparison to analyti-
cal results by [Degond et al., J. Nonlinear Sci., 27(2):379–424, 2017], and study the population and size
distributions for more complicated rates. Furthermore, the simulations are used to describe statistical
properties of the underlying jump process. We additionally discuss the relation of the jump process to
models expressed in stochastic differential equations and demonstrate that such a connection is justified
in the case of nearest-neighbour interactions, as opposed to global interactions as in the Niwa model.

Keywords. Population dynamics; numerics; jump process; fish schools; self-consistent Markov
process.
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1. Introduction
The aggregation of animals into groups of different sizes involves a range of stim-

ulating mathematical problems. On the one hand, the changes in size of the group a
certain individual belongs to can be described, on the microscopic level, as a (stochas-
tic) process. On the other hand, this process can be associated, on the macroscopic
level, to the distribution of group sizes and the probability of individuals to belong to
a group of a certain size (referred to below as the population distribution), and the
evolution of such distributions in time. In particular, the existence and uniqueness of
and convergence to an equilibrium distribution is a central object of interest.

Various models of describing the coagulation and fragmentation of groups of animals
have been suggested and analysed in the past (cf. e.g. [3, 4, 22, 23, 41]). The model
this work rests upon was introduced by Hiro-Sato Niwa in 2003 [38] related to studies
in [36, 37, 39] and has turned out to hold for data from pelagic fish and mammalian
herbivores in the wild. Niwa simulated a very simple merge and split process for a
fixed population but he did not analyze the actual process he simulated. Instead, he
used kinetic Monte-Carlo simulations to fit the noise in a stochastic differential equation
(SDE) model for the size of the group that an individual animal belongs to. Due to
its fairly simple form, he was able to find a closed formula for the stationary density
of this SDE in a form similar to an exponential law (modified by a double-exponential
factor), interpreting it as the equilibrium population distribution. Since the population
distribution is related to the group-size distribution by a simple algebraic relation, he
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was able to find the equilibrium group-size distribution in a form close to an inverse
power law with an exponential cutoff, namely

Φ?(x)∝x−1 exp

(
−x+

1

2
xe−x

)
. (1.1)

In [38], Niwa showed that this expression provided a good fit to a large amount of
empirical data with no fitting parameters.

In [9], we have pursued Niwa’s model based on a coagulation-fragmentation formu-
lation for the distribution of group sizes and given a rigorous description of the equilibria
for continuous and discrete cluster sizes. The lack of a detailed balanced condition pre-
sented a true mathematical challenge. However, by introducing the so-called Bernstein
transformation, we have shown that there exists a unique equilibrium, under a suitable
normalization condition, for both the discrete and the continuous cluster size cases.
Furthermore, we provided numerical investigations of the model in [8].

In the present paper we develop Niwa’s original idea for modelling the population
distribution through the group-size history of a fixed individual. We derive and study
the naturally associated jump process rather than using the SDE framework, however.
The jump process is described through a self-consistent Markovian approach as intro-
duced in classic work of H. McKean [35], in which the rates of jumps for a (tagged)
individual’s group size depend upon the (macroscopic) group-size distribution for the
whole population. To be a self-consistent description of the dynamics, this macroscopic
group-size distribution should coincide with the probability distribution that evolves
under the jump process for the tagged individual.

This feedback makes it difficult to handle such a jump process analytically in the
cases we wish to consider. (Some of the earliest analytic work on a general class of
jump processes that follow McKean’s framework was carried out by Ueno [48] and
Tanaka [45, 46]. Processes of this type have been constructed in the context of coag-
ulation and coagulation-fragmentation models in [7, 20, 21, 25].) Therefore we develop
an algorithm that approximates the jump process and which we can use to study the
dynamics of the process and the equilibrium group-size distribution for variations of
the Niwa model. The idea is to estimate the macroscopic group-size distribution for a
large population of total size N by the empirical distribution of a sample of Ñ tagged
individuals with Ñ�N . This effectively results in a Markov jump process for the group
sizes of a fixed number Ñ of tagged individuals, with transition rates driven by the pop-
ulation distribution of these individuals. A closely related time-continuous Markovian
interacting particle system was studied by Eibeck and Wagner in [10] and [11] where
they proved convergence of the empirical distribution to a solution of coagulation mod-
els which was extended to coagulation-fragmentation models, among others [12]. In this
paper we will pay particular attention, however, not only to the estimated macroscopic
group-size distribution, but also to statistical and dynamical properties of the jump
process for a tagged individual.

We refer to [2] for an early review of open problems relating Smoluchowski’s co-
agulation equations to stochastic models, including the standard Marcus-Lushnikov
process [29, 32] for the size distribution of all groups in a fixed finite population. Our
approach and the one in [11] deal with somewhat simpler jump-process models for the
population distribution for a fixed number of groups (which can be regarded as those
containing tagged individuals). A different approach, which provides an exact simula-
tion of a self-consistent Markov process through a recursive algorithm, was developed
for theoretical purposes by Fournier and Giet [21] and shown to be effective for short
times and small cluster sizes.
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There is an abundant amount of literature about discretizations of coagulation
(and fragmentation) integral equations, using for example successive approximations
[43], finite element schemes (e.g. [31, 44]) or, most notably, finite volume methods (e.g.
[5, 19, 27]) where mass conservation is given automatically. Recently, Liu et al. [28]
introduced a discontinuous Galerkin method as an extension of these finite volume
schemes.

In [8], we approached the coagulation-fragmentation form of the Niwa model with
three different numerical methods. One of them is a recursive algorithm derived from
the discrete model in [30] which allows to compute the equilibrium precisely but only for
fixed coagulation and fragmentation rates being constant over time and group sizes. It
further does not give insight into the time-evolution. The second method is a Newton-
like method which also only allows to approximate the equilibrium, but with the ad-
vantage of being adaptable to size-dependent merge and split rates. The third method
is a time-dependent Euler method which is flexible towards arbitrary modifications of
the model but numerically not efficient.

We will show in the current paper that our numerical scheme based on a Markov
chain can be used to approximate the equilibrium for all different kinds of coagulation
and fragmentation rates, allows for insights into the time evolution of the population
distribution and also enables us to study properties of the process such as the statistics
of occupation times in cluster sizes and the decay of correlations of trajectories. The
method is accurate, efficient (in particular in equilibrium where it is sufficient to simulate
only one trajectory), versatile, and gives insights into the dynamics on the individual
level.

Furthermore, we will also discuss some shortcomings of Niwa’s SDE model for the
temporal behavior of the size of the group containing a given individual. As merging
and splitting occurs, involving interactions of groups of all different sizes, an individual’s
group size can be expected to experience frequent large jumps. Yet the SDE model is an
Ornstein-Uhlenbeck-type (OU-type) process that has continuous paths in time. One way
this could be a reasonable approximation is if the jump process has mostly small jumps,
for then there is a natural SDE approximation found through a second-order Taylor
expansion. We find, though, that for the jump process in question, the equilibrium
of the second-order SDE approximation is not consistent with the rigorously derived
equilibrium in [9].

Another modeling issue is that the OU-type process will naturally produce unphys-
ical (negative) group sizes. Some kind of reflection or symmetrization is needed to
maintain positive sizes, but the natural choice leaves a free parameter in the model and
is not motivated well by merging/splitting mechanisms. Niwa’s model also involves an
exponentially growing variance which makes accurate numerical simulation difficult.

Lastly, we will point out that there is a kind of group-size dynamics, distinctly
different from what Niwa simulated, that admits an SDE model whose equilibria are
quite similar to the equilibria found in [38] and [9], but even simpler. The equilibria
take exactly the form of a simple power law with exponential cutoff—a logarthimic or
gamma distribution. This alternative SDE model for such distributions goes back to [33]
and [42], and corresponds to a process with continuous sample paths guaranteed to stay
in (0,∞) without hitting 0. We show formally the convergence of a nearest-neighbour
model for jumps in group sizes to the equilibrium of this SDE.

The remainder of this paper is structured as follows. In Section 2, we derive the
evolution equation of the population distribution for a coagulation-fragmentation model
of size distributions, in general, and the Niwa model, in particular. Furthermore, this
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nonlinear evolution equation is shown to coincide with the master equation for a Markov
jump process whose jump rates are determined self-consistently by the population dis-
tribution itself. Section 3.1 introduces the numerical scheme which is then used in
Section 4 to simulate the process for different choices of coagulation and fragmentation
rates. We validate the method by observing fast and accurate approach of the (known)
equilibrium for the Niwa model and further use the algorithm to generate the size distri-
butions for random and polynomial rates. In Section 5, we use the numerical method to
estimate the decay of correlations of the Niwa jump process and, additionally, describe
the statistics of ocuupation times for different kinds of rates. Finally, Section 6 is ded-
icated to the role of stochastic differential equations in the context of the aggregation
models.

2. Description of the (self-consistent) Markov jump process for the pop-
ulation distribution

2.1. Evolution equation for the population distribution. The continuous
version of a coagulation-fragmentation equation, called also Smoluchowski equation,
describes the evolution of the number density f(x,t) of continuous sizes x≥0 at time t.
In weak form it reads, for all test functions ϕ∈C((0,∞)):

d

dt

∫
R+

ϕ(s)f(s,t)ds=
1

2

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s)−ϕ(ŝ))a(s,ŝ)f(s,t)f(ŝ,t)dsdŝ

−1

2

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s)−ϕ(ŝ))b(s,ŝ)f(s+ ŝ,t)dsdŝ. (2.1)

The coagulation rate a(s,ŝ) and fragmentation rate b(s,ŝ) are both nonnegative and
symmetric. The coagulation and fragmentation reactions can be written schematically

(s)+(ŝ)
a(s,ŝ)−−−−→ (s+ ŝ) (binary coagulation),

(s)+(ŝ)
b(s,ŝ)←−−− (s+ ŝ) (binary fragmentation).

By a change of variables, (2.1) can be transformed into

d

dt

∫
R+

ϕ(s)f(s,t)ds=
1

2

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s)−ϕ(s))a(s,ŝ)f(s,t)f(ŝ,t)dsdŝ

− 1

2

∫
(R+)

(∫ s

0

(ϕ(s)−ϕ(ŝ)−ϕ(s− ŝ))b(ŝ,s− ŝ)dŝ

)
f(s,t)ds.

(2.2)

Note that by taking ϕ(s) =s, one obtains the conservation of mass

d

dt

∫
R+

sf(s,t)ds= 0. (2.3)

Starting from the group size distrbution f(s,t) satisfying Equation (2.2), we introduce
the population distribution

ρ(s,t) =
sf(s,t)∫

R+
sf(s,t)ds

. (2.4)
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From (2.3) we observe that ∫
R+

sf(s,t)ds=:N

is conserved and corresponds to the total number of individuals N .
In Niwa’s model [38], the coagulation and fragmentation rates are constant. The

setting of the model assumes different zones of space on which N individuals move,
where N is conserved through time. At each time step every group, whose size is a
natural number i∈N, moves towards a randomly selected site with equal probability.
When i- and j-sized groups meet at the same site, they aggregate to a group of size i+j.
So the coagulation rate is independent of the group sizes and can be written as ai,j = 2q̃
for any i,j >0 where q̃ >0 is the fixed coagulation parameter. The fragmentation rate
bi,j expresses the fact that at each time step each group with size k≥2 splits with
probability p̃ independent of k, and that if it does split, it breaks into one of the pairs
with sizes (1,k−1),(2,k−2),. ..,(k−1,1) with equal probability. As the actually distinct
pairs are counted twice in such an enumeration, one gets for all 1≤ i,j <k with i+j=k:
bi,j = p̃

(i+j−1)/2 = 2p̃
i+j−1 .

The formulation for continuous cluster sizes gives

a(s,ŝ) = q, b(s,ŝ) =
p

s+ ŝ
, (2.5)

where q= 2q̃ and p= 2p̃ for q̃ and p̃ being the constants in Niwa’s model. In this case
the group size distribution f(s,t) satisfies the following equation [9]

d

dt

∫
R+

ϕ(s)f(s,t)ds=
q

2

∫
(R+)2

(
ϕ(s+ ŝ)−ϕ(s)−ϕ(ŝ)

)
f(s,t)f(ŝ,t)dsdŝ

−p
2

∫
(R+)2

(
ϕ(s)−ϕ(ŝ)−ϕ(s− ŝ)

) f(s,t)

s
χ[0,s)(ŝ)dsdŝ. (2.6)

In [9, Theorem 5.1], the existence of a unique scaling profile f∗ for the equilibrium

of (2.6) is proven, where f∗(x) =γ∗(x)e−
4
27x for all x∈ (0,∞) and γ∗ is a completely

monotone function (infinitely differentiable with derivatives that alternate in sign) with
asymptotic power laws.

We derive the general strong form for the population density corresponding with
model (2.1), presented in the following Proposition, and thereby in particular for the
Niwa model, as stated in the subsequent Corollary.

Proposition 2.1. In strong form the evolution equation of the population density
ρ(·,t) at any time t∈R+, corresponding with (2.1), is given by

∂tρ(s,t) =N

∫ ∞
0

(
a(ŝ,s− ŝ)ρ(ŝ,t)ρ(s− ŝ,t)

s− ŝ
χ[0,s)(ŝ)−a(s,ŝ)

ρ(s,t)ρ(ŝ,t)

ŝ

)
dŝ

+s

∫ ∞
s

b(s,ŝ−s)
ŝ

ρ(ŝ,t)dŝ−ρ(s,t)

∫ ∞
0

b(ŝ,s− ŝ)χ[0,s/2](ŝ)dŝ. (2.7)

Proof. By testing (2.2) against sϕ(s)/N we obtain:

d

dt

∫
R+

ϕ(s)ρ(s,t)ds
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=

∫
(R+)2

a(s,ŝ)

2N

(
(s+ ŝ)ϕ(s+ ŝ)−sϕ(s)− ŝϕ(ŝ)

)
f(s,t)f(ŝ,t)dsdŝ

−
∫

(R+)2

b(ŝ,s− ŝ)
2N

(
sϕ(s)− ŝϕ(ŝ)−(s− ŝ)ϕ(s− ŝ)

)
f(s,t)χ[0,s)(ŝ)dsdŝ

=

∫
(R+)2

Na(s,ŝ)

2

(
(s+ ŝ)ϕ(s+ ŝ)−sϕ(s)− ŝϕ(ŝ)

) ρ(s,t)ρ(ŝ,t)

sŝ
dsdŝ

−
∫

(R+)2

b(ŝ,s− ŝ)
2

(
sϕ(s)− ŝϕ(ŝ)−(s− ŝ)ϕ(s− ŝ)

) ρ(s,t)

s
χ[0,s)(ŝ)dsdŝ.

We remark that

(s+ ŝ)ϕ(s+ ŝ)−sϕ(s)− ŝϕ(ŝ) =s(ϕ(s+ ŝ)−ϕ(s))+ ŝ(ϕ(s+ ŝ)−ϕ(ŝ)),

and by symmetry under exchanges of s and ŝ, the first integral becomes∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s))ρ(s,t)
(
a(s,ŝ)N

ρ(ŝ,t)

ŝ

)
dsdŝ. (2.8)

Noting that the change of variables ŝ→s− ŝ leaves the second integral invariant, we
can restrict the interval of integration in ŝ to the interval [0,s/2] upon multiplying the
result by 2. So, the second integral equals:∫

(R+)2

( ŝ
s
ϕ(ŝ)+

s− ŝ
s

ϕ(s− ŝ)−ϕ(s)
)
b(ŝ,s− ŝ)χ[0,s/2](ŝ)ρ(s,t)dsdŝ.

The resulting equation is thus

d

dt

∫
R+

ϕ(s)ρ(s,t)ds

=

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s))ρ(s,t)
(
a(s,ŝ)N

ρ(ŝ,t)

ŝ

)
dsdŝ

+

∫
(R+)2

( ŝ
s
ϕ(ŝ)+

s− ŝ
s

ϕ(s− ŝ)−ϕ(s)
) (
b(ŝ,s− ŝ)χ[0,s/2](ŝ)

)
ρ(s,t)dsdŝ. (2.9)

To derive the strong form for the first integral in (2.9) we only need to conduct a change
of variables for the term involving ϕ(s+ ŝ), namely ŝ→ ŝ−s:∫

(R+)2
ϕ(s+ ŝ)a(s,ŝ)ρ(s,t)N

ρ(ŝ,t)

ŝ
dsdŝ=

∫ ∞
0

∫ ŝ

0

a(s,ŝ−s)N ρ(s,t)ρ(ŝ−s,t)
ŝ−s

dsϕ(ŝ) dŝ.

For the second integral, again by symmetry between ŝ and s− ŝ, it is enough to observe
that∫

(R+)2

ŝ

s
ϕ(ŝ)b(ŝ,s− ŝ)χ[0,s/2](ŝ)ρ(s,t)dsdŝ=

1

2

∫ ∞
0

ŝ

∫ ∞
ŝ

b(ŝ,s− ŝ)
s

ρ(s,t)dsϕ(ŝ)dŝ.

This finishes the proof.

Note from the weak form (2.9) in the proof that the merge process is done with rate

a(s,ŝ)N ρ(ŝ,t)
ŝ while the split process is done with rate b(ŝ,s− ŝ). Due to its dependence

on ρ, the merge process is characterized by a nonlinear term which turns out to be a



P. DEGOND, M. ENGEL, J.-G. LIU, AND R.L. PEGO 61

challenging feature of the following analysis. First note that we obtain the following
equation for the Niwa model:

Corollary 2.1. In strong form the evolution equation of the population density ρ(·,t)
at any time t∈R+, corresponding with (2.6), is given by

∂tρ(s,t) =qN

∫ ∞
0

(ρ(ŝ,t)ρ(s− ŝ,t)
s− ŝ

χ[0,s)(ŝ)−
ρ(s,t)ρ(ŝ,t)

ŝ

)
dŝ

+p
(
s

∫ ∞
s

ρ(ŝ,t)

ŝ2
dŝ− 1

2
ρ(s,t)

)
. (2.10)

Proof. From (2.9) we infer immediately that

d

dt

∫
R+

ϕ(s)ρ(s,t)ds=

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s))ρ(s,t)

(
qN

ρ(ŝ,t)

ŝ

)
dsdŝ

+

∫
(R+)2

(
ŝ

s
ϕ(ŝ)+

s− ŝ
s

ϕ(s− ŝ)−ϕ(s)

)
p
ρ(s,t)

s
χ[0,s/2](ŝ)dsdŝ.

(2.11)

Again, the claim follows by an easy calculation.

In this case we notice that the merge process is done with rate qNρ(ŝ,t)/ŝ while
the split process is done with rate p/s for every ŝ∈ [0, 1

2s].

2.2. Derivation of stochastic process. The key point of our approach is to
regard the evolution Equations (2.7) and (2.10) as master equations for a stochastic
process that can be simulated, if the population density ρ(·,t) is already known. This
stochastic process is essentially of the type whose study was initiated in McKean’s
seminal work [35].

2.2.1. Reformulation of deterministic dynamics. For that purpose, we
rewrite the equations as follows.

Lemma 2.1. The evolution law in strong form (2.7) can also be written as

∂tρ(s,t) =

∫
R+

(
Kc
ρ(·,t)(ŝ→s)ρ(ŝ,t)−Kc

ρ(·,t)(s→ ŝ)ρ(s,t)
)

dŝ

+

∫
R+

(
Kf (ŝ→s)ρ(ŝ,t)−Kf (s→ ŝ)ρ(s,t)

)
dŝ, (2.12)

where

Kc
ρ(·,t)(ŝ→s) =Na(ŝ,s− ŝ)ρ(s− ŝ,t)

s− ŝ
χ[0,s)(ŝ), Kf (ŝ→s) =

s

ŝ
b(s,ŝ−s)χ[s,∞)(ŝ)

(2.13)
are the coagulation and fragmentation factors. In particular, in the Niwa model these
factors are

Kc
ρ(·,t)(ŝ→s) = qN

ρ(s− ŝ,t)
s− ŝ

χ[0,s)(ŝ), Kf (ŝ→s) =p
s

ŝ2
χ[s,∞)(ŝ). (2.14)
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Proof. The coagulation part follows immediately from (2.7). For the fragmentation
part, we observe by using the symmetry between ŝ and s− ŝ that

1

s

∫ s

0

ŝb(ŝ,s− ŝ)dŝ=
1

2

∫ s

0

(
ŝ

s
+
s− ŝ
s

)
b(ŝ,s− ŝ)dŝ

=
1

2

∫ s

0

b(ŝ,s− ŝ)dŝ=

∫ s/2

0

b(ŝ,s− ŝ)dŝ.

The factors for the Niwa model follow immediately from (2.5).

We can summarize these terms, using that Nρ(s,t) =sf(s,t) from (2.4), into

Kρ(·,t)(ŝ→s) =Kc
ρ(·,t)(ŝ→s)+Kf (ŝ→s), λρ(·,t)(s) =λcρ(·,t)(s)+λf (s),

λcρ(·,t)(s) =

∫
R+

Kc
ρ(·,t)(s→ ŝ)dŝ=

∫ ∞
0

a(s,r)f(r,t)dr,

λf (s) =

∫
R+

Kf (s→ ŝ)dŝ=

∫ s

0

r

s
b(r,s−r)dr.

Here, λρ(·,t)(s) is the rate of change from s to anything else, and λf (s), λcρ(·,t)(s) have
an analogous interpretation specified to fragmentation and coagulation respectively.
Equation (2.12) can then be written as

∂tρ(s,t) =

∫
R+

λρ(·,t)(ŝ)µ̂t(ŝ→s)ρ(ŝ,t)dŝ−λρ(·,t)(s)ρ(s,t), (2.15)

where

µ̂t(ŝ→s) :=
Kρ(·,t)(ŝ→s)

λρ(·,t)(ŝ)
(2.16)

is the corresponding probability of change from s to some fixed ŝ. Formula (2.15) recalls
the classical form of the forward equation for an associated jump process, as for example
outlined in [18, Section X.3] or [13, Chapter 4.2]. However, the transition rates here
depend on the density ρ(·,t) itself, and this makes the equation nonlinear.

Observe that formulas (2.15) and thereby (2.12) are consistent with the assumption
of mass conservation, easily derived as follows:

d

dt

∫
R+

ρ(s,t)ds=

∫
R+

ρ(ŝ,t)

∫
R+

Kρ(·,t)(ŝ→s)dsdŝ−
∫
R+

λρ(·,t)(s)ρ(s,t)ds

=

∫
R+

ρ(ŝ,t)λρ(·,t)(ŝ)dŝ−
∫
R+

λρ(·,t)(s)ρ(s,t)ds= 0.

In the Niwa model,

λf (s) =p

∫ s

0

1

s2
ŝdŝ=

p

2
, λcρ(·,t)(s) = q

∫ ∞
0

f(ŝ,t)dŝ= qm0(t), (2.17)

where m0(t) is the zeroth moment of the group size distribution f(·,t). Hence, the
rate λρ(·,t) is finite as long as f(·,t)∈L1((0,∞)). Generally, according to [9, Theorem
6.1], there exists a unique global-in-time solution to (2.6) in terms of finite non-negative
measures on (0,∞) for any finite non-negative initial measure. In particular, the solution
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was proved to have a smooth density f(·,t) if the initial group-size distribution has a
density fin that is completely monotone.

Proposition 2.2 ( [9, Theorem 6.1]). In the Niwa model, i.e., with rates (2.14),

Equation (2.15) has a unique global (in time) solution ρ such that f(·,t) =N ρ(·,t)
· is

completely monotone, if f(·,0) =fin is completely monotone with finite zeroth and first
moments. In this case, the zeroth moment m0(t) in (2.17) satisfies

m′0(t) =
1

2
(pm0−qm2

0),

and remains bounded for all t>0.

Further, we recall that in [9] the existence of a unique scaling profile f∗ for the
equilibrium feq of (2.6), depending on p, q and N , is proven. The profile f∗ is com-
pletely monotone, with exponential decay as s→∞, and f∗(s) =O(s−2/3) as s→0,
so f∗∈L1((0,∞)). Hence, in the case of the Niwa model (2.10) we immediately ob-
tain an explicit formula for equilibrium solutions ρeq of (2.15) which we will use for
our numerical studies later: for p= q= 2 (to which all parameter choices can be re-
duced), we conclude from [9, Theorem 5.1] via (2.4) that the unique equilibrium profile
ρ∗(x) =xf∗(x) satisfies

ρ∗(x) = γ̃∗(x)e−
4
27x, (2.18)

where γ̃∗ is a smooth function with

γ̃∗(x)∼ x1/3

Γ(1/3)
, when x→0, γ̃∗(x)∼ 9

8

x−1/2

Γ(1/2)
, when x→∞.

For mass N >0, the equilibrium density ρeq is given by

ρeq(x) =
xfeq(x)∫∞

0
xfeq(x)dx

=
x
N f∗

(
x
N

)∫∞
0

x
N f∗

(
x
N

)
dx

=
x
N f∗

(
x
N

)
N
∫∞

0
yf∗ (y) dy

=
1

N
ρ∗

( x
N

)
. (2.19)

For general coagulation and fragmentation rates, one has to be careful in order
to make sure that λρ(·,t) is finite, either by restricting the class of admissible ρ or by
truncating the domain to some compact set E⊂ (0,∞).

2.2.2. Jump process. We introduce a jump process (Xt)t≥0 in the following
way: Denote the set of probability densities on (0,∞) by

P((0,∞)) :={f ∈L1((0,∞)) :f ≥0, |f |L1 = 1}.

Assume ρ : (0,∞)×(0,∞)→R is Borel-measurable with ρ(·,t)∈P((0,∞)) for all t≥0.
For every t≥0, s>0, we define a probability measure µt(s,·) by setting, for each Borel-
measurable subset Γ⊂ (0,∞),

µt(s,Γ) :=

∫
Γ

µ̂t(s→ ŝ)dŝ=

∫
Γ
Kρ(·,t)(s→ ŝ)dŝ

λ(t,s)
, λ(t,s) :=λρ(·,t)(s). (2.20)

We assume that λ(t,s) is uniformly bounded, and that λ(t,s) and µt(s,Γ) are continuous
in t for each s and Γ. Then, by classical results of Feller [15] (see also [18, section X.3])
there is a unique solution of the backward equation

P (r,t,s,Γ) = δs(Γ)+

∫ t

r

λ(u,s)

∫
(P (u,t,ŝ,Γ)−P (u,t,s,Γ))µu(s,dŝ)du, (2.21)
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for the transition function of a Markov process. (For generalizations of Feller’s re-
sults without continuity, see [13, Lemma 4.7.2] and [14].) Given any initial distribution
ν ∈P((0,∞)), there exists a corresponding Markov (jump) process (Xt)t≥0 with initial
density ν and transition function P (r,t,s,Γ) (see [13, Theorem 4.1.1] and also [26, The-
orem 8.4]). This process Xt solves the (time-dependent) martingale problem associated
to the family of generators (At)t≥0 given by

Atf(s) =λ(t,s)

∫
R+

(f(ŝ)−f(s))µt(s,dŝ), (2.22)

for all measurable and bounded functions f : (0,∞)→R. Moreover, the law of Xt is
given by

νt(Γ) :=P{Xt∈Γ}=

∫ ∞
0

ν(ds)P (0,t,s,Γ).

Due to the assumption that λ(t,s) is bounded (see [15]), the transition function also
satisfies the forward equation

∂P (r,t,s,Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)P (r,t,s,dŝ)−
∫

Γ

λ(t, ŝ)P (r,t,s,dŝ) (2.23)

and consequently, integration against ν(ds) shows that the law of Xt also satisfies the
forward equation

∂νt(Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)νt(dŝ)−
∫

Γ

λ(t, ŝ)νt(dŝ). (2.24)

In the stationary case when ρ(s,t) =ρ(s) is constant in time, the Markov process
(Xt)t≥0 can be constructed in a standard way [13, Section 4.2], from a Markov chain
corresponding to time-independent rates λ(s) =λρeq(·)(s) and transition probabilities
µ(s,Γ) =µt(s,Γ) from (2.20), and a sequence of independently and exponentially dis-
tributed random variables.

Remark 2.1. Considering Proposition 2.2, if ρ is taken to be any solution of the
Niwa model corresponding with a completely monotone initial group-size distribution
fin, the boundedness and continuity assumptions indeed hold, and the Markov process
Xt is well defined. For general coagulation-fragmentation rate kernels a(s,ŝ) and b(s,ŝ),
however, we do not address the technical issue of what hypotheses on the kernels and on
the initial data are sufficient to ensure that the boundedness and continuity assumptions
hold.

2.3. Self-consistency. In order to guarantee self-consistency of this construc-
tion, we need to verify that if the function ρ(·,t) that is used in the definition of µt and
λ(t,·) is additionally assumed to be a solution of (2.7) (and hence (2.15)), then the law
of the process Xt is given by

νt(Γ) =

∫
Γ

ρ(s,t)ds. (2.25)

That is, we need to show that Xt is distributed according to ρ(·,t) for all t≥0.
Let ν̂t(Γ) denote the right-hand side of (2.25). Then, upon integrating (2.15) over

Γ and using the definitions (2.20), we find that

∂ν̂t(Γ)

∂t
=

∫
R+

λ(t, ŝ)µt(ŝ,Γ)ν̂t(dŝ)−
∫

Γ

λ(t, ŝ)ν̂t(dŝ). (2.26)
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We have that ν̂0 =ν0 =ν. Thus to infer ν̂t=νt for all t≥0 we need the initial-value
problem for the forward equation (2.24) to have a unique solution with the properties
enjoyed by both νt and ν̂t.

That the requisite uniqueness holds is ultimately a consequence of our assumption on
the boundedness of the transition rates λ(t,s). This assumption ensures that the solution
P of (2.23) is a conservative transition function, by which we mean that P (r,t,s,R+) = 1
for all 0≤ r≤ t and s>0.

Proposition 2.3. Let ρ(s,t), λ(t,s) and µt(s,·) satisfy the hypotheses stated in the
previous subsection. Assume ρ(·,t) is a solution of (2.7) and ρ(·,0) =ν. Then Xt is
distributed according to ρ(·,t) for all t≥0.

Proof. We recall that the proof that P (r,t,s,R+)≡1 follows an iteration argument
(see [15, Theorem 1]) which is also sketched in [18, Appendix to X.3] in the time-
homogeneous case. (The same result is established without continuity conditions in [14,
Theorem 4.3].) By repeating the proof after integration against ν(ds), it follows that
νt(Γ) is the minimal non-negative solution of (2.24) with ν0 =ν that yields a measure
satisfying 0≤νt(Γ)≤1 for each t≥0. By consequence, νt(Γ)≤ ν̂t(Γ) for all t and all Γ.
Because P is conservative, it follows νt(R+) = 1. Hence, for all Γ,

1≥ ν̂t(R+) = ν̂t(Γ)+ ν̂t(R+ \Γ)≥νt(Γ)+νt(R+ \Γ) =ν(R+) = 1,

and from this it follows ν̂t(Γ) =νt(Γ).

Remark 2.2. As illustrated by Feller in [15], with unbounded jump rates λ(t,s) it is
possible for the natural solution P (r,t,s,Γ) of the backward Equation (2.21) to fail to
conserve total probability. We remark that it would be interesting to investigate how
this may be related to the phenomena of gelation and shattering in solutions of the
general coagulation-fragmentation Equation (2.1).

3. Approximation of the stochastic process by a numerical scheme

3.1. The algorithmic scheme used in this paper. We approximate the
jump process (Xt)t≥0 defined in Section 2.2.2 in and out of equilibrium by the following
numerical scheme. Recall that kernels Kρ depend on the probability density ρ. Hence,
if the process is not stationary, i.e. in equilibrium, we need to estimate ρ at every time
step of the numerical scheme. Assuming ρ=ρeq where ρeq can be computed or at least
approximated, we can study the dynamics in equilibrium. We will make use of our
knowledge of the equilibrium profile ρ∗ in the case of the Niwa model.

In the following we explain the algorithm for the case in which the initial distribution
is not the equilibrium distribution, and therefore we have to estimate ρ(·,tn) at every
time tn. It will become clear how the algorithm is conducted for fixed ρeq.

At the beginning, we fix the following quantities:

• an initial distribution ρ0 on an interval (0,L) for some (large) L>0,

• the coagulation coefficient a(s,ŝ) and fragmentation coefficient b(s,ŝ),

• the total number of individuals, i.e. the mass N ,

• the number of sample individuals/particles Ñ (not to confuse with the total
mass),

• the time step size dt,

• the bin size h for a partition of the domain.
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We simulate the jump process for the individuals 1,. ..,Ñ by computing, for each time
step i, the entries of the vector S(i) = (S1(i),. ..,SÑ (i)) where the entry Sk(i) equals
the group size of the k-th individual. In other words, S(i) denotes the vector which
contains all the obtained cluster sizes at time (i−1)dt. The initial vector S(1) is chosen
according to ρ0, for example a uniform distribution. We divide the interval (0,L) into
M :=Lh bins of length h, denoted by B1,. ..,BM .

At every time step i≥1, we proceed as follows:

(1) We estimate the coagulation and fragmentation probabilities for the centres
(bl)l=1,...,M of the bins (Bl)l=1,...,M :
• We approximate the density ρ(s,(i−1)dt) by

ρ̂(s,i) =
M∑
l=1

nl

hÑ
χBl(s), (3.1)

where nl is the number of entries of S(i) in Bl.
• Now we calculate the following quantities for all bin centres bk,bl:

Kρ̂(·,i)(bl→ bk) =a(bl,bk−bl)N
ρ̂(bk−bl,i)
bk−bl

χ[0,bk](bl)

+b(bk,bl−bk)
bk
bl
χ[bk,∞)(bl)

=Kc
ρ̂(·,i)(bl→ bk)+Kf (bl→ bk),

λρ̂(·,i)(bl) =

M∑
k=1

Kc
ρ̂(·,i)(bl→ bk)h+

M∑
k=1

Kf (bl→ bk)h

=λcρ̂(·,i)(bl)+λf (bl).

(2) We decide for each entry Sk(i) of S(i) if a jump happens, and if yes, where the
jump goes to, in the following way:

• For each Sk(i) , we determine the bin Blk in which it is contained. Furthermore,
we generate a random number r∈ [0,1] from the uniform distribution on the
unit interval.

• If r>1−exp
(
−λρ̂(·,i)(blk)dt

)
, nothing happens and Sk(i) stays in the same

bin. Otherwise a jump happens.

• If a jump happens, we generate another random number r1∈ [0,1] from the
uniform distribution:

– If r1≤
λcρ̂(·,i)(blk )

λρ̂(·,i)(blk ) , coagulation happens:

in this case we generate another random number r2∈ [0,1] from the uniform
distribution and calculate for 1≤m≤M the sum

P (m) :=h

m∑
r=1

Kc
ρ̂(·,i)(blk→ br)

λcρ̂(·,i)(blk)

until P (m∗)>r2. Then we set Sk(i+1)∈Bm∗ .

– If r1>
λcρ̂(·,i)(blk )

λρ̂(·,i)(blk ) , fragmentation happens:

in this case we generate another random number r3∈ [0,1] from the uniform
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distribution and calculate the sum

P (m) :=h
m∑
r=1

Kf (blk→ br)

λf (blk)

until P (m∗)>r3. Then we set Sk(i+1)∈Bm∗ .

(3) In this way, we obtain the vector S(i+1), which contains all the cluster sizes cor-
responding with the Ñ individuals at time idt. For time (i+1)dt, the procedure
starts again with the first step.

Approximating the exponential distribution with time discretization step size dt, the
algorithm induces a Markov chain, simulating Ñ trajectories of the jump process (X̃t)t≥0

corresponding with the generators

Aρ̂f(s) =h
M∑

l,k=1

χBl(s)(f(bk)−f(bl))Kρ̂(bl,bk), (3.2)

acting on the bounded and measurable functions f : (0,∞)→R. The process (X̃t)t≥0

approximates the jump process from Section 2.2.2 with generator (2.22) for M→∞,L→
∞, and, for dt small enough, the simulations give accurate results, as we will demon-
strate in Section 4.

Remark 3.1. If we assume that the population distribution is in equilibrium ρ=ρeq

and we can compute or at least approximate ρeq with high accuracy, we can use the
algorithm above to simulate the jump process by simply replacing ρ̂(s,i) as in (3.1) by
ρeq(s) at each time step i. In this case, it is also sufficient to only track one individual
for analyzing typical paths; that means that the vector S only has one entry. The
approximated process (Xt)≥0 is a Markov process, as indicated in Subsection 2.2.2
above.

Remark 3.2. Note that we could also adopt the domain for each step by consider-
ing (0,max1≤k≤Ñ Sk(i)+mh) for some m∈N, instead of (0,L). However, if L is large
enough, the effect of such a measure is vanishingly small due to the fast decay in our
models and, therefore, not necessary to obtain an accurate scheme.

3.2. Comparison to scheme by Eibeck and Wagner. As mentioned in the
introduction, there is a long history of stochastic particle methods for coagulation (and
fragmentation) equations. Since the nonlinearity is contained in the coagulation terms,
works on pure coagulation equations are highly relevant for our class of equations.
For pure coagulation, the standard stochastic model, often referred to as a Marcus-
Lushnikov process [29,32], describes a Markov jump process that models the coagulation
of clusters of size s and ŝ to form a single cluster of size s+ ŝ with rate kernel a(s,ŝ).
In quite a number of studies (to be brief, we mention only [12, 24, 40]), the empirical
measure for the group-size distribution has been related directly to the coagulation part
of the Smoluchowski Equation (2.1), in the so-called hydrodynamic limit as the number
of particles becomes large.

In work more closely related to the present study, Eibeck and Wagner [11] developed
a different approximation scheme to study the following mass flow equation for t≥0 and
ϕ continuous and compactly supported:∫ ∞

0

ϕ(s)Q(ds,t) =

∫ ∞
0

Q0(ds)+

∫ t

0

∫
(R+)2

(ϕ(s+ ŝ)−ϕ(s))
a(s,ŝ)

ŝ
Q(ds,r)Q(dŝ,r)dr.

(3.3)
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This is the weak form of (2.7) (cf. also (2.8)), which we have referred to as evolution
equation of the population density, in the case of pure coagulation. A solution Q of (3.3)
is required to be in the set of all continuous paths with values in the set of non-negative
Borel measures, i.e. Q∈C([0,∞),M(0,∞)).

The solution of (3.3) is approximated by a jump process for the empirical measure
of an interacting particle system, formalized as a càdlàg process with values in a subset
of M(0,∞). This jump process models the interaction of clusters of size s and ŝ to
result in a pair of clusters having sizes s+ ŝ and ŝ. In this way, the distribution of
cluster sizes in the particle system is used to estimate particle coagulation rates that
determine jump rates for a fixed number of particles, in a way similar to the algorithm
described in the previous subsection.

In more detail, suppose that a(s,ŝ)≤h(s)h(ŝ) for some continuous function h where
h(s)
s is non-increasing. For N ∈N, bN >0 and fixed β>0, they define the set of measures

MN
β =

{
p=

1

N

N∑
i=1

δsi ∈M((0,∞)) :si∈ (0,bN ],

∫ ∞
0

h(s)

s
p(ds)≤β

}
. (3.4)

Defining the map

J(p,s,ŝ) =

{
p− 1

N δs+ 1
N δs+ŝ, s+ ŝ≤ bN ,

p− 1
N δs, s+ ŝ>bN ,

they introduce the generator on continuous and bounded functions Φ :MN
β →R

GNΦ(p) =
1

N

N∑
1=i,j

[Φ(J(p,s,ŝ))−Φ(p)]
a(s,ŝ)

ŝ
, (3.5)

which is shown to correspond with a jump process UN . Introducing the set

Mβ =

{
p∈M((0,∞)) :

∫ ∞
0

h(s)

s
p(ds)≤β

}
⊃MN

β , (3.6)

one can view UN as a càdlàg process on Mβ , i.e. UN ∈D([0,∞),M(0,∞)).
Under these assumptions, Eibeck and Wagner [11] prove weak convergence of UN

to the solution Q of (3.3) for UN0 →Q0∈Mβ , as N→∞,bN→∞, and in [12] they
provide a similar result for the case where fragmentation is added. In the corresponding
algorithm, the coagulation kernel is replaced by the majorant product kernel h(s)h(ŝ)
which leads to a simple computation of the exponentially distributed waiting time for
the collision and an independent generation of collision partners (cf. also [10] for the use
of majorant kernels). When the collision partners si and sj have been chosen according
to the probabilities

h(si)∑N
k=1h(xk)

and
h(sj)/sj∑N
k=1h(xk)/xk

,

the jump happens with acceptance probability

a(si,sj)

h(si)h(sj)
,
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and, in this case, si is removed and, if si+sj≤ bN , si+sj is added to the points of the
empirical measure.

Note that the essential difference between our scheme and such a method concerns
the fact that we simulate single trajectories of individuals jumping between groups
of different sizes, while the Eibeck-Wagner algorithm simulates the evolution of the
population distribution as a whole as represented by the empirical measure. We track
individual trajectories on the state space and therefore we can analyze the statistical
properties of such trajectories, as we will see in Section 5.

4. Numerical simulations
In the following, we are using the algorithm developed in Section 3.1 to simulate

the population dynamics for the coagulation-fragmentation model (2.1), or (2.7) in
terms of the population density, with coagulation rates a(s,ŝ) and fragmentation rates
b(s,ŝ). Firstly, we validate the algorithm by working in the Niwa model (constant rates,
see (2.5)) where the simulation results can be compared to a known equilibrium distri-
bution. Furthermore, we use the algorithm to study the equilibrium and convergence
to equilibrium in the cases of random and polynomial rates which demonstrates the
flexibilty of our numerical scheme as opposed to previous ones, see [8].

4.1. Constant coagulation and fragmentation rates. First we work with
the Niwa model (2.6), or (2.10) in terms of the population density, and compare our
computation with analytical results. We conduct the numerical scheme described in
Section 3.1 until a certain time T >0, determining ρ̂(·,T/dt) as in (3.1). Using the
definition of the population distribution (2.4), we can determine

f̂(s,T/dt) :=
N ρ̂(s,(T/dt))

s

as an approximation of the size distribution f(·,T ) and compare the results with the
analytical predictions.

For doing so we choose total mass N = 1 and p̃= q̃= 1. Recall from [9] that any
other combination of parameters can be reduced to this case by rescaling. According
to [9], the equilibrium size distribution feq for (2.6) can be expanded as a series in the
following way:

feq(x) =
x−2/3

3

∞∑
n=0

(−1)n

Γ( 4
3−

2
3n)

xn/3

n!
, (4.1)

where Γ denotes the gamma function. We denote the partial sums by

fK(x) =
x−2/3

3

K∑
n=0

(−1)n

Γ( 4
3−

2
3n)

xn/3

n!
. (4.2)

4.1.1. Jump process out of equilibrium. We compute f̂(·,T/dt) according
to the algorithm introduced above for L= 30, T = 20, dt= 0.01, bin size h= 0.05 and
Ñ = 10000 sample individuals which are initially distributed according to the uniform
distribution ρ0 on [0,L]. As for most simulations in the following, the mass is normalized

to N = 1. In Figure 4.1, we have averaged f̂(·,T/dt) over larger bin sizes h1 = 1 in order
to obtain a smoother picture and used linear interpolation to create a continuous plot.
The figure compares the computed density according to the algorithm with the analytical
approximation, using f50 (4.2). We show the results on a log-log and a semi-log scale,
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where log denotes the decadic logarithm in the following, unless stated otherwise. We
observe that the algorithm produces convergence to a distribution that approximates
the analytical expansion very well. For larger sizes, there are small deviations from
the equilibrium due to the extremely small number of observations in this part of the
domain. Overall, the stochastic method can be seen to be highly accurate.

(a) Distributions on log-log scale (b) Distributions on semi-log scale

Fig. 4.1: Equilibrium solution of the Niwa model obtained by the Markov jump process out
of equilibrium. For mass N = 1, bin size h= 0.05 and Ñ = 10000 sample individuals, we com-
pute the size distribution f̂(·,T/dt) up to time T = 20 following the algorithm introduced in
Section 3.1 for the Niwa model (2.6), starting with a uniform distribution ρ0. We average
f̂(·,T/dt) over larger bin sizes h1 = 1 and display the interpolated plot together with f50 as
given in (4.2).

4.1.2. Jump process in equilibrium. The simulation in equilibrium works
with the same algorithm as in Section 3.1 but replaces ρ̂(·,i) at each time step i by the
approximation of the equilibrium density ρeq(·), obtained from f50 as given in (4.2),
via (2.4), see Remark 3.1. In this situation, it is sufficient to approximate the Markov
process Xt by simulating the trajectory of a single individual, deploying a simple Monte-
Carlo algorithm.

For L= 30,T = 10000, dt= 0.01 and bin size h= 0.05, we approximate the stationary
population distribution ρeq by measuring time averages of a single trajectory on the
interval (0,L) according to the modified algorithm (Remark 3.1), and, in Figure 4.2, we
compare the corresponding stationary size distribution with the analytical prediction
given by f50. We again average over the larger bin size h1 = 1 and show continuous
plots. As in Figure 4.1, we show the results on a log-log and a semi-log scale and
observe exactly the same as in Section 4.1.1. The method is highly accurate except
for small deviations from the equilibrium for large group sizes due to the extremely
small number of observations in this part of the domain. Hence, we observe that the
numerical scheme for simulating the Markov jump process in equilibrium is consistent
with the analytical results.

4.2. Non-constant coagulation and fragmentation rates. As opposed
to the analysis in [9] and most numerical methods presented in [8], the jump process
approach and the associated algorithm do not rely on constant coagulation and frag-
mentation rates q and p. Hence, we use the flexibility of the algorithm to investigate
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(a) Distributions on log-log scale (b) Distributions on semi-log scale

Fig. 4.2: Equilibrium solution of the Niwa model obtained by the Markov jump process in
equilibrium. For mass N = 1 and bin size h= 0.05, we evaluate the time averages of one path
in equilibrium up to time T = 10000 according to the algorithm introduced in Section 3.1 (see
Remark 3.1) for the Niwa model (2.6), using the equilibrium population density approximated by
f50 (4.2) via (2.4). As in Figure 4.1, we compare the distribution obtained from measuring the
time averages on the interval (0,30) to the analytical approximation of the equilibrium density
of size distributions, feq, again taking f50.

non-constant choices for a(s,ŝ) and b(s,ŝ)(s+ ŝ). Hereby, we test the sensitivity of the
results to changes in the model. We observe that random rates produce a clearly dif-
ferent outcome if the variance is high. Similarly, the equilibrium corresponding with
polynomial rates separates from the Niwa equilibrium with increasing order of the poly-
nomials. Furthermore, we study random and polynomial variations of the Aizenman
Bak model [1] where a(s,ŝ) and b(s,ŝ) are constant and the equilibrium size distribution
fABeq satsifies the detailed balance condition

a(s,ŝ)fABeq (s)fABeq (ŝ) = b(s,ŝ)fABeq (s+ ŝ).

4.2.1. Random rates. In this section, we consider the coagulation and frag-
mentation rates at(s,ŝ) and bt(s,ŝ)(s+ ŝ) in model (2.1), and thereby (2.12), to be
time-dependent. Furthermore, for all t≥0 and (s,ŝ)∈R2

+, under preservation of sym-
metry, they are assumed to be log-normally distributed δ-correlated random variables
with mean q or p respectively and standard deviation σ. This means that for all t≥0,
s,ŝ∈R+ the rates are sampled according to

ln(at(s,ŝ)) = ln(at(ŝ,s))∼N (lnq,σ2),

ln(bt(s,ŝ)(s+ ŝ)) = ln(bt(ŝ,s)(s+ ŝ))∼N (lnp,σ2), (4.3)

and the correlations are given by

E[ln(at1(s1, ŝ1))ln(at2(s2, ŝ2))]

=σ2δ(t1− t2)δ (min{|s1−s2|+ |ŝ1− ŝ2|, |s1− ŝ2|+ |ŝ1−s2|}), (4.4)

and analogously for bt(s,ŝ)(s+ ŝ). If σ= 0, the model coincides with the Niwa
model (2.6).
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(a) σ= 1 (b) σ= 3 (c) σ= 5

Fig. 4.3: Niwa model with fluctuating coagulation and fragmentation rates. For bin size
h= 0.05, Ñ = 20000 sample individuals and uniform initial distribution ρ0, we compute the
size distribution f̂(·,T/dt) up to time T = 20 following the algorithm introduced in Section 3.1,
with coagulation and fragmentation rates given randomly as in (4.3), for p= q= 2 and stan-
dard deviation σ= 1,3,5. We average f̂(·,T/dt) over larger bin sizes h1 = 1 and display the
interpolated plot together with f50 as given in (4.2) in a log-log scale.

Setting again p̃= q̃= 1 and thereby p= q= 2, we compute f̂Nh (·,T/dt) according to
the algorithm introduced in Section 3.1, now sampling at(s,ŝ) and bt(s,ŝ)(s+ ŝ) accord-
ing to (4.3) independently for every bin and at every time step. For the simulations
displayed in Figure 4.3, we have chosen bin size h= 0.05, Ñ = 20000 sample individ-
uals and time length T = 20, starting with a uniform distribution ρ0 and comparing
the results for different values of the standard deviation σ. We use the time step size
dt= 0.01 for σ≤3 and dt= 0.001 for σ= 5 to account for possible higher jump rates. As

before, we average f̂ Ñh (·,T/dt) over larger bin sizes h1 = 1, use linear interpolation to
create a continuous plot and compare the computed distribution to the analytical ap-
proximation f50 in a log-log scale. For σ≤1 the results are almost identical to the ones
before, showing almost perfect accordance with the analytical expansion. Hence, the
equilibrium appears to be robust under small random fluctuations. However, for σ= 3
we already observe a small discrepancy and for σ= 5 a clear discrepancy to the model
with constant rates. The fact that mass is typically shifted to larger sizes suggests that
high random fluctuations favour in average coagulation over fragmentation, even though
the fluctuations are equally distributed for both rates. Due to the time-dependent and
thereby non-autonomous nature of the random rates, the size distribution cannot reach
an equilibrium but a state one could describe as almost steady, characterized by small
fluctuations around an expected distribution. Making sure such a state is reached here,
we have compared the simulation results at T = 20, T = 30 and at T = 40 and observed
almost identical behaviour of the size distribution.

Moreover, we consider random fluctuations around the Aizenman-Bak model [1].
This means that for all t≥0, s,ŝ∈R+ the coagulation and fragmentation rates are
distributed according to

ln(at(s,ŝ)) = ln(at(ŝ, s))∼N (lnq,σ2), ln(bt(s,ŝ)) = ln(bt(ŝ,s))∼N (lnp,σ2), (4.5)

where the correlations are given as in (4.4). Analogously to before, the case σ= 0
coincides with the Aizenman-Bak model with a(s,ŝ) = q and b(s,ŝ) =p. Setting p= q= 2,
the stationary size distribution is known to be a simple exponential distribution with



P. DEGOND, M. ENGEL, J.-G. LIU, AND R.L. PEGO 73

parameter 1, i.e. the stationary density of the size distribution is given by

fABeq (s) =e−s.

We use the jump algorithm as before to approximate the equilibrium distribution
and compare it to the equilibrium of the Niwa model according to the series expansion
as well as the equilibrium density fABeq (s) =e−s , as shown in Figure 4.4. First, we
set σ= 0 to compare the distributions without random fluctuations. We observe that
the higher fragmentation rates in the Aizenman-Bak model lead to a shift of mass to
smaller group sizes for fABeq compared with feq and that the algorithm approximates

fABeq very well. Furthermore, we choose σ= 1 and σ= 5 to observe that, for small noise,
the curves are again similar to the case σ= 0, whereas, for larger noise, the equilibrium
for (4.5) loses mass in the range of small group sizes and gets closer to the equilibrium feq

(4.1) for model (2.6). In both the Niwa and the Aizenman-Bak model we observe that
random rates with large noise drive the size distributions away from the deterministic
equilibrium in the direction of a uniform distribution.

(a) σ= 0 (b) σ= 1 (c) σ= 5

Fig. 4.4: Aizenman-Bak model with fluctuating coagulation and fragmentation rates. Given
the same parameters as in Figure 4.3, the results of the analogous simulation, following the
algorithm with coagulation and fragmentation rates given randomly as in (4.5) with p= q= 2,
are displayed for σ= 0,1,5 and compared to the expansion f50 from the Niwa model and the
stationary density fAB

eq (s) =e−s of the Aizenman-Bak model. The case σ= 0 corresponds to
the Aizenman-Bak model where the equilibrium satisfies the detailed balance condition.

4.2.2. Polynomial rates. Furthermore, we consider polynomial coagulation
and fragmentation rates. In terms of the physical model describing the dynamics of an-
imal group aggregation, it seems plausible that the fragmentation probability increases
with the group size. In addition, larger groups should also have a larger probability to
be the result of a coagulation process. The easiest way to implement this reasoning in
terms of polynomial rates is given by

a(s,ŝ) = q(s+ ŝ)α, b(s,ŝ) =p(s+ ŝ)β−1, (4.6)

where α,β≥0, such that for α=β= 0 we obtain the Niwa model with a(s,ŝ) =
q, b(s,ŝ)(s+ ŝ) =p. Inserting the rates from (4.6) into (2.13) gives

Kc
ρ(·,t)(ŝ→s) =Nqsα

ρ(s− ŝ,t)
s− ŝ

χ[0,s)(ŝ), Kf (ŝ→s) =psŝβ−2χ[s,∞)(ŝ).

We use the jump algorithm from Section 3.1 with rates (4.6) to approximate the
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(a) α=β= 0.1 (b) α=β= 1 (c) α=β= 3

Fig. 4.5: Niwa model with polynomial coagulation and fragmentation rates. For bin size h=
0.05, Ñ = 20000 sample individuals and uniform initial distribution ρ0, we compute the size
distribution f̂(·,T/dt) up to time T = 20 following the algorithm introduced in Section 3.1, with
coagulation and fragmentation rates given as in (4.6), for p= q= 2 and α=β= 0.1,1,3. We
average f̂(·,T/dt) over larger bin sizes h1 = 1 and display the interpolated plot together with f50
as given in (4.2) in a log-log scale.

equilibrium and compare the result to the equilibrium of the Niwa model, estimated
by the series expansion. We set p= q= 2, choose α=β= 0.1,1,3 and use time step size
dt= 0.01 for α=β≤1 and dt= 0.0001 for α=β= 3 to account for the higher jump rates.
We observe in Figure 4.5 that with increasing α=β the distribution separates from the
equilibrium profile with constant rates. While for α=β= 0.1 the computed distribution
coincides with feq and for α=β= 1 the computed distribution is still very close to feq,
we note that for α=β= 3 the group sizes are closer to a uniform distribution. Similar to
the situation with random rates, we have compared the simulation results at T = 20 and
at T = 40 and observed the same behaviour of the size distribution, making sure that
the stronger vicinity to the uniform distribution is not caused by a slower convergence
process.

The finding that increasing α=β imply a divergence from the equilibrium profile
with constant rates towards a uniform distribution can be accounted for by the fact
that the rate of coagulation to large sizes s increases with α. This effect is apparently
disproportionate to the impact of an increased rate of fragmentation from large sizes s for
increasing β. Similar to the previous section, we additionally consider the coagulation
and fragmentation rates

a(s,ŝ) = q(s+ ŝ)α, b(s,ŝ) =p(s+ ŝ)β , (4.7)

where α,β≥0. In this case, the situation for α=β= 0 coincides with the Aizenman-Bak
model [1] where b(s,ŝ) =p.

As before, for p= q= 2, we use the jump algorithm to simulate the dynamics with
rates (4.7) and approximate the stationary density which we compare to the equilibrium
of the Aizenman-Bak model fABeq (s) =e−s and the equilibrium of the Niwa model. Recall
from Figure 4.4 that the higher fragmentation rates in the Aizenman-Bak model lead to
a shift of mass to smaller group sizes, compared with the Niwa equilibrium. We choose
the same parameter values as for Figure 4.5 and observe in Figure 4.6 that, similar to
the model with rates (4.6) as shown in Figure 4.5, the equilibrium distribution seems
to be driven away towards a uniform distribution under sufficiently increased exponents
α=β. Similar to random rates with large variance, the increased coagulation and
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(a) α=β= 0.1 (b) α=β= 1 (c) α=β= 3

Fig. 4.6: Aizenman-Bak model with polynomial coagulation and fragmentation rates. Given
the same parameters as in Figure 4.5, the results of the analogous simulation, following the
algorithm with coagulation and fragmentation rates given as in (4.7), are displayed for p= q= 2
and α=β= 0,1,3 and compared to the expansion f50 from the Niwa model and the stationary
density fAB

eq (s) =e−s of the Aizenman-Bak model.

fragmentation probabilities of large sizes apparently tend to balance each other out as
opposed to the case with constant rates.

5. Statistical analysis of the jump process

The stochastic algorithm introduced in Section 3.1 can be used to study statistical
properties of the jump process (Xt)t≥0 from Section 2.2.2. In the following, we estimate
the decay of correlations for the process in equilibrium and starting out of equilibrium.
Furthermore, we approximate the typical occupation times of individuals at cluster
sizes for the different types of coagulation and fragmentation rates used in the previous
section.

5.1. Autocorrelation function. The autocorrelation function gives an es-
sential characterization of a stochastic process (Xt)t≥0, by measuring the amount of
memory the process keeps over times t−s. In more detail, let µt :=E[Xt] denote the
expected value and σ2

t :=E[(Xt−µt)2] denote the variance of the process at time t≥0.
Then the autocorrelation function is given by

Ã(t,s) =
E[(Xt−µt)(Xs−µs)]

σtσs
.

Fixing a time t≥0, we define the autocorrelation function in one time variable by

A(τ) = Ã(t,t+τ).

We investigate numerically the autocorrelation function of the process (Xt)t≥0, as in
Section 2.2.2, for the Niwa model (2.10) with coagulation and fragmentation parameters
p̃= q̃= 1, i.e. p= q= 2. We use the jump algorithm described in Section 3.1 to make
a numerical estimate on the behaviour of A(τ), given that (a) the stationary density
ρeq is reached, i.e. ρ0 =ρeq (see Remark 3.1), and (b) the equilibrium density is not
reached yet but starting from a uniform distribution ρ0. In Figure 5.1, we observe a
rapid decrease of the autocorrelation A(τ), i.e. fast decay of correlations, in both cases.
The findings suggest an exponential decay of correlations with a rate close to 0.25 in
equilibrium and a rate close to 0.3 starting from a uniform distribution.
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The numerical results indicate that, in the Niwa model, the size of the group an
individual belongs to at a certain point of time is correlated significantly only to the sizes
of the groups the individual belonged to in the close past. This is consistent with the
underlying assumption that groups of all sizes can be involved in particular coagulations
and fragmentations with equal probability.

(a) In equilibrium (b) Out of equilibrium

Fig. 5.1: Autocorrelation functions in the Niwa model. We estimate A(τ) for τ ∈ (0,10] follow-
ing 105 paths. In (a), the paths are distributed according to the stationary population density
ρeq, evolving according to the algorithm introduced in Section 3.1 (Remark 3.1), with ρeq es-
timated by f50 (4.2) via (2.4). In (b), the paths are changing the distribution in approach of
the equilibrium distribution according to (3.1). We observe exponential decay of correlations in
both cases.

5.2. Statistics of the occupation time. The second numerical investigation
of the process’ statistical properties concerns the time individuals spend in average
at a given cluster size before performing a jump to a new cluster size. We call this
time length the average occupation time of each group size. We approximate this
magnitude by conducting the algorithm from Section 3.1 with the four different types
of coagulation and fragmentation rates, presented in Section 4: constant rates p̃= q̃= 1
(p= q= 2), as in the original Niwa model, in equilibrium (Figure 5.2 (a)) and out of
equilibrium (Figure 5.2 (b)), random rates as given in (4.3) (Figure 5.3 (a)-(c)) and
polynomial rates as in (4.6) (Figure 5.3 (d)-(f)). For the random rates we compare
σ= 1,2,3 and for the polynomial rates α=β= 1,2,3. In Figure 5.2 and Figure 5.3,
we display the approximated occupation times, averaging over bin sizes h1 = 0.1, for
different choices of coagulation and fragmentation rates. We observe that the occupation
times roughly reflect the corresponding equilibrium size distributions (or almost steady
size distributions in the random case respectively), as seen in Section 4. In the case of
coagulation and fragmentation rates (2.5) from the Niwa model, as shown in Figure 5.2,
the occupation times show a sharp increase for smaller group sizes. We observe similar
behaviour for small perturbations of the model, represented by the random case with
σ= 1 (Figure 5.3 (a)) and the polynomial case with α=β= 1 (Figure 5.3 (d)). Note that
for random rates with σ= 1 and constant rates in equilibrium and out of equilibrium, the
decay of occupation times stops at small sizes such that the occupation times fluctuate
around a constant level for all larger sizes. In the case of polynomial rates, we observe
smooth decay of occupation times mirroring the group size distribution in equilibrium
more accurately.
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(a) In equilibrium (b) Out of equilibrium

Fig. 5.2: Statistics of average occupation time for the Niwa model in equilibrium (left) and
out of equilibrium (right). For p= q= 2, we deploy the algorithm, introduced in Section 3.1,
to simulate 103 paths of the jump process (Xt)t≥0 until time T = 105, using a time step size
of dt= 0.1. The average occupation time of individuals at each cluster size is measured for
coagulation and fragmentation rates (2.5). The density ρeq for the equilibrium case (a) is
estimated by the expansion (4.2) with K= 50 and the calculations for (b) are conducted with
uniform initial distribution.

The larger the random or polynomial perturbations of the Niwa model become, the
more we see the peak at smaller sizes vanish. In fact, the average occupation times can
be seen to decrease to a much smaller scale for increasing standard deviation σ in the
case of random rates (Figure 5.3 (a)-(c)) and increasing polynomial exponents α=β in
the situation of polynomial rates (Figure 5.3 (d)-(f)), which can be explained by the
increased coagulation and fragmentation rates and, thereby, increased jump rates. The
decrease of occupation times to a similarly low level for all sizes is in accordance with
the equilibrium density tending to a more uniform distribution for increasing random
rates and increasing polynomial exponents, as seen in Figures 4.3 and 4.5.

6. SDE approximation to the jump-process model
Motivated by Niwa’s approach to use a stochastic differential equation (SDE) for

modeling the dynamics and equilibrium distribution of group sizes [38], we discuss
the role of SDEs for modeling the merging-splitting dynamics that correspond to the
coagulation-fragmentation Equation (2.1) or (2.7). First, we discuss Niwa’s SDE model
and describe some of its problematic aspects. Next we derive a natural diffusion approxi-
mation to the group-size jump process of Section 2.2, and demonstrate the inconsistency
of this approach for modeling the jump process. Finally, we discuss an alternative SDE
model for the dynamics of group sizes — a stochastic logistic equation — which, al-
though it involves very different mechanisms for group-size changes, yields equilibrium
group-size distributions that also have the form of a power-law with an exponential
cutoff (gamma distribution).

6.1. Niwa’s SDE model. In order to find an expression for the equilibrium
group-size distribution, Niwa [38] models the process (Xt)t≥0 of the size of the group
containing a given individual via an SDE having the form

dXt=− p̃
2

(Xt− x̄)dt+σ(Xt)dWt, (6.1)
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(a) σ= 1 (b) σ= 2 (c) σ= 3

(d) α=β= 1 (e) α=β= 2 (f) α=β= 3

Fig. 5.3: Statistics of average occupation time for the Niwa model with fluctuating coefficients
(top) and with polynomial rates (bottom). Starting from a uniform initial distribution, the
same simulations as in Figure 5.2 are conducted for random rates (4.3) (with time step size
dt= 0.01) and polynomial rates (4.6) (dt= 0.0005), again measuring the average occupation
time of individuals at each cluster size. The average occupation times can be seen to decrease
strongly for increasing standard deviation σ in the case of random rates ((a)-(c)) and increasing
polynomial exponents α=β in the situation of polynomial rates ((d)-(f)), due to the increased
jump rates.

when Xt>0, where the parameter p̃ is related to the rate of group splitting per time
step, the constant x̄= 〈Xt〉p represents the population-weighted mean group size, and
Wt denotes standard Brownian motion. The drift is chosen linearly around the average,
which roughly models the notion that, on average, fragmentation decreases group size
by half, while coagulation increases it by a constant. Niwa modeled the noise coefficient
σ(Xt) using data from site-based merging-splitting simulations, coming to the conclusion
that

σ(x)2 = 2Dexp
(x
x̄

)
, (6.2)

where D is a constant. Ultimately though, there is no rigorous, or even formal, deriva-
tion of (6.1).

The stationary Fokker-Planck equation associated with the SDE (6.1) states that
dJ/dx= 0 where J is the probability flux

J(x) =− p̃
2

(x− x̄)ρ(x)− d

dx

(
Dexp

(x
x̄

)
ρ(x)

)
. (6.3)

Taking J ≡0 to ensure there is no flux at ∞, one can solve this equation to find that
the equilibrium population distribution takes the form

ρ(x) =
1

Z
exp

[
−x
x̄

(
1−γe−x/x̄

)]
, γ=

p̃x̄2

2D
, (6.4)
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where Z>0 is a normalization constant. Correspondingly, the stationary group-size
distribution is given as

Φ(x) =
ρ(x)

x
=

1

xZ
exp

[
−x
x̄

(
1−γe−x/x̄

)]
. (6.5)

One problem in using (6.1) to model group-size evolution is that the process (Xt)
will hit 0, and one needs to specify how group size will be kept positive. Niwa appears
to model this using symmetrization after a change of variables, and is led to impose the
condition

D= p̃x̄2, (6.6)

corresponding to γ= 1
2 (apparently in order to make a symmetrized drift potential

continuously differentiable at 0). It seems more natural mathematically, instead, to
simply require the stochastic process Xt to reflect at 0. As described in [34, 47], e.g.,
this means that a term dLt is added to the right-hand side of (6.1), where Lt is the
local time of the process Xt at 0, determined by the formula

Lt= lim
δ→0+

1

2δ

∫ t

0

1{Xs<δ}ds. (6.7)

The equilibrium density of this reflected process still has the form in (6.4) with J ≡0,
with normalization constant Z simply chosen to make ρ a probability density on (0,∞).

This leaves γ as a free parameter in the model, which one ought to specify in
some further way. In terms of the quality of fitting (6.5) to the empirical data shown
in [38, Fig. 5], it does not matter much what the precise value of γ is, as long as it is
small. On the scale of [38, Fig. 5], the value γ= 0 provides a very acceptable fit, as was
mentioned by Niwa himself [30] and was shown in [9, Fig. 2]. The simulation data Niwa
generated in [38, Fig. 2] seem to be consistent with a much larger value of γ, however,
that would not lead to a good fit with the data of [38, Fig. 5].

Since the stationary distribution (6.5) reasonably fits empirical data, one can con-
sider whether the SDE (6.1) is a suitable basis for numerical simulation of the individual
group-size process. We perform simulations using a simple Monte-Carlo scheme for an
Euler-Maruyama integration of (6.1) with reflection and with step size dt= 10−4, taking

p̃= 1 = x̄ and imposing (6.6). (This means that the corresponding f̂eq with x̄= 1, N = 1

has to be rescaled as f̂eq = 36feq(6x), see [9, Remark 5.1].) Following one trajectory up
to time length T = 106, we approximate the stationary size distribution (6.5) on (0,∞).
In Figure 6.1(a), we compare the result of the simulation, the density (6.5) and the rig-

orously derived equilibrium f̂eq with x̄= 1, N = 1, estimated by the rescaled expansion
f50. We observe that for small group sizes the approximation is relatively close to the
other two densities, but for larger group sizes trajectories are lost although the time
step size is already extremely small. This has to do with the highly unstable diffusion
coefficient which is an exponential function. We actually can’t compute the distribution
for sizes x>10 due to the unstable diffusion coefficient.

In order to avoid the exponentially unstable diffusion coefficient, we apply the fol-
lowing change of variables. Recall we take p̃= 1 = x̄, γ= 1

2 . Similar to Niwa [38], for
Xt>0 we introduce Yt∈ (0,1) by

Yt= 1−exp(−Xt/2). (6.8)
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We formally use Itô’s formula to obtain, for Yt>0,

dYt=
1

4

[
(2ln(1−Yt)+1)(1−Yt)−

1

1−Yt

]
dt+

1√
2

dWt. (6.9)

Again we require the process Yt to be reflected at 0, so this equation should be modified
by a local time term. The strong negative drift near 1 prevents the exact process Yt from
hitting 1 (as one can check using the criterion from [17, Theorem 3], see Section 6.3.1
below). In a Monte-Carlo simulation, however, we have to prevent trajectories from
leaving the domain at 1, by simply letting them stay at the same position in case the
absolute value would become larger than 1. This Monte-Carlo algorithm, based on (6.9),
yields Figure 6.1 (b), where again the result of the simulation (with dt= 10−3, T = 106) is

compared to the stationary density (6.5) and the rigorously derived equilibrium f̂eq with
x̄= 1, N = 1, estimated by the rescaled expansion f50. We observe that the distribution
obtained by the simulation lies close to both densities but does not coincide with either
of them which can be seen in particular for larger sizes.

(a) Simulation of (6.1) (b) Simulation of (6.9)

Fig. 6.1: Semi-log plot of group-size distribution of trajectories of (a) Niwa’s SDE (6.1) and (b)
the transformed SDE (6.9), obtained by Euler-Maruyama integration (using time length T = 106

and step size dt= 10−4 in (a), dt= 10−3 in (b)), compared to the equilibrium density (6.5)
and the equilibrium f̂eq for model (2.6) with x̄= 1, N = 1, estimated by the rescaled expansion
f50. In (b), inset log-linear plot of ratio between the respective distributions and f50, similar
to [9, Figure 2] where the normalization factor 1/Z= 0.881237 for the Niwa SDE equilibrium
was not taken into account.

Summarizing, modeling the dynamics via (6.1) or (6.9) lacks rigorous justification.
The uniformly elliptic noise pushes the process to hit the origin and one must invoke ad
hoc means to keep it positive, unjustified in terms of the underlying population dynamics
as originally outlined by Niwa.

Even though the simulated processes seem to reach an equilibrium close to the
analytical prediction (see Figure 6.1), another serious modeling issue is that SDE sample
paths are always continuous in time, and do not make large jumps in the way the
merging/splitting mechanism would suggest. It is not clear whether the solution process
of such an SDE can be related to the Markov jump process which is derived in Section 2.2
and simulated successfully in Section 4. The next section explores the possibility of such
a connection.
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6.2. SDE and the jump process. In the following, we investigate the suit-
ability of a natural drift-diffusion approximation to the jump process constructed in
Section 2.2.2, in the situation of the Niwa model with coagulation and fragmentation
factors (2.5). Recall from (2.22) the family of generators (At)t≥0

(Atf)(x) =λ(t,x)

∫
(f(y)−f(x))µt(x,dy),

where µt and λ(t,x) are given by (2.20). Writing, similar to before, µt(x,dy) = µ̂t(x,y)dy,
the forward equation for the jump process is the Fokker-Planck equation

∂tρ(x,t) =A∗t ρ=

∫
λ(t,y)µ̂t(y,x)ρ(y,t)dy−λ(t,x)ρ(x,t),

as given in (2.15). Matching [9], as before, we take N = 1 and p= q= 2 and assume that
we are in equilibrium, i.e. ρ(x,t) =ρeq(x) for all t≥0, such that λ(x) =λρeq(·)(x) =λ(t,x),
µ̂(y,x) = µ̂t(y,x) and A=At are time-independent. In equilibrium, we observe that

λ(y)µ̂(y,x) =Kρeq(·)(y→x) = 2feq(x−y)1x>y+2
x

y2
1x<y.

Using the moment relations in [9, Eq. (5.6)] yields

λ(y) =

∫ ∞
0

Kρeq(·)(y→x)dx= 2m0(feq)+1 = 3,

where mk(f) :=
∫
R+
xkf(x)dx. This means constant event rates, which is consistent

with the fact that the system is in equilibrium. We obtain

µ̂(y,x) =
2

3

(
feq(x−y)1x>y+

x

y2
1x<y

)
. (6.10)

Now, supposing that the jumps go typically to a close range of sizes, we use the Taylor
approximation

f(y) =f(x)+f ′(x)(y−x)+
f ′′(x)

2
(y−x)2 +o((y−x)2),

to get Af ≈Addf , where the drift-diffusion approximation Add to the jump-process
generator A is given by

(Addf)(x) = b(x)f ′(x)+
1

2
c(x)f ′′(x), (6.11)

with

b(x) =λ(x)

∫
(y−x)µ̂(x,y)dy, c(x) =λ(x)

∫
(y−x)2µ̂(x,y)dy.

Note that b represents the drift and c the diffusion coefficient. We can conclude
from (6.10) that in equilibrium these coefficients are as follows: using m1(feq) =N = 1,
the drift is given as

b(y) = 2

∫ ∞
0

(x−y)feq(x−y)1x>ydx+
2

y2

∫ y

0

(x−y)xdx
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= 2+2y

(
1

3
− 1

2

)
= 2
(

1− y
6

)
. (6.12)

Note that the signs are consistent with the model since the drift pushes to the right at
small y and the left at large y, as expected. Using that m2(feq) = 6 from [9, Eq. (5.6)],
the diffusion coefficient reads

c(y) = 2

∫ ∞
0

(x−y)2feq(x−y)1x>ydx+
2

y2

∫ y

0

(y−x)2xdx

= 12+2y2

(
1

3
− 1

4

)
= 12+

1

6
y2. (6.13)

For the SDE with drift b and diffusion c, the Fokker-Planck equation corresponding
with (6.11) is

∂tρ+(bρ)x=
1

2
(cρ)xx.

The stationary solution ρdd of this equation satisfies

ρ′dd

ρdd
=

2b

c
− c
′

c
=

6(4−x)

72+x2
.

After integration, we can determine

ρdd(x) =ρdd(0)
723A(x)

(72+x2)3
, A(x) = exp(2

√
2tan−1(x/

√
72)). (6.14)

The stationary density ρdd for the approximating SDE with generator (6.11) differs
rather substantially from the stationary solution of (2.10) for p= q= 2, N = 1 which is
given by ρeq =ρ∗ (2.18). See the comparison of group size distributions in Figure 6.2a,
and note that each tick mark on the vertical scale corresponds to 2 orders of magni-
tude. For small group size, we have ρdd(x)∼ const, while ρ∗(x)∝x1/3 from (2.18).
Furthermore, while ρ∗(x) decays exponentially, ρdd decays only algebraically fast with
ρdd(x)∝x−6 as x→∞. One trouble is that for large sizes, the drift and diffusion rates
are dominated by the (uniform) fragmentation mechanism, which is not well-described
by small jumps.

Recall that Niwa estimates the diffusion coefficient for the SDE (6.1) by fitting it
into a semi-log plot of the variance of size changes in finite time intervals, based on data
obtained from site-based simulations of merging and splitting [38, Figure 2]. We can
deploy the algorithm for the Markov jump process in equilibrium to approximate the
variance of size changes and compare the computations to the diffusion coefficient c. In
Figure 6.2b we observe that size changes exhibited by the simulated jump process differ
noticeably from the function c (scaled by dt= 0.05 as appropriate), but not by a large
percentage. By fitting on a semi-log scale as indicated in Figure 6.3a we find a good fit
with a similar exponential form as Niwa had, namely with

c1(y) = exp(2.19+0.1y). (6.15)

6.3. Model with degenerate noise. So far, we have ascertained that the
adequate stochastic method for studying the coagulation-fragmentation model (2.1)
with non-local rates in general and the Niwa model (2.6) in particular is given by
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(a) ρdd(x)/x and feq(x) (b) Variance comparison to c

Fig. 6.2: Validity of the SDE approximation with drift b (6.12) and diffusion coefficient c
(6.13). For mass N = 1 and p= q= 2: (a) We compare the equilibrium group size distributions
fdd(x) =ρdd(x)/x and feq; (b) We simulate the jump process in equilibrium (see Section 3.1)
and estimate the variance of size change by averaging along trajectories with time increment
dt= 0.05. We compare the computations to the diffusion coefficient c (scaled by dt), as calcu-
lated from the second-order approximation (6.13).

(a) Variance comparison to c1, semi-log
plot

(b) Variance comparison to c1, linear plot

Fig. 6.3: Fitting of exponential diffusion coefficient (6.15). For mass N = 1 and p= q= 2, we
simulate the jump process in equilibrium (see Section 3.1) and estimate the variance of size
change by averaging along trajectories. We compare the computations to the fitted coefficient
c1 in (6.15).

a jump process, as derived in Section 2.2. Finding a stochastic differential equation
whose solution is closely related to the underlying jump process has turned out to be
analytically (Section 6.2) and numerically (Section 6.1) cumbersome. However, one
can still try to find an SDE which models coagulation and fragmentation dynamics
differently and displays the same or a similar equilibrium distribution as the evolution
Equation (2.15). In the following, we consider a stochastic logistic equation and its
relation to a nearest-neighbour random walk.
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6.3.1. Stochastic logistic equation and gamma distribution. From data
plotted in [9, Figure 2] and [30], one can see that both the equilibrium profile (4.1)
for the coagulation and fragmentation model (2.6) and the equilibrium profile (6.5) for
Niwa’s SDE (6.1) model with x̄= 1 and γ= 1

2 are close to the simple logarithmic size
distribution profile

Φ(x) =x−1 exp(−x),

in the range containing most of the empirical data plotted in [38, Figure 5]. Hence,
we can also try to find an SDE, derived from a coagulation-fragmentation model for
particles, such that the population distribution

ρ(x) = exp(−x) (6.16)

is the stationary solution of the corresponding Fokker-Planck equation. Pursuing this
objective, we consider the stochastic logistic equation

dXt= rXt

(
1−Xt

k

)
dt+
√

2σXtdWt, X0>0, (6.17)

as suggested by Robert May in [33], and studied in [42]. If an invariant distribution
exists, its density ρ is the solution of the stationary Fokker-Planck equation

0 =
d2

dx2
(σ2x2ρ)− d

dx

(
rx
(

1− x
k

)
ρ
)
. (6.18)

The density must take exactly the form of a power law with exponential cutoff — a
gamma distribution,

ρ(x) =f(x;α,β) =
βαxα−1e−βx

Γ(α)
, α=

r

σ2
−1, β=

rσ2

k
. (6.19)

When r>σ2, ρ is integrable on (0,∞) and βa

Γ(α) is exactly the normalization constant.

Note that we recover the exponential distribution (6.16) by choosing σ= 1, r= 2 and
k= 2. When r≤σ2, no invariant distribution exists — instead one expects the process
to spread out indefinitely as in the case when r= 0.

In Equation (6.17), the degenerate diffusivity proportional to Xt prevents the
stochastic process from hitting 0 — this is a well-known phenomenon orginating with
work of Feller [16]. In particular, the criterion of Theorem 3 of [17] states that the
solution Xt of (6.17) can hit 0 if and only if for all λ>0, all solutions z(x) of the ODE

Az=λz, A=σ2x2 d2

dx2
+rx

(
1− x

k

) d

dx
, (6.20)

on (0,∞) are bounded in a neighborhood of 0. To determine whether this is the case,
one can change variables via y= logx and note that the theory of asymptotic behavior
of ODEs [6, Section 3.8] allows us to neglect the term ey(dz/dy) in the limit y→−∞.
Since the equation

σ2 d2z

dy2
+(r−σ)

dz

dy
−λz= 0

has unbounded solutions, we conclude that the solution process Xt for (6.17) naturally
stays in (0,∞) and no further assumption needs to be made about what happens at 0.
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We note that the degenerate nature of the diffusion does neither reflect Niwa’s
simulation results, which he used to estimate diffusivity for the SDE model (6.1) of the
merging-splitting dynamics [38, Figure 2], nor the diffusion coefficient c (6.13) for the
second-order approximation of the jump process. Recall that neither of these approaches
delivered results that justifiably model the merging-splitting dynamics described by the
jump process. In contrast, the logistic SDE model (6.17) consistently describes group-
size fluctuations that occur due to a different mechanism, namely a geometric Brownian
motion with logistic drift. Consequently, (6.17) is capable of providing a rationale for
the appearance of the gamma distribution if the group-size dynamics are governed by
a suitable mechanism.

In order to understand better what kind of mechanism could lead to (6.17), we note
that some basic features observed in merging-splitting dynamics resemble principles ex-
pressed in (6.17): The linear multiplicative noise term can be interpreted to correspond
with fluctuations increasing with the cluster size due to an increase in “coagulation and
fragmentation interactions”. The logistic drift term expresses the dominance of frag-
mentation for larger sizes and dominance of coagulation for smaller sizes. In the follow-
ing, we make these notions more precise by describing how a classical nearest-neighbor
random walk on the lattice (corresponding to small jumps in group size among a dis-
crete set) formally corresponds in the continuum limit to the stochastic logistic SDE
model (6.17).

6.3.2. A lattice random walk approximating the stochastic logistic model.
Consider a stochastic process determined exclusively by jumps to the nearest neigh-

bours on the lattice hN with small grid size h on R+. We let uj(t) denote the probability
of an individual to be in a group of size jh at time t, and suppose that the group size
can change only by jumps from jh to jh±h. We let αj denote the rate of jumps from
jh to jh+h and let βj denote the rate of jumps from jh to jh−h.

The master equation for the corresponding process on the lattice is

∂tuj =αj−1uj−1 +βj+1uj+i−(αj+βj)uj , j= 1,2,. ... (6.21)

We exclude the origin by setting α0 = 0 =β1 and will ignore the boundary henceforth.
We can rewrite Equation (6.21) as

∂tuj =−Fj+1/2 +Fj−1/2, (6.22)

where

Fj+1/2 :=αjuj−βj+1uj+1

is the flux from j to j+1, and, hence,

Fj−1/2 =αj−1uj−1−βjuj

is the flux from j−1 to j.
Let us consider how to choose αj and βj to approximate a given SDE

dXt=a(Xt)dt+
√

2b(Xt)dWt, X0>0, (6.23)

on (0,∞). Recall that in the case of (6.17) we have

a(x) = rx− r
k
x2, b(x) =σx. (6.24)
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The Fokker-Planck equation associated with the SDE (6.23) is

∂tu=−∂x(a(x)u)+∂2
x(b(x)u) =∂x((2bb′−a)u+b2∂xu). (6.25)

Deploying a key idea from numerical analysis, we write the modified drift as the differ-
ence of positive quantities

a−2bb′=f+−f−.

For our example (6.24) we can take

f+(x) = rx, f−(x) =
r

k
x2 +2σ2x.

Now we discretize the Fokker-Planck Equation (6.25), using upwinding for the drift:

∂tuj =− 1

h
(f+
j uj−f

+
j−1uj−1)+

1

h
(f−j+1uj+1−f−j uj)

+
1

h2
(b2j+1/2(uj+1−uj)−b2j−1/2(uj−uj−1)).

This equation takes the conservative form in (6.22) with jumping rates

αj =
1

h
f+
j +

1

h2
b2j+1/2, βj =

1

h
f−j +

1

h2
b2j−1/2.

In the case of the stochastic logistic Equation (6.17), with drift and diffusion coefficients
given by (6.24), we take xj = jh and bj+1/2 = b(xj), f

+
j =f+(xj), f

−
j =f−(xj). Hence,

we have

αj = rj+σ2j2, βj =
rh

k
j2 +2σ2j+σ2(j−1)2 =

rh

k
j2 +σ2(j2 +1). (6.26)

The jump rates αj and βj both consist of a term with factor r, corresponding with the
drift in (6.17), and a term with factor σ2, corresponding with the diffusion in (6.17).
The terms with factor σ2 are all quadratic in the discrete size j, as one would expect.
The r-term in aj is linear in j and has a stronger relative impact on jumps to the right
the smaller j is, as in (6.17). In the rate βj the r-term is quadratic in j, as in (6.17),
implying that both terms contribute to the increasing rate of jumps to the left in the
same way. This gives a particular lattice random walk which approximates model (6.17)
for small h.

Note that a probability density ueq satisfying for all j∈N the ratio

αj
βj+1

=
ueq
j+1

ueq
j

(6.27)

is an equilibrium for (6.22). We check this condition for u∗j :=ρ(jh) where ρ is the
gamma distribution from (6.19). First, we observe with a first-order Taylor expansion
at h= 0 that

u∗j+1

u∗j
=e−βh

(
j+1

j

)α−1

=

(
j+1

j

)α−1

(1−βh)+O
(
h2
)
.

On the other hand, we expand
αj
βj+1

at h= 0 to obtain

αj
βj+1

=
j2 +(α+1)j(

β
σ4h+1

)
(j+1)2 +1

=
j2 +(α+1)j

(j+1)2 +1
− βh
σ4

j2 +(α+1)j

(j+1)2 +1

(j+1)2

(j+1)2 +1
+O

(
h2
)
.
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Recall that choosing σ= 1,r= 2 and k= 2 in (6.17) gives the exponential population
distribution (6.16). In this case we obtain α= 1 and

u∗j+1

u∗j
= 1−βh+O

(
h2
)
,

αj
βj+1

=
j2 +2j

j2 +2j+2
−βh

(
j2 +2j

j2 +2j+2

(j+1)2

(j+1)2 +1

)
+O

(
h2
)
.

(6.28)
Observe that for any given x= jh∈ (0,∞) the discrete size j= x

h grows proportionally
as h is taken smaller. Therefore, the equilibrium ratio relation (6.27) is satisfied at x in
the continuum limit for (6.28), i.e. when h→0 and j= x

h→∞.
This formal derivation indicates that, in terms of the equilibrium density ρ, the SDE

model (6.17) with suitable parameters approximates the nearest neighbour model with
jump rates (6.26). Hence, modelling the coagulation-fragmentation dynamics by the
stochastic logistic Equation (6.17) appears coherent with an underlying locally restricted
jump process. This scenario avoids the main problem of the SDE modelling discussed in
Sections 6.1 and 6.2 where the global aspect of the jump dynamics associated with (2.12)
cannot be captured by the continuous solution of a stochastic differential equation.

7. Conclusion
For coagulation-fragmentation models of the form (2.1), we have derived the evolu-

tion Equation (2.7) for the population distribution and a formalization of the underlying
jump process. The associated algorithm has been validated by showing its accordance
with the equilibrium for (2.6) and its versatility has been demonstrated by also work-
ing with different coagulation and fragmentation rates and a numerical study of the
respective statistical properties.

Compared to the numerical methods for simulating Niwa-like coagulation and frag-
mentation models developed and summarised in [8], the jump process algorithm has
been shown to be the most versatile and dynamically insightful scheme, by tracking
the behaviour of individual trajectories. We have seen that, in particular, the rates
can be chosen to be random or polynomial. This opens new, potentially more realistic,
modelling possibilities that can be further investigated in future work.

Although Niwa’s SDE is neither rigorously justified nor particularly well-suited for
numerical investigations, it has proven to be an insightful approach to the problem at
hand. In Section 6.2 we have mathematically derived an alternative drift-diffusion ap-
proximation to the jump process whose equilibrium distribution shows similar behavior
as the equilibrium for the jump process but does not coincide. To overcome the inherent
discrepancy between continuous solutions of SDEs and processes with large jumps, we
have indicated an additional possibility using an SDE with degenerate noise (stochastic
logistic model) whose equilibria exactly take the form of gamma distributions and which
can be related to a nearest-neighbour jump model. A more thorough investigation of
that matter is left for future work.

Another future line of investigation could lead to spatialized models where coag-
ulation and fragmentation rates depend on the location of the groups in space. One
could imagine several types of spatial inhomogeneties, for example caused by attract-
ing regions with high coagulation activity or volatile regions with high fragmentation
probabilities. Such models would have a more direct correspondence with population
dynamics and would give rise to new challenges that could be tackled by a jump process
approach as discussed in this paper.
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