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ENTROPIC SUB-CELL SHOCK CAPTURING SCHEMES

VIA JIN-XIN RELAXATION AND GLIMM FRONT SAMPLING

FOR SCALAR CONSERVATION LAWS

FRÉDÉRIC COQUEL, SHI JIN, JIAN-GUO LIU, AND LI WANG

Abstract. We introduce a sub-cell shock capturing method for scalar conser-
vation laws built upon the Jin-Xin relaxation framework. Here, sub-cell shock

capturing is achieved using the original defect measure correction technique.
The proposed method exactly restores entropy shock solutions of the exact
Riemann problem and, moreover, it produces monotone and entropy satisfy-
ing approximate self-similar solutions. These solutions are then sampled using
Glimm’s random choice method to advance in time. The resulting scheme com-
bines the simplicity of the Jin-Xin relaxation method with the resolution of the
Glimm’s scheme to achieve the sharp (no smearing) capturing of discontinu-
ities. The benefit of using defect measure corrections over usual sub-cell shock
capturing methods is that the scheme can be easily made entropy satisfying
with respect to infinitely many entropy pairs. Consequently, under a classical
CFL condition, the method is proved to converge to the unique entropy weak
solution of the Cauchy problem for general non-linear flux functions. Numeri-
cal results show that the proposed method indeed captures shocks—including
interacting shocks—sharply without any smearing.

1. Introduction

Modern high resolution shock capturing methods for non-linear hyperbolic sys-
tems of conservation laws contain two ingredients: building blocks (Godunov type
upwind schemes based on exact or approximate Riemann solvers, Lax-Friedrichs
type central schemes, kinetic schemes, etc.) [11], [16] and reconstructions that
hybridize higher order interpolations in smooth part of the solution and first or-
der methods around discontinuities—shocks and contact discontinuities—(total-
variation-diminishing (TVD), essentially-non-oscillatory (ENO) or weighted
essentially-non-oscillatory (WENO), discontinuous Galerkin, etc.) [26], [27]. These
methods have been very successfully applied to capture shocks in gas dynamics,
magnetohydrodynamics, reacting flows and many other problems (see [8] and the
references therein). Analyses of these methods, on the other hand, are much less
developed and are mostly available only for scalar problems.
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Since a first order numerical method necessarily smears shocks, higher order in-
terpolations basically introduce anti-diffusion to counter the smearing of the first
order method. The difficulty here is to choose the hybridization in an intelligent
way such that the method offers high resolutions near the shock—smears the shock
with the fewest number of mesh points—yet does not introduce numerical oscil-
lations and captures the entropic solution of the underlying non-linear hyperbolic
systems. One of the earliest modern high resolution schemes aimed at achieving
these goals was the Flux-Corrected-Transport (FCT) method [4]. Van Leer intro-
duced the idea of slope limiter [29] to switch between a first order method near the
shocks or contact discontinuities and a second order method elsewhere, and then
Harten introduced the notion of TVD [12], a generic theory to guide the design
of non-oscillatory high resolution shock capturing methods. In all aforementioned
high resolution shock capturing methods, due to the use of first order methods near
discontinuities, the shocks and contact discontinuities are smeared out across a few
grid points. Such smearing is not an issue for most inviscid flow calculations. How-
ever, there are many problems where the smearing due to numerical viscosities can
cause significant pitfalls which lead to polluted or even unphysical numerical solu-
tions. For examples, in multiphase flows, the smeared numerical solutions across
the interfaces between the two phases correspond to unphysical phases [20]; in phase
transition problems, such as van der Waals flows [28], smeared solutions enter the
elliptic regions which are unstable [20]; in the computation of stiff reacting flows [9],
the artificially smeared temperature profiles incorrectly trigger chemical reactions
which lead to unphysical detonations that propagate with incorrect speeds (see [3]
for a correction based on a random projection method). Numerical viscosities are
also blamed for numerical oscillations behind slowly moving shocks [17], artificial
wall heating [22], and the carbuncle phenomena [24]. Indeed, it contributes to nu-
merical instability in Lax-Friedrichs and Godunov schemes for non-linear hyperbolic
systems [1, 2].

This paper aims at developing a one-dimensional shock capturing method that
captures shock sharply—without numerical smearing—and establishing an entropic
convergence theory of this method for scalar conservation laws. The method com-
bines the Jin-Xin relaxation approximation [18] with Dirac measure and Glimm
sampling [10]. Thanks to the linear convection of the Jin-Xin relaxation, the Rie-
mann invariants are linear which can be easily inverted and the entropy property
satisfied by the scalar conservation laws can be lifted to the relaxation system.
We design a specific Dirac measure which allows us to obtain the total-variation-
diminishing property and cell entropy condition for both square [23] and Kruz̆kov
entropies [19]. The Glimm sampling gives a sharp shock. We refer to [14, 15] for
a related sampling strategy based on Roe’s approximate solvers and to [5] where a
Suliciu solver for the p-system is advocated. In [6], mixed hyperbolic-elliptic Euler
equations are solved within the framework of a Sulicu method but using a deter-
ministic front tracking technique, which can also be replaced by a Glimm front
sampling. Here, we provide a theoretical foundation for this approach, namely the
method indeed converges to the entropic solution of the scalar conservation law for
general non-linear fluxes.

Numerically we only use Dirac measure and Glimm sampling near the shock.
Elsewhere standard high resolution mechanisms, such as higher order TVD or
ENO/WENO reconstruction, can still be used to offer better numerical accuracy.
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There were other efforts focused on obtaining sharp shocks numerically. One
is the front tracking method which relies on solving Riemann problems exactly.
Within the framework of shock capturing methods, which is the approach in this
paper, Harten [13] introduced the sub-cell method, which creates an intermediate
state based on the conservation property. However, conservation itself only guar-
antees the capturing of a weak solution according to the Lax-Wendroff theorem. It
does not prevent the formation of entropy violating shocks. Our approach always
produces entropic shocks.

As with other sub-cell methods, our approach also encounters major challenges
when extended to non-linear systems and higher dimensions. This will be a subject
of future research.

2. Relaxation defect measures and their numerical application

In this section, we first extend a Dirac measure correction to the Jin-Xin relax-
ation framework, and then solve the corresponding Riemann problem.

Consider the Cauchy problem for a non-linear scalar conservation law{
∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,
u(t, 0) = u0(x),

(2.1)

supplemented with the following entropy selection principle:

(2.2) ∂t U(u) + ∂xF(u) ≤ 0.

Here we assume a smooth flux function f ∈ C2(R), and initial data u0 is chosen
in L∞(R) ∩ BV(R), where BV stands for the space of functions with bounded
variation. Inequality (2.2) has to be satisfied in the sense of the distributions for
all smooth convex functions U(u) with F ′(u) = U ′(u)f ′(u). It is well-known (see
[25] for instance) that the Cauchy problem (2.1)–(2.2) admits a unique entropy
weak solution, the so-called Kruz̆kov solution. In [18], Jin and Xin proposed to
approximate this solution by that of the following relaxation system,⎧⎨

⎩
∂tu

ε + ∂xv
ε = 0,(2.3a)

∂tv
ε + a2∂xu

ε = −1

ε
(vε − f(uε)),(2.3b)

with well-prepared initial data

(2.4) u(0, x) = u0(x), v(0, x) = v0(x) = f(u0(x)).

Here ε > 0 denotes a small relaxation time. For any given fixed ε > 0, existence
and uniqueness of a solution (uε, vε) can be established (see for instance [7], [21]).
Furthermore, under the sub-characteristic condition

(2.5) sup |f ′(u)| < a,

the sequence {uε, vε}ε>0 converges strongly as ε → 0+ in C((0,∞), L1
loc(R)) to

(u, f(u)) with u being the Kruz̆kov solution of (2.1) (see [7], [21] for a precise
statement). In particular, this result applies to any initial data u0 of the form

(2.6) u0(x) = uL + (uR − uL)H(x), x ∈ R,

where H denotes the Heaviside function, and the constant states uL and uR satisfy

(2.7) −σ(uL, uR)(uR − uL) + f(uR)− f(uL) = 0
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and

(2.8) −σ(uL, uR) (U(uR)− U(uL)) + F(uR)−F(uL) ≤ 0

for all entropy pairs (U ,F). Here σ(uL, uR) is the shock speed. This initial data
defines a Riemann problem for (2.1) that gives rise to an entropy shock solution

(2.9) u(t, x) = uL + (uR − uL)H(x− σ(uL, uR)t), t > 0, x ∈ R.

Under the stability condition (2.5), the well-prepared initial data (2.4) built from
u0 in (2.6) leads to a family of solutions {(uε, vε)}ε>0 which converges as ε goes to
zero to (u, v ≡ f(u)) where u is given by (2.9). It can be easily shown that the
following limit holds in the sense of the distributions

lim
ε→0

1

ε
(f(uε)− vε) =

{
− σ(uL, uR)(f(uR)− f(uL)) + a2(uR − uL)

}
δx−σ(uL,uR)t

= (a2 − σ2(uL, uR))(uR − uL)δx−σ(uL,uR)t.

(2.10)

Hence the limit pair (u, v) solves again in the sense of the distributions the following
system involving a measure source term:

(2.11)

{
∂tu+ ∂xv = 0,
∂tv + a2∂xu = (a2 − σ2(uL, uR))(uR − uL)δx−σ(uL,uR)t,

with initial data
(2.12)
u0(x) = uL+(uR−uL)H(x), v0(x) := f(u0(x)) = f(uL)+ (f(uR)−f(uL))H(x).

In the sequel, the measure source term in (2.11) is referred to as a relaxation defect
measure.

At this level, it is crucial to observe that although the Cauchy problem (2.3)
with the Riemann data (2.12) does not admit a self-similar solution (uε, vε) for any
given fixed ε > 0, the limit PDE model (2.11) does by contrast admit the self-similar
solution

(2.13)
u(t, x) = uL + (uR − uL)H(x− σ(uL, uR)t), t > 0, x ∈ R,
v(t, x) = f(uL) + (f(uR)− f(uL))H(x− σ(uL, uR)t),

where the u-component is nothing but the entropy satisfying shock solution (2.9)
of (2.1) and(2.6).

With this in mind, let us briefly revisit the widely used relaxation model (2.3) to
the numerical approximation of the Kruz̆kov solution of (2.1). An operator splitting
strategy is generally used to circumvent the lack of self-similar solutions. Covering
R

+
t by a collection of small time steps, one thus solves in each time step first the

homogeneous Cauchy problem{
∂tu

ε + ∂xv
ε = 0,(2.14a)

∂tv
ε + a2∂xu

ε = 0,(2.14b)

with appropriate initial data, and then the following singular ODE problem

(2.15) ∂tu
ε = 0, ∂tv

ε = −1

ε
(vε − f(uε)), in the limit ε → 0+,

again with appropriate data. Here, the first step allows for self-similar solutions,
which are made of a single intermediate state (u�, v�) separated by two discontinu-
ities propagating with speed −a and +a, respectively. This step, however, yields a
poor resolution of the shock solutions to the original conservation law (2.1). In fact,
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under the mandatory stability condition (2.5), it is seen [16] that the intermediate
value u� coincides with the space averaging of the exact self-similar solution (2.9)
whose fan is bordered by the two waves −a and +a. In other words, the first step of
convection will necessarily smear the shock, since the characterstics of (2.14) are not
the same as the original equation. In the second step, one can resort to the singular
source term (f(uε)−vε)/ε in the limit ε → 0+ to adjust to the correct shock speed.
Formally speaking, for general well-prepared initial data (2.4), the limit under con-
sideration can be split into two contributions. The first singular part is a Radon
measure Mt,x, which is the sum of all the relaxation defect measures concentrated
on the shocks in the limit solution u(t, x). The second smooth contribution comes
from the smooth part of the Kruz̆kov solution and reads ∂tf(u)+a2∂xu. Motivated
by this natural decomposition, we propose a new splitting procedure involving in
the first step the singular first part Mt,x, while the second step is devoted to handle
the smooth second part. The first step then consists in solving{

∂tu
ε + ∂xv

ε = 0,(2.16a)

∂tv
ε + a2∂xu

ε = Mt,x(2.16b)

and then

(2.17) ∂tu
ε = 0, ∂tv

ε = −1

ε
(vε − f(uε)), in the limit ε → 0+,

with appropriate initial data. Note that the second step cannot develop relaxation
defect measures, thus (2.16), (2.17) provide a consistent splitting of the PDE model
(2.3) in the limit ε → 0+. Here, the Cauchy problem (2.16) can be solved by a
succession of non-interacting Riemann problems of the form (2.11) and (2.12), once
the Radon measure Mt,x is conveniently approximated.

We now describe the main building principle for relevant approximations ofMt,x.
Consider first the Riemann problems in the generic form{

∂tu+ ∂xv = 0,(2.18a)

∂tv + a2∂xu = m(uL, uR)δx−σ(uL,uR)t,(2.18b)

with well-prepared initial data

u(0, x) = u0(x) =

{
uL, x < 0,
uR, x > 0,

v(0, x) = v0(x) =

{
f(uL), x < 0,
f(uR), x > 0.

(2.19)

In (2.18), m(uL, uR) refers to the mass of a Dirac measure concentrated at x =
σ(uL, uR)t where σ(uL, uR) plays the role of a velocity (2.7) and satisfies

(2.20) |σ(uL, uR)| < a.

Both the mass m and velocity σ are to be defined depending on the states uL, uR

to meet suitable properties for the solution of the Cauchy problem (2.18)–(2.19).
But whatever the precise definitions are, the solution we want is clearly self-similar.
To condense the notations, U = (u, v)T ∈ R

2 refers to the unknown in (2.18). The
case of an identically zero mass m(uL, uR) = 0 boils down to a Riemann solution
for the 2 × 2 homogeneous linear system (2.14), whose solution consists of three
constant states UL, U

� and UR separated by two waves propagating with speed −a
and +a, respectively. For a non-zero mass, easy considerations on the weak form of
the PDEs (2.18) reveal the existence of an intermediate discontinuity propagating
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with speed σ(uL, uR) (see indeed the condition (2.20)) which separates, in the wave
span, two inner states denoted U

�
L and U

�
R. Across the intermediate discontinuity,

these two states have to satisfy the following jump conditions:

− σ(uL, uR)(u
�
R − u�

L) + (v�R − v�L) = 0,

− σ(uL, uR)(v
�
R − v�L) + a2(u�

R − u�
L) = m(uL, uR).

(2.21)

We then define the mass m(uL, uR) and the velocity σ(uL, uR) in order to preserve
some of the essential properties of the exact solution of the Riemann problem⎧⎨

⎩
∂tu+ ∂xf(u) = 0,

u(0, x) =

{
uL, x < 0,
uR, x > 0.

(2.22)

Properties to be preserved include the monotonicity in the self-similar variable
ξ = x/t, consistency with the entropy inequalities (2.2) and exactness regarding
discontinuous solutions of (2.22).

For pairs of states (uL, uR) satisfying (2.7)–(2.8), the exactness amounts to define
the mass m(uL, uR) and velocity σ(uL, uR) in the Cauchy problem (2.18)–(2.19) so
that its self-similar solution U(ξ, uL, uR) reduces componentwise to (2.13).

In fact, the relaxation defect measure proposed in (2.11) guarantees such a prop-
erty, as stated in the following lemma.

Lemma 2.1. Given any pair of states (uL, uR) verifying the Rankine-Hugoniot
condition (2.7) and the entropy inequalities (2.8), define the velocity

σ(uL, uR) =
f(uL)− f(uR)

uL − uR
, uL �= uR;

σ(uL, uR) = f ′(uL) = f ′(uR), otherwise,

(2.23)

and the mass

(2.24) ms(uL, uR) =
(
a2 − σ2(uL, uR)

)
(uR − uL).

Then the solution of the Riemann problem (2.18)–(2.19) U(ξ, uL, uR) is given by
the self-similar function (2.13).

Proof. One has to prove that the self-similar function (2.13) is a solution of the
Riemann problem (2.18)–(2.19) with intermediate states U

�
L = UL and U

�
R = UR

as long as the velocity and mass are prescribed according to (2.23) and (2.24). It
amounts to check that the jump conditions (2.21) across the intermediate wave are
satisfied with U

�
L = UL and U

�
R = UR. But, clearly

(2.25)
−σ(uL, uR)(u

�
R − u�

L) + (v�R − v�L) = −σ(uL, uR)(uR − uL) + f(uR)− f(uL) = 0,

by the definition of σ(uL, uR) while the mass ms(uL, uR) prescribed in (2.24) sat-
isfies the identity:

− σ(uL, uR)(v
�
R − v�L) + a2(u�

R − u�
L)

= −σ2(uL, uR)(uR − uL) + a2(uR − uL) := ms(uL, uR).
(2.26)

This concludes the proof. �

Notice that the definition of mass ms(uL, uR) (2.24) only takes into account the
jump condition (2.7), but not the entropy condition(s) (2.8). Since it is always
possible to define the velocity σ(uL, uR) satisfying (2.7) for any given pair of states
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(uL, uR), the choice ofms(uL, uR) in (2.24) would systematically result in a solution
given by (2.13), which does not necessarily satisfy the entropy condition. In other
words, we would merely end up with a Roe scheme which is known to be entropy
violating in the approximation of the solutions of (2.22) [16].

We thus propose to modulate the definition of the mass in (2.24) by looking for a
monitoring factor θ(uL, uR), namely a suitable real-valued mapping θ : (uL, uR) ∈
R

2 → θ(uL, uR) ∈ R, to define

(2.27) m(uL, uR) = θ(uL, uR)
(
a2 − σ2(uL, uR)

)
(uR − uL),

with σ(uL, uR) given by (2.23). Clearly, θ(uL, uR) acts as an anti-diffusive pa-
rameter, allowing for a continuous shift from the Lax Friedrichs scheme when
θ(uL, uR) = 0 to the Roe scheme for θ(uL, uR) = 1.

2.1. Design principle of approximate defect measures. We now briefly ex-
plain the design principle for relevant anti-diffusive laws θ(uL, uR). First, we con-
sider the case of a strictly convex flux function f(u). An immediate choice for the
anti-diffusive law θ(uL, uR) would be

(2.28) θ(uL, uR) =

{
1, uL > uR,

0, otherwise,

since the situation uL > uR yields an entropy satisfying shock solution, while the
converse gives rise to a rarefaction. Actually we will prove that more anti-diffuse
choices for θ(uL, uR) can be performed while still allowing for convergence to the
Kruz̆kov solution. In particular, we will prove that θ(uL, uR) can be set close
to 1 (at the order O(Δx) with Δx > 0 the space step) in the smooth part of
the approximate solution. Hence rarefaction waves in the discrete solution can be
handled with θ asymptotically close to 1 (not 0) as advocated in (2.28).

The derivation of relevant anti-diffusive laws θ essentially relies on a consistency
requirement with the entropy inequalities (2.2). In the case of a genuinely non-
linear flux f(u), it is known after Panov [23] that a single strictly convex entropy
pair suffices to select the Kruz̆kov solution of (2.1). θ-laws are derived accordingly
on the ground of a single entropy pair. The situation of a general non-linear flux
function is more involved. First, the obvious choice (2.28) no longer applies. Second,
infinitely many entropy pairs are required to single out the Kruz̆kov solution. We
are thus led to design θ-laws accordingly by considering infinitely many entropy
pairs.

Our consistency condition with the entropy inequalities (2.2) is built from the
relaxation entropy pairs associated with the Jin-Xin’s model (2.18). As established
in [7] (see also [21]), any given smooth convex entropy pair (U ,F) for (2.1) can be
suitably lifted to a relaxation entropy pair for (2.18), which we denote (Φ,Ψ) in the
sequel. Under the sub-characteristic condition (2.5), the relaxation mechanism in
(2.18) can be shown to be dissipative with respect to any of those relaxation entropy
pairs. More precisely, given (2.5), an invariant domain exists for the solutions of
(2.18), within which convexity and dissipative properties for any pair (Φ,Ψ) can be
proved. As these two crucial properties are generically lost outside of the invariant
domain, it is of central importance to keep such a domain invariant for the solution
of the Riemann problem (2.18). This requirement will be fairly easy to achieve
from the choice (2.27), allowing us in turn to enforce consistency with the entropy
inequalities (2.2).
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2.2. Organization of the paper. In section 2.3, the Riemann problem (2.18)–
(2.19) with a defect measure correction (2.27) is solved for a general pair of states
(uL, uR). A central property (see Corollary 2.3) due to the choice (2.27) is then
revealed in the characteristic variables (v − av , u + av), which allows us to prove
in section 3 the existence of entropy invariant domain for self-similar solutions of
(2.18) provided that the anti-diffusive law θ(uL, uR) takes values in [0, 1]. Equiv-
alence of such invariance property with a monotonicity property for u-component
of the solution (2.18) is then established. As a consequence, uniform sup-norm
and BV estimates are inferred, allowing us to prove the convergence of the Jin-Xin
relaxation solver with defect measure correction to a weak solution of (2.1). To
enforce the entropy condition with the expected Kruz̆kov solution, in subsection
3.2, we require that the discontinuity induced by the approximate defect measure
in (2.18) is entropy satisfying with respect to relaxation entropy pairs (Φ,Ψ). This
requirement further confines the admissible graph of relevant anti-dissipative law
θ : (uL, uR) ∈ R

2 → [0,Θ(uL, uR)], where the positive real number Θ(uL, uR) de-
notes some optimal upper-bound. Θ(uL, uR) is in general strictly less than 1 for
arbitrary pairs (uL, uR) and is equal to 1 for the pairs satisfying (2.8). In other
words, exact capturing of entropy shock solutions is thus assured. In subsection 3.3,
we perform the analysis for a strictly convex flux on the ground of a single entropy
inequality. This analysis is extended in subsection 3.4 to general flux functions,
involving the whole family of Kruz̆kov entropy pairs. In both settings, the optimal
upper-bound Θ(uL, uR) is given explicitly. In section 4, two numerical methods for
approximating the Kruz̆kov solution of (2.1)–(2.2) are introduced. The convergence
of the corresponding families of approximate solutions is established in section 5.
At last, we give some numerical results to assess the critical importance of de-
signing optimal anti-diffusive law Θ(uL, uR) according to infinitely many entropy
pairs in the frame of a flux function without genuine non-linearities. Numerical re-
sults show that the proposed method indeed captures shocks—including interacting
shocks—sharply without any smearing.

2.3. Solution to the relaxation Riemann problem with defect measure
correction. Consider a pair of real numbers (uL, uR) and a constant positive ve-
locity a prescribed under the sub-characteristic condition

(2.29) sup
u∈�uL,uR�

|f ′(u)| < a,

where 	a, b
 denotes in the sequel the interval [min(a, b),max(a, b)] for any given
pair of real numbers (a, b). We first give the precise form of the self-similar solution
of the Riemann problem (2.18)–(2.19).

Proposition 2.2. Define the velocity σ(uL, uR) according to (2.23) and consider
a mass m(uL, uR) under the form (2.27) for some given mapping θ : (uL, uR) ∈
R

2 → θ(uL, uR) ∈ R. Then the solution U(.;uL, uR) of the Riemann problem
(2.18)–(2.19) consists of four constant states UL, U

�
L(θ;uL, uR), U

�
R(θ;uL, uR) and

UR separated by three discontinuities propagating with speed −a, σ(uL, uR) and +a,
respectively. Define
(2.30)

u� =
1

2
(uL + uR)−

1

2a

(
f(uR)− f(uL)

)
, v� =

1

2

(
f(uR) + f(uL)

)
− a

2
(uR − uL).
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Then the intermediate state U
�
L(θ;uL, uR) reads componentwisely as

u�
L(θ;uL, uR) = u� − 1

2a
θ(uL, uR)(a− σ(uL, uR))(uR − uL),

v�L(θ;uL, uR) = v� +
1

2
θ(uL, uR)(a− σ(uL, uR))(uR − uL);

(2.31)

while U
�
R(θ;uL, uR) is given by

u�
R(θ;uL, uR) = u� +

1

2a
θ(uL, uR)(a+ σ(uL, uR))(uR − uL),

v�R(θ;uL, uR) = v� +
1

2
θ(uL, uR)(a+ σ(uL, uR))(uR − uL).

(2.32)

Proof. The two jump conditions (2.21) at the intermediate discontinuity are sup-
plemented with Rankine-Hugoniot relations for the waves propagating with speed
−a and +a, respectively,

(2.33) a(u�
L − uL) + (v�L − f(uL)) = 0, −a(uR − u�

R) + (f(uR)− v�R) = 0.

The resulting 4 × 4 non-linear system then has a unique solution for any given
mass m provided that |σ(uL, uR)| �= a, which holds due to the sub-characteristic
condition (2.20) with the choice (2.23). With little abuse in the notation, the
components of the intermediate states read

u�
L(m) = u� − m

2a(a+ σ)
, v�L(m) = v� +

m

2(a+ σ)
,

u�
R(m) = u� +

m

2a(a− σ)
, v�R(m) = v� +

m

2(a− σ)
,

(2.34)

with u� and v� given in (2.30). The required expressions (2.31)–(2.32) readily follow
after plugging in the particular form (2.27) for the mass under consideration. �

Notice that the state U
� ≡ (u�, v�) defined in (2.30) is nothing but the interme-

diate state involved in the classical solution for the homogeneous Riemann problem
(2.18)–(2.19), i.e., with m(uL, uR) = 0. In the next few sections, we will show
that the monitoring weight functions θ(uL, uR) naturally keep their values in the
interval [0, 1], which makes the intermediate states U�

L and U
�
R well behaved.

A central property due to the choice (2.27) of the mass m(uL, uR) is revealed
in the following corollary when reformulating the two intermediate states using the
characteristic variables

(2.35) r± = v ± au.

Corollary 2.3. Under the assumptions of Proposition 2.2, we re-express the in-
termediate states U

�
L(θ;uL, uR) and U

�
R(θ;uL, uR) into the characteristic variables

(2.36)
r±�
L (θ) = v�L(θ;uL, uR)±au�

L(θ;uL, uR), r±�
R (θ) = v�R(θ;uL, uR)±au�

R(θ;uL, uR).

Then r−�
L (θ) and r+�

R (θ) can be equivalently rewritten as linear combinations in θ

of r±L = f(uL)± auL and r±R = f(uR)± auR according to

r−�
L (θ) = θ(uL, uR)r

−
L +

(
1− θ(uL, uR)

)
r−R ,

r+�
R (θ) =

(
1− θ(uL, uR)

)
r+L + θ(uL, uR)r

+
R ,

(2.37)

where we have

(2.38) r−�
R (θ) = r−R , r+�

L (θ) = r+L .
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The proof is straightforward, so we leave it to the reader. As already claimed,
relevant mappings θ(uL, uR) will be shown to keep values in the interval [0, 1]. In
this respect, the linear combinations in (2.37) are nothing but convex decomposi-
tions of the left and right data expressed in terms of the characteristic variables
(2.35). Such convex decompositions is crucial in the design of explicit mappings
θ(uL, uR) when considering the consistency conditions with the entropy inequalities
(2.2) in the forthcoming sections.

3. Design of non-linearly stable mappings θ(uL, uR)

This section studies the monitoring mapping θ(uL, uR) in (2.27) for general pairs
of states (uL, uR) so that the solution of the Riemann problem with defect measure
correction (2.18)–(2.19) obeys linear and non-linear stability properties.

3.1. Monotonicity preservation. The main result of this subsection follows.

Proposition 3.1. For a general pair of states (uL, uR), define the velocity σ(uL, uR)
according to (2.23) and consider a mass m(uL, uR) under the form (2.27). Then
under the sub-characteristic condition (2.29), the u-component of the Riemann so-
lution U(.;uL, uR) of the problem (2.18)–(2.19) satisfies the monotonicity preserving
properties

(3.1) TV (u(· ;uL, uR)) = |uR − uL|
if and only if

(3.2) 0 ≤ θ(uL, uR) ≤ 1.

As a consequence, we have

(3.3) min(uL, uR) ≤ u(· ;uL, uR) ≤ max(uL, uR)

and, moreover,

(3.4) |v(· ;uL, uR)| ≤ 2amax(|uL|, |uR|), TV
(
v(· ;uL, uR)

)
≤ a|uL − uR|.

Proof. We will consider the case uL < uR, the reverse situation follows similar
steps. If θ(uL, uR) is defined so that the following ordering is valid,

(3.5) uL ≤ u�
L(θ ;uL, uR) ≤ u�

R(θ ;uL, uR) ≤ uR,

then the total variation estimate stated in (3.1) is guaranteed, so is the maximum
principle (3.3). Indeed, using the definitions of the intermediate values in (2.30)–
(2.32), one gets

u�
L(θ)− uL = (u� − uL)− θ(uL, uR)

a− σ

2a
(uR − uL)

=
(
1− θ(uL, uR)

)a− σ

2a
(uR − uL),

u�
R(θ)− u�

L(θ) = θ(uL, uR)(uR − uL),

uR − u�
R(θ) = (uR − u�)− θ(uL, uR)

a+ σ

2a
(uR − uL)

=
(
1− θ(uL, uR)

)a+ σ

2a
(uR − uL).

(3.6)

Therefore, under the sub-characteristic condition (2.20) inherited from (2.29), the
proposed ordering (3.5) holds if and only if the weight θ(uL, uR) verifies (3.2).
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Regarding the sup-norm estimate for the second component v(. ;uL, uR), we notice
that

sign(uR − uL)v
�
L(θ) = sgn(uR − uL)v

� +
θ

2
(a− σ)|uR − uL|,

which is an increasing function of θ ∈ [0, 1]:

sign(uR − uL)v
� ≤ sign(uR − uL)v

�
L(θ)

≤ sign(uR − uL)
(
v� +

1

2
(a− σ)(uR − uL)

)
,

= sign(uR − uL)f(uL).

(3.7)

We then have
(3.8)
|v�L(θ)| ≤ max(|f(uL)|, |v�|), with |v�| ≤ max(|f(uL)|, |f(uR)|) + a/2|uR − uL|,
and assuming without loss of generality that f(0) = 0, we infer under the sub-
characteristic condition (2.29) the desired estimate |v�L(θ)| ≤ 2amax(|uL|, |uR|).
The same estimate holds for |v�R(θ)|. At last, the total variation of v(.;uL, uR)
reads

TV
(
v(·;uL, uR)

)
= |v�L(θ)− vL|+ |v�R(θ)− v�L(θ)|+ |vR − v�R(θ)|
=

(
(1− θ)a+ θ|σ|

)
|uR − uL|

≤ a|uR − uL|,
where we have used the definitions of the intermediate states (2.30)–(2.32) and the
sub-characteristic condition (2.20). �

As is well-known, the solution u(.;uL, uR) of the Riemann problem (2.22) and
(2.2) satisfies the a priori estimates (3.1). Therefore, it is natural to require the
u-component of U(.;uL, uR) to satisfy the same estimates. This in turn requires
θ(uL, uR) to satisfy the condition (3.2). We would like to emphasis that condition
(3.2) actually implies a stronger property for U(.;uL, uR). To be more specific, we
will adopt a broader viewpoint.

After Chen, Levermore and Liu [7] and Natalini [21], define the following two
functions,

(3.9) h±(u) = f(u)± au, u ∈ 	uL, uR
,
and consider the compact intervals I− = h−(	uL, uR
) and I+ = h+(	uL, uR
).
Under the sub-characteristic condition (2.29), the inverse functions h−1

± : r ∈ I± →
h−1
± (r) ∈ 	uL, uR
 are well-defined with the property that h−1

+ (respectively, h−1
− )

is increasing (respectively, decreasing)

(3.10)
d

dr
h−1
+ (r) =

1

a+ f ′(h−1
+ (r))

> 0,
d

dr
h−1
− (r) = − 1

a− f ′(h−1
− (r))

< 0.

Equipped with these notations, we built the following compact domain of R2 from
the interval 	uL, uR

(3.11)
D(	uL, uR
) ≡ {U = (u, v) ∈ R

2; r−(U) = v− au ∈ I− and r+(U) = v+ au ∈ I+}.
Of critical importance in the sequel, the domain (3.11) can be shown to stay invari-
ant by the Jin-Xin relaxation model under the sub-characteristic condition (2.29)
(see [7], [21]). Namely given a well-prepared initial data U0 = (u0, v0 = f(u0))
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with u0(x) ∈ 	uL, uR
 for a.e. x ∈ R, then for any given relaxation time ε > 0,
the unique solution U

ε of the Cauchy relaxation problem stays in D(	uL, uR
). In
particular, the solution of Riemann problem of the homogeneous system (2.18), i.e.,
with m(uL, uR) = 0, satisfies this invariance property. This property turns out to
be crucial in the dissipative convex lift of the convex entropy pairs (U ,F) for (2.22)
to the relaxation system. Condition (3.2) also guarantees the invariance property
for the the corresponding solutions of the Riemann problem of the system with
defect measure correction, as shown by the next corollary.

Corollary 3.2. Given a pair of states (uL, uR), assume the sub-characteristic con-
dition (2.29). Then the solution U(., uL, uR) of (2.18)–(2.19) for a given θ(uL, uR)
stays in D(	uL, uR
) (3.11) if and only if the monotonicity preserving condition
(3.2) is satisfied.

Proof. This statement is a direct consequence of Corollary 2.3. Indeed, under the
sub-characteristic condition (2.29), r−L , r

−
R (respectively, r+L , r

+
R) are nothing but

the boundaries of the interval I− (respectively, I+) in view of the monotonicity
properties (3.10). Keeping the domain D(	uL, uR
) invariant is thus equivalent to
require that the characteristic variables r−�

L (θ;uL, uR), r
−�
R (θ;uL, uR) are convex

combinations of these two boundaries (respectively, r+�
L (θ;uL, uR), r

+�
R (θ;uL, uR)).

According to (2.37), such a property is met if and only if the monotonicity preserv-
ing condition (3.2) is met. �

3.2. Entropy consistency requirements. In this section, we propose and ana-
lyze entropy-like conditions to further restrict the graph of the monotonicity pre-
serving mapping θ(uL, uR). In particular, we require θ(uL, uR) = 1 for pairs of
states (uL, uR) that satisfy entropy inequalities (2.8). As already underlined, the
entropy consistency condition we consider concerns a single entropy pair

(3.12) U(u) = u2

2
, F(u) =

∫ u

0

vf ′(v)dv

in the case of a genuinely non-linear flux function f(u); and the Kruz̆kov family of
entropy pairs

(3.13) Uk = |u− k|, Fk(u) = sign(u− k)
(
f(u)− f(k)

)
, k ∈ R,

in the case of a general non-linear flux. Our entropy consistency requirement relies
on the extension of entropy pairs proposed in [7,21] to the Jin-Xin relaxation system
from convex entropy pairs of the scalar conservation law (2.22). Here we briefly
revisit their design principle as it is of importance hereafter.

For any given interval of the form 	uL, uR
, the proposed extension is performed
over the compact domain D(	uL, uR
) defined in (3.11). In [7, 21], suitable prop-
erties for the proposed extension actually follow from the invariance property of
D(	uL, uR
) under the sub-characteristic condition (2.29). Such an invariance prop-
erty indeed guarantees the monotonicity properties (3.10) of the functions h± de-
fined in (3.9) for states U in D(	uL, uR
). Let us stress that in the present setting,
those properties are equivalently preserved under the monotonicity preserving con-
dition (3.2) as put forward in Corollary 3.2.

Given an entropy pair (U ,F) for the scalar equation (2.22), one seeks an en-
tropy pair (Φ,Ψ) for the Jin-Xin relaxation equations which is well defined over
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D(	uL, uR
) and coincides with (U ,F) at equilibrium, namely,

(3.14) Φ(u, f(u)) = U(u), Ψ(u, f(u)) = F(u), for all u ∈ 	uL, uR
.

General entropy pairs for the (homogeneous) Jin-Xin relaxation equations read

(3.15)
Φ(U) = ϕ+(r+(U)) + ϕ−(r−(U)),
Ψ(U) = a

(
ϕ+(r+(U))− ϕ−(r−(U))

)
,

with r±(U) = v ± au for arbitrary pairs of functions (ϕ−, ϕ+). The consistency
requirement (3.14) is therefore met if and only if

ϕ−(h−(u)) =
1

2

(
U(u)− 1

a
F(u)

)
,

ϕ+(h+(u)) =
1

2

(
U(u) + 1

a
F(u)

)
for all u ∈ 	uL, uR
,

(3.16)

where h±(u) denote the two functions introduced in (3.9). Observe that as a con-
sequence the functions ϕ± : r ∈ I± → ϕ±(r) ∈ R under consideration satisfy

(3.17)
d

dr
ϕ+(r) =

1

2a
U ′(h−1

+ (r)),
d

dr
ϕ−(r) = − 1

2a
U ′(h−1

− (r)),

where again h−1
± : r ∈ I± → h−1

± (r) ∈ 	uL, uR
 are well-defined under the sub-
characteristic condition (2.29). Due to the convexity of U(u), the monotonic-
ity properties (3.10) of h−1

± then ensures the convexity of Φ(U) over the domain
D(	uL, uR
). Observe that the definitions (3.16) for ϕ± are meaningful in the case
of the piecewise smooth Kruz̆kov entropies (3.13).

Equipped with (3.15)–(3.17), one then investigates the dissipative properties of
the convex extension (Φ,Ψ) with respect to the relaxation mechanisms involved in
the Jin-Xin’s model. It can be shown (see again [7,21]) that provided the compact
domain D(	uL, uR
) stays invariant for the relaxation equations, we have

(3.18) ∂vΦ(u, v)(f(u)− v) ≤ 0 for any given U = (u, v) ∈ D(	uL, uR
),

which implies that for all relaxation time ε > 0, the solutions U
ε of the Jin-Xin

relaxation model with well-prepared initial data U0 taking values in D(	uL, uR
)
obey the entropy-like inequality

(3.19) ∂tΦ(U
ε) + ∂xΨ(Uε) =

1

ε
∂vΦ(U

ε)(f(uε)− vε) ≤ 0

in the usual weak sense. Recall that Uε remains in the invariant region D(	uL, uR
)
in view of Corollary 3.2, we now examine the behavior of the relaxation entropy
pair (Φ,Ψ) for the self-similar solution U(.;uL, uR) of the Riemann problem (2.18)–
(2.19). Note first that U(.;uL, uR) stays constant except across three discontinu-
ities. Concerning the two waves with speed −a and +a, their linear degeneracy
ensures [25] that any given additional entropy condition is exactly preserved for
weak solutions. Namely, whatever the pair of states (uL, uR) are and the definition
of the mapping θ under (3.2) is, one has

a
(
Φ(U�

L(θ;uL, uR))− Φ(UL)
)
+Ψ(U�

L(θ;uL, uR))−Ψ(UL) = 0,

−a
(
Φ(UR)− Φ(U�

R(θ;uL, uR))
)
+Ψ(UR)−Ψ(U�

R(θ;uL, uR)) = 0.
(3.20)

Here U�
L(θ;uL, uR) and U

�
R(θ;uL, uR) denote the two intermediate states in (2.31)–

(2.32) separated by the discontinuity propagating with speed σ(uL, uR). At this
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discontinuity, the defect measure correction comes into play. The inequality (3.19)
suggests that θ(uL, uR) should satisfy the entropy-like jump condition

E{U}(θ;uL, uR) := −σ(uL, uR)
(
Φ(U�

R(θ;uL, uR))− Φ(U�
L(θ;uL, uR))

)
+Ψ(U�

R(θ;uL, uR))−Ψ(U�
L(θ;uL, uR))

≤ 0

(3.21)

for any given pair of states (uL, uR). These observations motivate the following.

Definition 3.3. Given any convex entropy pair (U ,F) (2.2) for the scalar conserva-
tion law (2.22) and its relaxation extension (Φ,Ψ) (3.15)–(3.17), the monotonicity
preserving mapping θ in (2.27) is said to be consistent with (U ,F) if the relaxation
entropy jump E{U}(θ;uL, uR) defined in (3.21) is non-positive for all pair of states
(uL, uR).

Notice that choosing θ(uL, uR) = 1 for special pairs (uL, uR) satisfying (2.8) is al-
lowed by the proposed condition. Indeed, Lemma 2.1 ensures that U�

L(1;uL, uR) =
UL and U

�
R(1;uL, uR) = UR. Since UL, UR is well-prepared (2.19), the consistency

property (3.14) relating (Φ,Ψ) to (U ,F) readily implies

E{U}(1;uL, uR) = −σ(uL, uR)
(
Φ(U�

R(1;uL, uR))− Φ(U�
L(1;uL, uR))

)
+Ψ(U�

R(1;uL, uR))−Ψ(U�
L(1;uL, uR))

= −σ(uL, uR)
(
Φ(UR)− Φ(UL)

)
+Ψ(UR)−Ψ(UL)

= −σ(uL, uR)
(
U(uR)− U(uL)

)
+ F(uR)−F(uL)

≤ 0.

(3.22)

Hence, the entropy condition (3.21) is automatically satisfied by states satisfying
(2.8). For general states (uL, uR), Definition 3.3 will be used in connection with the
following lemma which states that the minimum in the v-variable of any strictly
convex relaxation entropy Φ(u, v) lies on the equilibrium manifold. It thus restores
the equilibrium entropy U(u).

Lemma 3.4. Assume the sub-characteristic condition (2.29), one has for any given
u ∈ 	uL, uR
 the following Gibb’s principle:

f(u) = argminvΦ(u, v).(3.23)

Proof. Let u be given in 	uL, uR
, then by convexity of U(u), solving in v the
equation

∂vΦ(u, v) =
1

2a

(
U ′(h−1

+ (v + au))− U ′(h−1
− (v − au))

)
= 0,

is equivalent to

h−1
+ (v + au)− h−1

− (v − au) = 0.

Under condition (2.29) and for all (u, v) ∈ D(	uL, uR
), the function G(v) =
h−1
+ (v+au)−h−1

− (v−au) is strictly increasing in v thanks to (3.10), thus the unique

solution ofG(v) = 0 is given by v = f(u) since h−1
+ (f(u)+au) = h−1

− (f(u)−au) = u.
Then the equality U(u) = Φ(u, f(u)) gives the conclusion. �
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3.3. Entropy consistency for genuinely non-linear flux functions. The main
result of this section follows.

Theorem 3.5. Consider the entropy pair (U(u),F(u)) (2.2) with U(u) = u2/2
and the associated relaxation entropy pair (Φ,Ψ) (3.15)–(3.16). Assume the sub-
characteristic condition (2.29). Then the monotonicity preserving condition (3.1)
and the entropy condition E{U}(θ;uL, uR) ≤ 0 (3.21) are satisfied provided that
θ(uL, uR) satisfies

(3.24) 0 ≤ θ(uL, uR) ≤ Θ(uL, uR) ≡ max(0,min(1, 1 + Γ(uL, uR)),

where
(3.25)

Γ(uL, uR) =

⎧⎨
⎩−2 γ(uL, uR)

(
−σ(U(uR)−U(uL))+(F(uR)−F(uL))

)
|uR−uL|2 , uL �= uR,

0, otherwise,

with

(3.26) γ(uL, uR) =

⎧⎨
⎩

a−min(|f ′(uL)|,|f ′(uR)|
)(

a2−σ2(uL,uR)
) , uL �= uR,

1/
(
a+ |f ′(uL)|

)
, otherwise.

Observe that if uL �= uR, Γ(uL, uR) in (3.25) is well defined under the sub-
characteristic condition (2.29). Notice that

(3.27) γ(uL, uR) =
a− |f ′(uL)|
a2 − f ′(uL)2

+O(|uR − uL|) =
1

a+ |f ′(uL)|
+O(|uR − uL|),

hence we recover (3.26) in the limit |uR − uL| → 0. Observe that for the pairs
(uL, uR) satisfying the entropy inequality (2.8), we get Θ(uL, uR) = 1 as expected
so that the accuracy requirement in Lemma 2.1 can be met. Furthermore, as it
is well-known that general pairs of states come with a cubic entropy rate (see for
instance Godlewski-Raviart [11])

(3.28) −σ(U(uR)− U(uL)) + (F(uR)−F(uL)) = O(|uR − uL|3),
we deduce

(3.29) Γ(uL, uR) = O(|uR − uL|).
Therefore, Θ is expected to stay close to unity in the smooth zones of the discrete
solutions and reach ultimately 1 as uR → uL.

Expressing the relaxation entropy pair (Φ,Ψ) in terms of the convex pair
(ϕ−, ϕ+) according to (3.15), we first observe that the relaxation entropy jump
E{U}(θ;uL, uR) in (3.21) equivalently reads

E{U}(θ;uL, uR) = (a− σ(uL, uR))
[
ϕ+

]
(θ;uL, uR)

− (a+ σ(uL, uR))
[
ϕ−](θ;uL, uR),

(3.30)

where we have set

[ϕ−](θ;uL, uR) = ϕ− (
r−�
R (θ)

)
− ϕ− (

r−�
L (θ)

)
,

[ϕ+](θ;uL, uR) = ϕ+
(
r+�
R (θ)

)
− ϕ+

(
r+�
L (θ)

)(3.31)

using the characteristic variables r±�
L (θ) and r±�

R (θ) defined in (2.36). Next, the
identities (2.38) imply that for all values of θ ∈ [0, 1]:

(3.32) ϕ−(r−�
R (θ)

)
= ϕ−(r−R), ϕ−(r+�

L (θ)
)
= ϕ+

(
r+L

)
.
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Hence E{U}(θ;uL, uR) actually becomes

E{U}(θ;uL, uR) = (a− σ(uL, uR))
(
ϕ+

(
r+�
R (θ)

)
− ϕ+

(
r+L

) )
− (a+ σ(uL, uR))

(
ϕ− (

r−R
)
− ϕ− (

r−�
L (θ)

) )
.

(3.33)

Further notice from definition (3.17) of the derivatives {ϕ±}′(r) that the choice of
the quadratic entropy U(u) = u2/2 with U ′′(u) = 1 yields

(3.34) {ϕ±}′′
(r) =

1

2a
(
a± f ′(h−1

± (r))
) .

To shed light on the forthcoming developments, we keep {ϕ±}′′(r) unspecified until
the end of this section. The proof of Theorem 3.5 relies on the following technical
result essentially motivated by (3.33) and the convex combination (2.37) for r−�

L (θ)

and r+�
R (θ), stated in Corollary 2.3.

Lemma 3.6. For any given smooth function ϕ+ and any given real number θ, the
following identity holds for r+�

R (θ) defined in (2.36):

ϕ+(r+�
R (θ)) =

{
θϕ+(r+R) + (1− θ)ϕ+(r+L )

}
− θ(1− θ)

∫ 1

0

{
(1− θ){ϕ+}′′

(r+R(s, θ))

+ θ{ϕ+}′′
(r+L (s, θ))

}
(1− s)ds

(
r+R − r+L

)2

,

(3.35)

where we have set

(3.36) r+R(s, θ) = sr+R+(1−s)r+�
R (θ), r+L (s, θ) = sr+L +(1−s)r+�

R (θ), s ∈ [0, 1].

Similarly for r−�
L (θ), we have for all θ and any given smooth function ϕ−

ϕ−(r−�
L (θ)) =

{
(1− θ)ϕ−(r−R) + θϕ−(r−L )

}
− θ(1− θ)

∫ 1

0

{
θ{ϕ−}′′

(r−R(s, θ))

+ (1− θ){ϕ−}′′
(r−L (s, θ))

}
(1− s)ds

(
r−R − r−L

)2

,

(3.37)

where we have defined

(3.38) r−R(s, θ) = sr−R+(1−s)r−�
L (θ), r−L (s, θ) = sr−L +(1−s)r−�

L (θ), s ∈ [0, 1].

Proof. First observe the identity
(3.39)

ϕ+(r+R)−ϕ+(r+�
R (θ)) = {ϕ+}′(r+�

R (θ))
(
r+R−r+�

R (θ)
)
+

∫ r+R

r+�
R (θ)

{ϕ+}′′
(r)

(
r+R−r

)
dr,

together with
(3.40)

ϕ+(r+L )−ϕ+(r+�
R (θ)) = {ϕ+}′(r+�

R (θ))
(
r+L −r+�

R (θ)
)
+

∫ r+L

r+�
R (θ)

{ϕ+}′′
(r)

(
r+L −r

)
dr,
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which yields, using the definition of r+�
R (θ) in terms of the convex decomposition

(2.37) stated in Corollary 2.3,
(3.41)

ϕ+(r+�
R (θ))−

{
θϕ+(r+R) + (1− θ)ϕ+(r+L )

}
= −θ

∫ r+R

r+�
R (θ)

{ϕ+}′′
(r)

(
r+R − r

)
dr − (1− θ)

∫ r+L

r+�
R (θ)

{ϕ+}′′
(r)

(
r+L − r

)
dr.

Introducing r+R(s, θ) = sr+R + (1− s)r+�
R (θ) with s ∈ [0, 1], a convenient form of the

first integral in (3.41) reads

∫ r+R

r+�
R (θ)

{ϕ+}′′
(r)

(
r+R − r

)
dr =

∫ 1

0

{ϕ+}′′
(r+R(s, θ))(1− s)ds

(
r+R − r+�

R (θ)
)2

= (1− θ)2
∫ 1

0

{ϕ+}′′
(r+R(s, θ))(1− s)ds

(
r+R − r+L

)2

,

(3.42)

thanks again to the linear decomposition (2.37) of r+�
R (θ). Defining similarly

r+L (s, θ) = sr+L + (1 − s)r+�
R (θ) with s ∈ [0, 1], the second integral in (3.41) can

be equivalently rewritten as
(3.43)∫ r+L

r+�
R (θ)

{ϕ+}′′
(r)

(
r+L − r

)
dr = θ2

∫ 1

0

{ϕ+}′′
(r+L (s, θ))(1− s)ds

(
r+R − r+L

)2

.

Hence, the representation formula (3.41) becomes

ϕ+(r+�
R (θ))−

{
θϕ+(r+R) + (1− θ)ϕ+(r+L )

}
= −θ(1− θ)

∫ 1

0

{
(1− θ){ϕ+}′′

(r+R(s, θ))

+ θ{ϕ+}′′
(r+L (s, θ))

}
(1− s)ds

(
r+R − r+L

)2

.

(3.44)

This is nothing but the required identity (3.35). The companion formula (3.36)
follows using similar steps that are left to the reader. �

We are now in a position to prove Theorem 3.5.
Proof of Theorem 3.5. The representation formulas (3.35) and (3.37) that are at
the core of the proof, exhibit a rather intricate non-linear dependence in θ through
the mappings r±�

L (θ, s) and r±�
R (θ, s) in (3.36)–(3.38). For the sake of simplicity,

we aim at lowering such a dependence to a quadratic one when introducing suit-
able lower-bounds of the integral remainder in the Taylor-like expansions (3.35)–
(3.37). For that purpose, it suffices to propose a common positive lower-bound, say

m+(uL, uR), for {ϕ+}′′
(r+�

L (s, θ)) and {ϕ+}′′
(r+�

R (s, θ)) for all the θ and s under
consideration to get

θ(1− θ)

∫ 1

0

{
(1− θ){ϕ+}′′

(r+R(s, θ)) + θ{ϕ+}′′
(r+L (s, θ))

}
(1− s)ds

≥ 1

2
θ(1− θ)m+(uL, uR).

(3.45)

A similar estimate holds for (3.37) adopting the same procedure with some pos-
itive lower bound m−(uL, uR). Here again for simplicity we adopt a common
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1100 FRÉDÉRIC COQUEL, SHI JIN, JIAN-GUO LIU, AND LI WANG

lower-bound m(uL, uR) = m−(uL, uR) = m+(uL, uR). As already mentioned be-
fore, Corollary 2.3 ensures that monotonicity preserving mappings θ(uL, uR) make
r+L (s, θ), r

+
R(s, θ) (respectively, r

−
L (s, θ), r

−
R(s, θ)) cover the range 	r+L , r+R
 (respec-

tively, 	r−L , r
−
R
) as s and θ jointly vary in [0, 1]. Consequently, both h−1

+ (r) and

h−1
− (r) keep their values in 	uL, uR
 for all the r under consideration. The lower-

bound m we seek for, must therefore satisfy

(3.46) min
u∈�uL,uR�

( 1

2a(a+ f ′(u))
,

1

2a(a− f ′(u))

)
≥ m(uL, uR).

Since the flux function f is assumed to be genuinely non-linear, the minimum in
the left-hand side is achieved for u = uL or u = uR and we can thus choose

(3.47) m(uL, uR) =
1

2a
(
a−min(|f ′(uL)|, |f ′(uR)|)

) .
Plugging the proposed estimate in the representation formulas (3.35) and (3.37)
immediately gives:
(3.48)

ϕ+(r+�
R (θ)) ≤

{
θϕ+(r+R) + (1− θ)ϕ+(r+L )

}
− θ(1− θ)

2
m(uL, uR) |r+R − r+L |2,

ϕ−(r−�
L (θ)) ≤

{
(1− θ)ϕ−(r−R) + θϕ−(r−L )

}
− θ(1− θ)

2
m(uL, uR) |r−R − r−L |2,

where |r−R − r−L | = (a − σ)|uR − uL| and |r+R − r+L | = (a + σ)|uR − uL|. One
can therefore bound the relaxation entropy jump E{U}(θ, uL, uR) defined in (3.33)
according to

E{U}(θ, uL, uR) = (a− σ)
(
ϕ+

(
r+�
R (θ)

)
− ϕ+

(
r+L

) )
+ (a+ σ)

(
ϕ− (

r−�
L (θ)

)
− ϕ− (

r−R
) )

≤ θ
{
(a− σ)

(
ϕ+(r+R)− ϕ+(r+L

))
+ (a+ σ)

(
ϕ−(r−R)− ϕ−(r−L

))}
− θ(1− θ)

2
m(uL, uR)

{
(a− σ)|r+R − r+L |2 + (a+ σ)|r−R − r−L |2

}
= θ

{
− σ(U(uR)− U(uL)) + (F(uR)−F(uL)

}
− θ(1− θ)a(a2 − σ2)m(uL, uR)|uR − uL|2.

(3.49)

Notice that, following exactly the same steps as those developed to get (3.22), we
have

(a− σ)
(
ϕ+(r+R)− ϕ+(r+L

))
+ (a+ σ)

(
ϕ−(r−R)− ϕ−(r−L

))
= −σ(U(uR)− U(uL)) + (F(uR)−F(uL))
= E{U}(1, uL, uR).

Then the estimate (3.49) gives

(3.50) E{U}(θ, uL, uR) ≤ θ
(
E{U}(1, uL, uR)− (1− θ)A(uL, uR)

)
,

where

(3.51) A(uL, uR) = a(a2 − σ2(uL, uR))m(uL, uR)|uR − uL|2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ENTROPIC SUB-CELL SHOCK CAPTURING SCHEMES 1101

Hence, assume uL �= uR, (3.50) simply reads:

(3.52) E{U}(θ, uL, uR) ≤ A(uL, uR)
{
θ
(
θ − (1 + Γ(uL, uR))

)}
with Γ(uL, uR) defined in (3.25). Since A(uL, uR) > 0, it suffices to require
θ
(
θ−(1+Γ(uL, uR))

)
≤ 0 to ensure the expected entropy inequality E{U}(θ, uL, uR)

≤ 0 for the pair of states (uL, uR) under consideration. Enforcing as mandatory
the monotonicity preserving condition 0 ≤ θ(uL, uR) ≤ 1 thus yields the condition
(3.24). This concludes the proof.

We would like to emphasize that the upper-bound (3.50) is sharp with respect to
our main motivation. Indeed, it boils down to the equality E{U}(θ = 1, uL, uR) =
E{U}(1, uL, uR) and therefore it exactly preserves all the pairs (uL, uR) of interest,
i.e., those satisfy the entropy condition E{U}(1, uL, uR) ≤ 0.

3.4. Entropy consistency for general flux functions. To begin with, it is
worth briefly recalling a few well-known facts about the Kruz̆kov entropy criterion
for selecting admissible pairs of states (uL, uR) that satisfy the Rankine-Hugoniot
relation

(3.53) −σ(uL, uR)(uR − uL) + (f(uR)− f(uL)) = 0.

The Kruz̆kov entropy inequalities read

− σ(uL, uR)
(
|uR − k| − |uL − k|

)
+
(
sign(uR − k)(f(uR)− f(k))− sign(uL − k)(f(uL)− f(k))

)
≤ 0,

(3.54)

for all k ∈ R. To discard empty intervals from the discussion, we tacitly assume
that uL �= uR. In (3.54), parameter k outside of the interval 	uL, uR
 are easily
seen to satisfy the Rankine-Hugoniot jump relation (3.53), so that only the values
of k in 	uL, uR
 are entropy diminishing

(3.55) sign(uR−uL)
{
−σ(uL, uR)

(
uR+uL−2k

)
+
(
f(uR)+f(uL)−2f(k)

)}
≤ 0.

In view of (3.53), this requirement is equivalent to the so-called Oleinik inequalities:

K(k;uL, uR) := sign(uR − uL)
{
− σ(uL, uR)

(
uR − k

)
+
(
f(uR)− f(k)

)}
= sign(uR − uL)

{
− σ(uL, uR)

(
uL − k

)
+
(
f(uL)− f(k)

)}
≤ 0, k ∈ 	uL, uR
.

(3.56)

The main result of this section follows.

Theorem 3.7. Let us consider the Kruz̆kov entropy pairs (Uk(u),Fk(u)) (3.13) with
k ∈ 	uL, uR
 and the associated relaxation entropy pairs (Φk,Ψk) (3.15)–(3.16). As-
sume the sub-characteristic condition (2.29) and consider monotonicity preserving
mappings θ(uL, uR) (3.2). Then the relaxation entropy jump E{Uk}(θ;uL, uR) in
(3.21) stay non-positive for all k ∈ 	uL, uR
 provided that θ(uL, uR) is chosen to
satisfy

(3.57) 0 ≤ θ(uL, uR) ≤ Θ(uL, uR) = min
k∈�uL,uR�

(
1 + ΓK(k;uL, uR)

)
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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where

(3.58) ΓK(k;uL, uR) = −2γ(uL, uR)

⎧⎪⎪⎨
⎪⎪⎩

K(k;uL, uR)

|uR − uL|
, if uL �= uR,

0, otherwise,

with

(3.59) γ(uL, uR) =
a

a2 − σ2(uL, uR)
.

For any given pair of states (uL, uR), Θ(uL, uR) takes value in (0, 1) and there exists
at least one minimizer k(uL, uR) of ΓK(k;uL, uR) in 	uL, uR
 with the property that

Θ(uL, uR) = 1 if K(k;uL, uR) ≤ 0 for all k ∈ 	uL, uR
, and

0 < Θ(uL, uR) < 1 otherwise.
(3.60)

The function ΓK(k;uL, uR) is directly built from the function K(k;uL, uR) from
the Oleinik inequalities (3.56). It is easy to check that ΓK(k;uL, uR) > −1 using
the sub-characteristic condition (2.29). In this respect, Θ(uL, uR) (3.57)–(3.58) is
nothing but a natural extension of the corresponding formula (3.24)–(3.25) derived
for the genuinely non-linear flux functions. Notice that in the limit |uR − uL| → 0,
we get Θ(uL, uR) = 1. Therefore, in the numerical application, this means that the
method is asymptotically close (in terms of the mesh step Δx) to a Roe solver in
the smooth parts of the discrete solution.

In order to prove Theorem 3.7, we define the following two functions of the
parameter k,

(3.61) R−(k) =
r−R − h−(k)

r−R − r−L
, R+(k) =

h+(k)− r+L
r+R − r+L

, k ∈ 	uL, uR
,

based on the characteristic variables r± = v ± au and the invertible mappings h±
defined in (3.9). Direct calculations imply

a2 − σ2(uL, uR)

2a

(
uR − uL

)(
R−(k) +R+(k)

)
= σ(uL, uR)

(
u�(uL, uR)− k

)
−
(
v�(uL, uR)− f(k)

)
=

a2 − σ2(uL, uR)

2a
(uR − uL) +

(
σ(uL, uR)(uL − k)−

(
f(uL)− f(k)

))
,

where the states u�(uL, uR) and v�(uL, uR) are defined in (2.30). As this formula
is related to the definition of ΓK(uL, uR, k) in (3.58), we claim that the following
statement is equivalent to Theorem 3.7.

Theorem 3.8. Under the assumptions of Theorem 3.7, the relaxation entropy
jump E{Uk}(θ;uL, uR) in (3.21) stays non-positive for all k ∈ 	uL, uR
 provided
that θ(uL, uR) is chosen to satisfy

(3.62) 0 ≤ θ(uL, uR) ≤ Θ(uL, uR) = min
k∈�uL,uR�

{
R−(k) +R+(k)

}
,

where Θ(uL, uR) ∈ (0, 1). For any given pair of states (uL, uR), there exists at least
one minimizer k(uL, uR) of R−(k) +R+(k) in 	uL, uR
 with the property that

Θ(uL, uR) = 1 if K(k;uL, uR) ≤ 0 for all k ∈ 	uL, uR
, and

0 < Θ(uL, uR) < 1 otherwise.
(3.63)
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The proof of this theorem is postponed to the end of the section. In order to
investigate the properties of the optimal choice Θ(uL, uR) in (3.62), we notice the
following properties for the functions R±(k). First, R±(k) keep values in [0, 1] as k
varies in 	uL, uR
 because h−(k) (respectively, h+(k)) covers 	r−R , r

−
L 
 (respectively,

	r+L , r
+
R
). In addition, it is easily seen from the definitions of h±(k) that

(3.64) R−(uL) +R+(uL) = R−(uR) +R+(uR) = 1.

Hence Θ(uL, uR) ∈ [0, 1] and is thus automatically monotonicity preserving. Next,
because of identity (3.64), the mapping k ∈ 	uL, uR
 → R−(k)+R+(k) has clearly
at least one extremum. As a consequence of a forthcoming representation formula
for the entropy jump E{U}k(θ;uL, uR), we prove that all the existing extrema
stay necessarily larger than 1 in the case the pair (uL, uR) under consideration
obeys the Kruzkov’s selection principle K(k;uL, uR) ≤ 0 for all k ∈ 	uL, uR
.
Hence we get from (3.64) the expected value Θ(uL, uR) = 1. For other pairs, it
will be seen that there exists necessarily one local minimizer km(uL, uR) with the
property that (R− +R+)(km(uL, uR)) < 1. Under the entropy inequality, one has
0 < Θ(uL, uR) < 1.

The proof of Theorem 3.8 relies on the following technical result.

Lemma 3.9. Given a smooth enough entropy pair (U ,F) (2.2) and the correspond-
ing relaxation entropy pair (Φ,Ψ) (3.15)–(3.16). Consider monotonicity preserving
mappings θ(uL, uR) (3.2). Let us define from the pair of state (uL, uR) the following
affine functions of the Riemann invariants:

(3.65) r−(z) = r−R + z(r−L − r−R), r+(z) = r+L + z(r+R − r+L ), z ∈ [0, 1].

Then the relaxation entropy jump E{U}(θ;uL, uR) in (3.21) equivalently reads

E{U}(θ;uL, uR)

=
a2 − σ2(uL, uR)

2a

(
uR − uL

) ∫ θ

0

{
U ′((h−1

+ (r+(z))
)
− U ′((h−1

− (r−(z))
)}

dz.

(3.66)

Proof. Rewrite the entropy jump E{U}(θ;uL, uR) for the pair (Φ,Ψ) in terms of
the underlying convex pair (ϕ−, ϕ+) in (3.15):
(3.67)

E{U}(θ) = (a−σ)
(
ϕ+(r+�

R (θ))−ϕ+(r+�
L (θ))

)
−(a+σ)

(
ϕ−(r−�

R (θ))−ϕ−(r−�
L (θ))

)
,

where by construction from Corollary 2.3, one has for all θ ∈ [0, 1] the following
convex decompositions:

(3.68)
r−�
L (θ) = r−R + θ(r−L − r−R), r−�

R (θ) = r−R ,
r+�
L (θ) = r+L , r+�

R (θ) = r+L + θ(r+R − r+L ).

We can thus rewrite (3.67) as

E{U}(θ) = (a− σ)

∫ 1

0

ϕ+′(
r+L + sθ(r+R − r+L )

)
ds

{
θ(r+R − r+L )

}

+ (a+ σ)

∫ 1

0

ϕ−′(
r−R + sθ(r−L − r−R)

)
ds

{
θ(r−L − r−R)

}
,
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1104 FRÉDÉRIC COQUEL, SHI JIN, JIAN-GUO LIU, AND LI WANG

where r+R−r+L = (a+σ)(uR−uL) and r−L −r−R = (a−σ)(uR−uL). By construction

ϕ±′
(r) = ±U ′(h−1

± (r))/(2a), the above identity rewrites

E{U}(θ) = (a2 − σ2)

2a

(
uR − uL

)
×
{
θ

∫ 1

0

U ′(h−1
+ (r+(sθ))

))
ds− θ

∫ 1

0

U ′(h−1
− (r−(sθ))

)
ds
}
,

(3.69)

where r± denote the affine functions introduced in (3.65) but evaluated in z = sθ.
A change of variable gives the conclusion. �

In particular, we have the following result regarding the family of Kruz̆kov en-
tropies.

Lemma 3.10. Consider monotonicity preserving mappings θ(uL, uR) (3.2). Then
the Kruz̆kov entropy jump (3.54) for any given k ∈ 	uL, uR
 writes

E{Uk}(θ;uL, uR)

= −a2 − σ2(uL, uR)

2a
|uR − uL|

{
R−(k) +R+(k)− |θ −R−(k)| − |θ −R+(k)|

}
.

(3.70)

Proof. Lemma 3.9 ensures that the relaxation entropy jump with the Kruz̆kov en-
tropy pair (3.13) writes

E{Uk}(θ) =
a2 − σ2(uL, uR)

2a
|uR − uL|

×
∫ θ

0

sign(uR − uL)
{
U ′
k

(
(h−1

+ (r+(z))
)
− U ′

k

(
(h−1

− (r−(z))
)}

dz,

(3.71)

where

U ′
k

(
h−1
− (r−(z))

)
=

{
−1, h−1

−
(
r−(z)

)
< k,

+1, h−1
−

(
r−(z)

)
> k,

U ′
k

(
h−1
+ (r+(z))

)
=

{
−1, h−1

+

(
r+(z)

)
< k,

+1, h−1
+

(
r+(z)

)
> k.

(3.72)

Recall that under the sub-characteristic condition (2.29), h−1
− (r) strictly decreases

while h−1
+ (r) strictly increases so that (3.72) reads equivalently:

U ′
k

(
h−1
− (r−(z))

)
=

{
+1, r−(z) < h−(k),
−1, r−(z) > h−(k),

U ′
k

(
h−1
+ (r+(z))

)
=

{
−1, r+(z) < h+(k),
+1, r+(z) > h+(k).

(3.73)

Easy calculations based on the sign of (uR − uL) with r+R − r+L = (a− σ)(uR − uL)

and r−L − r−R = (a+ σ)(uR − uL) then allow one to recast (3.73) as

sign(uR − uL) U ′
k

(
h−1
− (r−(z))

)
=

{
+1, z < R−(k),
−1, z > R−(k),

sign(uR − uL) U ′
k

(
h−1
+ (r+(z))

)
=

{
−1, z < R+(k),
+1, z > R+(k),

(3.74)
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where R±(k) is defined in (3.61). Then∫ θ

0

sign(uR − uL)U ′
k

(
(h−1

− (r−(z))
)
dz

= (+1)min
(
θ,R−(k)

)
+ (−1)

(
θ −R−(k)

)
+
,

= R−(k)−
(
R−(k)− θ

)
+
−
(
θ −R−(k)

)
+

= R−(k)− |θ −R−(k)|,

(3.75)

where we have used the identity min(a, b) = b−
(
b−a

)
+
with

(
b−a

)
+
= max(0, b−a)

for any given pair of real numbers (a, b). Similarly, one can infer

(3.76)

∫ θ

0

sign(uR − uL)U ′
k

(
(h−1

+ (r+(z))
)
dz = −

(
R+(k)− |θ −R+(k)|

)
,

so that the required identity (3.70) follows from (3.71). �

As a consequence, we have the following important result.

Corollary 3.11. Given any pair of states (uL, uR) obeying the Kruz̆kov entropy
condition K(k;uL, uR) ≤ 0 for all k ∈ 	uL, uR
 in (3.56). Then

(3.77) min
k∈�uL,uR�

(R−(k) +R+(k)) = 1.

If there exists k� in 	uL, uR
 with the property K(k�;uL, uR) > 0, namely the pair
(uL, uR) is entropy violating, then

(3.78) min
k∈�uL,uR�

(R−(k) +R+(k)) < 1.

Proof. Assume an entropy satisfying pair (uL, uR). Then from Lemma 2.1, we have
on the one hand from (3.22),

(3.79) E{Uk}(θ = 1) = K(k;uL, uR) ≤ 0 for all k under consideration,

while on the other hand, the representation formula (3.70) asserts that

E{Uk}(θ = 1;uL, uR)

= −a2 − σ2(uL, uR)

2a
|uR − uL|

{
R−(k) +R+(k)− |1−R−(k)| − |1−R+(k)|

}
.

(3.80)

Therefore, we have

(3.81) R−(k) +R+(k) ≥ |1−R−(k)|+ |1−R+(k)|.
Since both functions R±(k) keep their values in [0, 1], we get

(3.82) 2(R−(k) +R+(k)) ≥ 2 for all k under consideration.

This implies the estimate (3.77), and the upper-bound of the equality is achieved
at k = uL and k = uR in view of (3.64). Next, assume there exists some k�
in 	uL, uR
 with the property K(k�;uL, uR) > 0. We check that any monotonicity
preserving mapping θ(uL, uR) cannot achieve the value 1 for the pair (uL, uR) under
consideration. Assuming there exists one such mapping then the above steps would
apply to infer

(3.83) R−(k�)+R+(k�) < |1−R−(k�)|+|1−R+(k�)|, i.e., R−(k�)+R+(k�) < 1,
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and this would result in a contradiction 1 = θ(uL, uR) ≤ Θ(uL, uR) < 1 according
to the definition (3.62) of Θ(uL, uR). As a consequence, no monotonicity preserving
mapping can reach the value 1 for the pair under consideration and we necessarily
have Θ(uL, uR) < 1. �

We conclude this section by proving Theorem 3.8.

Proof of Theorem 3.8. We first assume that the mappings θ(uL, uR) under con-
sideration are monotonicity preserving and then we will prove that the resulting
conditions actually imply this property. Define

(3.84) H(k, θ) ≡ R−(k) +R+(k)− |θ −R−(k)| − |θ −R+(k)|.
In view of Lemma 3.10, limiting the values of θ such that E{Uk}(θ;uL, uR) ≤ 0 for
all k ∈ 	uL, uR
 is equivalent to find θ with the property

(3.85) H(k, θ) ≥ 0 for all k ∈ 	uL, uR
.
The identity

H(k, θ) = min(R−(k),R+(k)) + max(R−(k),R+(k))

− |θ −min(R−(k),R+(k))| − |θ −max(R−(k),R+(k))|
(3.86)

then yields

(3.87) H(k, θ) =

⎧⎪⎪⎨
⎪⎪⎩

2θ, 0 ≤ θ ≤ min(R−(k),R+(k)),
2min(R−(k),R+(k)), min(R−(k),R+(k)) ≤ θ

≤ max(R−(k),R+(k)),
2
(
R−(k) +R+(k)− θ

)
, max(R−(k),R+(k)) ≤ θ.

Since by assumption θ ≥ 0 and R−(k) and R+(k) are non-negative for all k ∈
	uL, uR
, the condition (3.85) reduces to
(3.88)

θ ≤ R−(k) +R+(k) for all k ∈ 	uL, uR
 such that max(R−(k),R+(k)) ≤ θ.

This condition can be easily extended to the following version:

(3.89) θ ≤ R−(k) +R+(k) for all k ∈ 	uL, uR

thanks again to the non-negativity of R−(k) and R+(k). Notice that condi-
tion (3.86) together with the identity (3.87) for θ ≤ min(R−(k),R+(k)) implies
that θ ≥ 0; while a combination of inequality (3.89) and (3.64) suggests θ ≤
(R− +R+)(uL) = 1. Therefore, requiring E{Uk}(θ;uL, uR) ≤ 0 for all k ∈ 	uL, uR

in turn implies the monotonicity preserving condition (3.2). �

4. The numerical approximation schemes

This section describes first order numerical methods for approximating the
Kruz̆kov solutions of a scalar conservation law, built from the Riemann solver with
defect measure correction we have derived in the first part of this paper. From now
on, we assume that the monitoring mapping θ(uL, uR) involved in the defect mea-
sures is monotonicity preserving and consistent with the entropy requirement(s)
we have put forward. Convergence of the family of approximate solutions to the
Kruz̆kov solution will be proved in the next section.

We propose hereafter two variants of finite volume methods. The first numerical
method stays in the spirit of Glimm’s approach and is directly built from a sequence
of non-interacting Riemann solutions whose values are sampled in each cell. The
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second method is more in the spirit of Godunov’s method and relies on suitable
local averaging of two neighboring Riemann solutions. Both strategies intend to
restore at the discrete level the exactness property highlighted in Lemma 2.1. To
this scope, a relevant choice for the monotonicity preserving and entropy satisfying
mappings θ is given by Θ(uL, uR), namely, either given by (3.24)–(3.26) in the case
of genuinely non-linear flux function or by (3.62) for a general flux.

Introduce the spatial grid points xj+ 1
2
with uniform mesh width Δx = xj+ 1

2
−

xj− 1
2
. The discrete time level tn is also spaced uniformly with time step Δt =

tn+1 − tn and satisfies the strict CFL condition

(4.1) a
Δt

Δx
<

1

2
,

where the sub-characteristic condition is specified as follows:

(4.2) sup
|u|<‖u0‖L∞(R)

|f ′(u)| < a.

The numerical solution U
α(tn, x) is sought for as a piecewise constant function

whose components are denoted by

(4.3) uα
Δx(t

n, x) = un
j , vαΔx(t

n, x) = vnj , xj− 1
2
< x < xj+ 1

2
,

where α refers to the random sequence used in Glimm’s sampling procedure. The
initial data is discretized in a well-prepared manner:
(4.4)

u0
Δx(x) =

1

Δx

∫ x
j+1

2

x
j− 1

2

u0(x)dx, v0Δx(x) = f(u0
Δx(x)), x ∈ (xj− 1

2
, xj+ 1

2
), j ∈ Z.

4.1. The first algorithm. Assuming that the piecewise constant approximate
solution U(tn, x) is known at time tn, we propose to evolve it to the next time level
tn+1 in three steps.

� Step 1: tn → tn+1,(1) ≡ (n + 1)Δt, Riemann problems with defect measure
correction. Solve the Cauchy problem exactly in the slab (tn, tn +Δt):{

∂tu+ ∂xv = 0,
∂tv + a2∂xu = M(uα

Δx(t
n, x), vαΔx(t

n, x)),
(4.5)

with initial data

(4.6) u(0, x) = uα
Δx(t

n, x), v(0, x) = vαΔx(t
n, x).

Here M is a bounded Borel measure which collects all successive defect measure
corrections, i.e.,

M(uα
Δx(t

n, x), vαΔx(t
n, x)) = Θ(un

j , u
n
j+1)

(
a2 − σ2(un

j , u
n
j+1)

)
(un

j+1 − un
j )δ(x−xj+1/2)−σ(un

j ,u
n
j+1)(t−tn)(4.7)

for x ∈ (xj , xj+1) and t ∈ (tn, tn +Δt). Under the CFL condition (4.1), the exact
solution of (4.5)–(4.6) is the gluing of a sequence of non-interacting self-similar
solutions,

(4.8) (Uα
Δx)

(1) (t, x) := U

(
x− xj+ 1

2

t− tn
;uj , uj+1

)
; x ∈ [xj , xj+1], tn < t < tn+1,

as defined in Lemma 2.2. Thus the solution at the first “intermediate” time reads

(Uα
Δx)

(1)
(
tn+1, x

)
= U

(
x− xj+ 1

2

Δt
;un

j , u
n
j+1

)
, x ∈ [xj , xj+1].(4.9)
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� Step 2: tn+1,(1) → tn+1,(2) ≡ (n+1)Δt, pointwise relaxation. From the solution
of Cauchy problem (4.5)–(4.6), define at the second step tn+1,(2) pointwisely for
x ∈ (xj−1/2, xj+1/2):

uα
Δx

(2) (tn+1, x
)

= uα
Δx

(1) (tn+1, x
)
,(4.10)

vαΔx
(2) (tn+1, x

)
= f

(
uα
Δx

(2) (tn+1, x
))

.(4.11)

� Step 3: tn+1,(2) → tn+1,(3) ≡ tn+1, sampling. Draw a random number αn from
an equidistributed sequence in (0, 1), we define in each cell a constant value U

n+1
j

following Glimm’s sampling strategy

uα
Δx(t

n+1, x) = uα
Δx

(2)
(
tn+1, xj− 1

2
+ αnΔx

)
, x ∈ [xj− 1

2
, xj+ 1

2
],(4.12)

vαΔx(t
n+1, x) = vαΔx

(2)
(
tn+1, xj− 1

2
+ αnΔx

)
= f(uα

Δx(t
n+1, x)).(4.13)

This concludes the description of the method.
We summarize the first algorithm as follows.

Algorithm 4.1. Denote

(4.14) σn
j+ 1

2
= σ(un

j , u
n
j+1).

Given a random number αn ∈ (0, 1), define in each cell (xj−1/2, xj+1/2):

• Update un+1
j from {un

j }j∈Z

(4.15) un+1
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�
L(θ;u

n
j−1, u

n
j ), αn < σn

j− 1
2

Δt
Δx ,

u�
R(θ;u

n
j−1, u

n
j ), σn

j− 1
2

Δt
Δx ≤ αn < anj−1/2

Δt
Δx ,

un
j , an

j− 1
2

Δt
Δx ≤ αn < 1− an

j+ 1
2

Δt
Δx ,

u�
L(θ;u

n
j , u

n
j+1), 1− an

j+ 1
2

Δt
Δx ≤ αn < 1 + σn

j+ 1
2

Δt
Δx ,

u�
R(θ;u

n
j , u

n
j+1), 1 + σn

j+ 1
2

Δt
Δx ≤ αn,

where u�
L, u

�
R are defined in (2.31)–(2.32).

• Update vn+1
j = f(un+1

j ).

4.2. The second algorithm. Given the piecewise constant approximate solution
U(tn, x) at time tn, we propose to update it to the next time level tn+1 in four
steps. Three of these steps are virtually kept unchanged from the first numerical
algorithm but are performed at (possibly) distinct intermediate stages. Here, we
first summarize the basic procedure. At the first step, solve a sequence of non-
interacting Riemann problems with defect measure corrections (4.5)–(4.6) to get

uα
Δx

(1)(tn+1, x), vαΔx
(1)(tn+1, x) from U(tn, x). At the second step, we perform local

averaging on uα
Δx

(1)(tn+1, x) to define uα
Δx

(2)(tn+1, x). In contrast to the usual Go-
dunov’s approach, two neighboring Riemann solutions U((x−xj−1/2)/Δt, un

j−1, u
n
j )

and U((x−xj+1/2)/Δt, un
j , u

n
j+1) with x in (xj−1/2, xj+1/2) are not averaged within

the cell under consideration. Instead, local averaging of neighboring Riemann so-
lutions are performed over distinct intervals of the form (xn+1

j− 1
2

, xn+1
j+ 1

2

) with length
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Δxn+1
j = xn+1

j+ 1
2

− xn+1
j− 1

2

and boundaries defined by

(4.16) xn+1
j+ 1

2

= xj+1/2 + σ(un
j , u

n
j+1)Δt.

Here xn+1
j+ 1

2

is the location of the intermediate discontinuity in

U((x− xj+1/2)/Δt, un
j , u

n
j+1)

propagating with speed σ(un
j , u

n
j+1) and is thus located at time tn+1,(2) either in

(xj−1/2, xj+1/2) or in (xj+1/2, xj+3/2) depending on the sign of the velocity under
consideration. The proposed local averagings are thus given by

(4.17) u
n+1,(2)
j =

1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

uα
Δx

(1)(tn+1, x)dx, j ∈ Z.

This choice successfully avoids any of the intermediate waves so that it is free
of numerical smearing at discontinuities. In contrast to the first algorithm, the
discrete solution uα

Δx
(2)(tn+1, x) is no longer made of up to five constant states

within (xj−1/2, xj+1/2) but only up to three in the situation σ(un
j−1, u

n
j ) > 0 and

σ(un
j , u

n
j+1) < 0. Notice that the averaging (4.17) can be wriiten in the form

(4.18) u
n+1,(2)
j =

Δx

Δxn+1
j

un
j − Δt

Δxn+1
j

(
gnj+1/2 − gnj−1/2

)
, j ∈ Z,

where gnj+1/2 = g(un
j , u

n
j+1) is given by the 2-point numerical flux function g :

R× R → R defined as

(4.19) g(uL, uR) = v�R(θ;uL, uR)− σ(uL, uR)u
�
R(θ;uL, uR), (uL, uR) ∈ R

2.

This definition leads to a conservative finite volume scheme (4.18) in view of the
identity inferred from the first jump condition in (2.21)
(4.20)
v�R(θ;uL, uR)− σ(uL, uR)u

�
R(θ;uL, uR) = v�L(θ;uL, uR)− σ(uL, uR)u

�
L(θ;uL, uR).

Just for technical reason, the v-component is locally averaged in the second step as
well, mimicking the u-component

(4.21) v
n+1,(2)
j =

1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

vαΔx
(1)(tn+1, x)dx, j ∈ Z.

At the third step, we conduct a pointwise relaxation (4.10) and get

vαΔx
(3)(tn+1, x) = f(uα

Δx
(3)(tn+1, x)), with uα

Δx
(3)(tn+1, x) = uα

Δx
(2)(tn+1, x).

Apparently, the third step makes the local averaging proposed for the v-component
in (4.21) useless in practice. But the formal step (4.21) turns out to be convenient
in the forthcoming analysis.

Within each cell (xj−1/2, xj+1/2), we derive the final update uα
Δx(t

n+1, x) us-
ing a sampling procedure (4.12) performed on the piecewise constant function

uα
Δx

(3)(tn+1, x). The pointwise relaxation step ensures

vαΔx(t
n+1, x) = f(uα

Δx(t
n+1, x)).

This concludes the description of the method.
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We summarize the second algorithm as follows.

Algorithm 4.2. Given the random number αn∈(0, 1), in each cell (xj−1/2, xj+1/2):

• Update un+1
j from the {un+1,(2)

j }j∈Z with u
n+1,(2)
j given in (4.18)

(4.22) un+1
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
n+1,(2)
j−1 , αn < σn

j− 1
2

Δt
Δx ,

u
n+1,(2)
j , σn

j− 1
2

Δt
Δx ≤ αn < 1 + σn

j+ 1
2

Δt
Δx ,

u
n+1,(2)
j+1 , 1 + σn

j+ 1
2

Δt
Δx ≤ αn.

• Update vn+1
j = f(un+1

j ).

5. Convergence to the Kruz̆kov entropy weak solution

In this section, we prove for both the finite volume methods Algorithm 4.1 and
4.2 that the family of discrete solutions {Uα

Δx}Δx>0 converges as Δx goes to zero
to U =

(
u, f(u)

)
where u is the Kruz̆kov solution of the Cauchy problem for (2.1)

with initial data u0 ∈ L∞(R) ∩BV (R). The main result is as follows.

Theorem 5.1. Given u0 ∈ L∞(R) ∩ BV (R). Assume the sub-characteristic con-
dition (4.2) and the CFL condition (4.1). Assume that the mapping θ(uL, uR)
is monotonicity preserving (3.2) and consistent with the entropy condition (3.21),
namely with the quadratic entropy pair in the case of a genuinely non-linear flux
and with the whole Kruz̆kov family in the case of a general non-linear flux function.
Then for almost any given sampling sequence α = (α1, α2, . . . ) ∈ (0, 1)N, the fam-
ily of approximate solutions {uα

Δx}Δx>0 given either by (4.1) or (4.2) converges in

L∞(
(0, T ), L1

loc(R)
)
for all T > 0 and a.e. as Δx → 0 with Δt

Δx kept fixed, to the
Kruz̆kov solution of the corresponding Cauchy problem (2.1).

The proof of this statement first relies on the following result.

Proposition 5.2. Assume the sub-characteristic condition (4.2) and the CFL con-
dition (4.1). Suppose that the mapping θ(uL, uR) is monotonicity preserving, then
for any given sampling sequence α = (α1, α2, . . . ) ∈ (0, 1)N, the sequence of discrete
solutions (uα

Δx(t, x), v
α
Δx(t, x))Δt>0 obtained either by Algorithm 4.1 or Algorithm

4.2 satisfies the following uniform in Δx a priori estimates for all time t > 0:

(i) ‖uα
Δx(t, ·)‖L∞(R)≤‖u0 ‖L∞(R), ‖vαΔx(t, ·)‖L∞(R)≤ a ‖u0 ‖L∞(R),(5.1)

(ii) TV(uα
Δx(t, .)) ≤ TV(u0), TV(vαΔx(t, .)) ≤ aTV(u0),(5.2)

(iii)

∫
R

∣∣∣uα
Δx

(1)(t, x)− uα
Δx(t

n, x)
∣∣∣ dx ≤ aTV(u0)(t− tn), tn ≤ t ≤ tn+1,(5.3)

(iv)

∫
R

∣∣∣vαΔx
(1)(t, x)− f(uα

Δx(t
n, x))

∣∣∣ dx ≤ 2a2TV(u0)(t− tn), tn ≤ t ≤ tn+1.(5.4)

Proof. We will prove the results Algorithm 4.2. The proof for (the simpler) Al-
gorithm 4.1 follows from essentially identical steps and the details are left to the
reader.
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(i) The sup-norm estimate in (5.1) follows from the corresponding local maximum
principle stated in (3.1), Theorem 3.1, which is valid in the first step:
(5.5)

sup
xj≤x≤xj+1

|uα
Δx

(1)(t, x)| = sup
xj≤x≤xj+1

∣∣∣∣u
(
x− xj+ 1

2

t− tn
;un

j , u
n
j+1

)∣∣∣∣ ≤ max(|un
j |, |un

j+1|),

for all j ∈ Z and t ∈ (tn, tn+1), and as a consequence

(5.6) ‖uα
Δx

(1) (tn+1, ·
)
‖L∞(R) ≤ ‖uα

Δx(t
n, ·)‖L∞(R) .

As is well-known, the local averagings involved in the second step diminish the
sup-norm

(5.7) ‖uα
Δx

(2) (tn+1, ·
)
‖L∞(R) ≤ ‖uα

Δx
(1) (tn+1, ·

)
‖L∞(R) .

The third step devoted to pointwise relaxation does not change the u-component
of the discrete solution, and the sampling procedure in the last step decreases the
sup-norm, so that

‖uα
Δx

(
tn+1, ·

)
‖L∞(R) ≤‖uα

Δx
(3) (tn+1, ·

)
‖L∞(R)

≤ ‖uα
Δx

(2) (tn+1, ·
)
‖L∞(R) ≤ ‖uα

Δx (t
n, ·)‖L∞(R) .

(5.8)

This immediately implies the expected uniform sup-norm estimate in view of the
definition (4.4) of the discrete initial data. The derivation of the companion sup-
norm estimate for vαΔx (t, ·) starts from the local estimate (3.4),

sup
xj≤x≤xj+1

|vαΔx
(1)(t, x)| = sup

xj≤x≤xj+1

∣∣∣∣v
(
x− xj+ 1

2

t− tn
;un

j , u
n
j+1

)∣∣∣∣
≤ 2amax(|un

j |, |un
j+1|)

(5.9)

for all j ∈ Z and t ∈ (tn, tn+1), so that

(5.10) ‖vαΔx
(1) (tn+1, ·

)
‖L∞(R) ≤ 2a ‖uα

Δx(t
n, ·)‖L∞(R) .

Then in the third step, vαΔx is set at equilibrium pointwisely in x, and we get from
estimate (5.6):
(5.11)

‖vαΔx
(3) (tn+1, ·

)
‖L∞(R) =‖f(uα

Δx
(2) (tn+1, ·

)
)‖L∞(R) ≤ 2a ‖uα

Δx (t
n, ·))‖L∞(R) .

At last the sampling procedure does not increase the sup-norm of vαΔx so that

(5.12) ‖vαΔx

(
tn+1, ·

)
‖L∞(R) ≤ 2a ‖uα

Δx (t
n, ·))‖L∞(R) ≤ 2a ‖u0 ‖L∞(R) .

(ii) In view of the local total variation estimate stated in (3.1), the first step
gives
(5.13)

TV(xj ,xj+1)

(
uα
Δx

(1)(t, ·)
)
= TV

(
u(·;un

j , u
n
j+1)

)
≤ |un

j+1 − un
j |, tn ≤ t ≤ tn+1.

Under the CFL condition (4.1), the discrete solution uα
Δx(t, x) remains continuous

at x = xj while keeping the constant value un
j for all t ∈ (tn, tn+1,(1)), we infer

TV
(
uα
Δx

(1)(t, ·)
)
=

∑
j∈Z

TV(xj ,xj+1)

(
uα
Δx

(1)(t, ·)
)

≤
∑
j∈Z

∣∣un
j+1 − un

j

∣∣ = TV(uα
Δx(t

n, ·)) .
(5.14)
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In the second step, uα
Δx is locally averaged and its total variation decreases:

(5.15) TV
(
uα
Δx

(2)(tn+1, ·)
)
≤ TV

(
uα
Δx

(1)(tn+1, ·)
)
≤ TV(uα

Δx(t
n, ·)) .

In the third step, uα
Δx is kept unchanged and at last, the sampling procedure clearly

diminishes the total variation, thus an immediate recursion gives the required uni-
form total variation estimate again from the definition (4.4) of the discrete initial
data

(5.16) TV(uα
Δx(t

n+1, ·)) ≤ TV(uα
Δx(t

n, ·)) ≤ TV(u0
Δx) ≤ TV(u0).

The estimate for vαΔx(t, ·) is derived similarly starting from the local estimate (3.4)
for each self-similar solution to infer

(5.17) TV(xj ,xj+1)

(
vαΔx

(1)(t, ·)
)
≤ aTV

(
u(·;un

j , u
n
j+1)

)
, tn ≤ t ≤ tn+1,

so that

(5.18) TV
(
vαΔx

(1)(t, ·)
)
≤ aTV(uα

Δx(t
n, ·)) , tn ≤ t ≤ tn+1.

In the second step, vαΔx is locally averaged according to (4.21) hence

(5.19) TV
(
vαΔx

(2)(t, ·)
)
≤ aTV(uα

Δx(t
n, ·)) , tn ≤ t ≤ tn+1,

and is then set at equilibrium in the third step

(5.20) TV
(
vαΔx

(3)(tn+1, ·)
)
= TV

(
f(uα

Δx
(2)(tn+1, ·))

)
≤ aTV(uα

Δx(t
n, ·)) .

At last, the sampling procedure diminishes the total variation

(5.21) TV(vαΔx(t
n+1, ·)) ≤ aTV(uα

Δx(t
n, ·)) ≤ aTV(u0).

(iii) Observe from the first step, the following identity which holds in the sense
of the Radon measures

(5.22) ∂tu
α
Δx

(1)(t, x) = −∂xv
α
Δx

(1)(t, x), t ∈ (tn, tn+1).

Under the CFL condition (4.1), the total variation of the Radon measure ∂tu
α
Δx

can be bounded from above by

(5.23) |∂tuα
Δx

(1)(t, x)|(Rx) = TV(vαΔx
(1)(t, .)) ≤ aTV(u0)

so that, one can infer for t ∈ (tn, tn+1) that∫
Rx

∣∣∣uα
Δx

(1)(t, x)− uα
Δx(t

n, x)
∣∣∣ dx =

∫ t

tn
|∂tuα

Δx
(1)(s, x)|(Rx)ds(5.24)

≤ aTV (u0)(t− tn).(5.25)

(iv) The equation involving the defect measure correction reads for t ∈ (tn, tn+1)
and x ∈ (xj , xj+1) that

(5.26) ∂tv
α
Δx

(1) = −a2∂xu
α
Δx

(1) +m(un
j , u

n
j+1)δx−xj+1/2−σ(un

j ,u
n
j+1)(t−tn),

and the quantities involved in the above identity are again regarded as Radon
measures. The total variation of the Radon measure ∂tv

α
Δx can be bounded by

|∂tvαΔx
(1)(t, x)|(xj , xj+1) ≤ a2|∂xuα

Δx
(1)|(xj , xj+1) + |m(un

j , u
n
j+1)|

≤ a2|un
j+1 − un

j |+ (a2 − σ2)
∣∣un

j+1 − un
j

∣∣ ≤ 2a2
∣∣un

j+1 − un
j

∣∣ .(5.27)
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Therefore by summation, (5.27) becomes, under the CFL condition (4.1),

|∂tvαΔx
(1)(t, x)|(Rx) ≤ 2a2TV

(
uα
Δx

(1)(tn, ·)
)
≤ 2a2TV(u0).(5.28)

We deduce for tn ≤ t ≤ tn+1 that∫
Rx

∣∣∣vαΔx
(1)(t, x)− vαΔx(t

n, x)
∣∣∣ dx =

∫ t

tn
|∂tvαΔx

(1)(s, x)|(Rx)ds ≤ 2a2TV(u0)(t− tn),

where by construction vαΔx(t
n, x) = f(uα

Δx(t
n, x)). This concludes the proof. �

This proposition immediately implies the following convergence result.

Corollary 5.3. Given u0 ∈ L∞∩BV(R), any T > 0, then under the assumptions of
Proposition 5.2, there exists a subsequence still denoted by {uα

Δx}Δx>0, which con-

verges, as Δx → 0 with Δt/Δx kept constant, to a limit uα in L∞(
(0, T ), L1

loc(R)
)
.

In addition, the limit uα belongs to L∞(R+, L
∞ ∩ BV(R)).

Proof. This proof is rather classical from the uniform estimates stated in Propo-
sition 5.2, and one can refer for instance to [11] (Theorems 3.3 and 3.4, Chapter
3). �

The above corollary guarantees the existence of a limit. We now characterize
this limit, showing that it is indeed the unique entropy weak solution of the original
Cauchy problem (2.1). The proof mainly relies on the relaxation entropy inequali-
ties inherited from the first step shared by both Algorithm 4.1 and Algorithm 4.2.
Consider the following time-space domains:
(5.29)

Dn
j =

{
(t, x) ∈ R

+ × R/ t ∈ (tn, tn+1), xn
j−1/2(t) < x < xn

j+1/2(t),

xn
j+1/2(t) = xj+1/2 + σn

j+1/2(t− tn)
}
.

Notice that xn
j+1/2(t

n+1) coincides with xn+1
j+1/2 defined in (4.16). We state the

following.

Lemma 5.4. Under the assumptions of Proposition 5.2, the approximate solutions
given in the first step either by Algorithm 4.1 or Algorithm 4.2 satisfy the following
relaxation entropy equalities in the sense of the distributions:

(5.30) ∂tΦ(u
α
Δx

(1), vαΔx
(1)) + ∂xΨ(uα

Δx
(1), vαΔx

(1)) = 0, (t, x) ∈ Dn
j , n ≥ 0, j ∈ Z.

Assume in addition that the mapping θ(uL, uR) is consistent with the entropy con-
dition (3.21), namely with the quadratic entropy pair in the case of a genuinely
non-linear flux or with the whole Kruz̆kov entropy family in the case of a general
non-linear flux function. Then the discrete solutions given either by Algorithm
4.1 or Algorithm 4.2 satisfy the corresponding entropy jump(s) at each boundary
xn
j+1/2(t):

(5.31)

−σn
j+1/2

(
Φ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)+)− Φ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)−)

)
+
(
Ψ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)+)−Ψ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)−)

)
≤ 0,

t ∈ (tn, tn+1).
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Proof. Under the strict CFL condition (4.1), two neighboring Riemann solutions
do not interact. We thus observe from the definition of each of the domain Dn

j that
the solution (uα

Δx, v
α
Δx) is locally made of three constant states separated by the

discontinuity lines xj−1/2 + a(t− tn) and xj+1/2 − a(t− tn). The property that the
relaxation entropy is preserved across these two discontinuities (see indeed (3.20))
yields the expected equality (5.30). Next and for the mapping θ(uL, uR) under
consideration, the jump inequality across each of the boundary xn

j+1/2(t) reads

nothing but our entropy consistency requirement (3.21) stated in Definition 3.3. �

As a consequence, we get the following.

Proposition 5.5. Assume the sub-characteristic condition (4.2) and the CFL con-
dition (4.1). Given an entropy pair (U ,F) (2.2) with U convex and its corresponding
relaxation entropy pair (Φ,Ψ) (3.15)–(3.16). Assume that the mapping θ(uL, uR)
is consistent with the entropy requirement (3.21) for all the pairs (uL, uR) under
consideration. Then for any non-negative test function ζ ∈ C1

0 ((0,∞) × Rx), the
approximate solutions (uα

Δx, v
α
Δx) given either by Algorithm 4.1 or Algorithm 4.2

satisfy∫ xn+1
j+1/2

xn+1
j−1/2

U
(
uα
Δx(t

n+1, x)
)
ζ(tn+1, x)dx−

∫ x
j+1

2

x
j− 1

2

U (uα
Δx(t

n, x)) ζ(tn, x)dx

+Gn
j+1/2 − Gn

j−1/2 −
∫∫

Dn
j

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx

≤ (EA)nj (Δx, α, ζ) + (ES)nj (Δx, α, ζ), n ≥ 0, j ∈ Z.(5.32)

Here, Gn
j+1/2 stands for the time average of the right trace of the entropy flux along

the boundary xn
j+1/2(t) and reads for both methods:

(5.33) Gn
j+1/2 :=

∫ tn+1

tn

{
Ψ(uα

Δx
(1), vαΔx

(1))− σn
j+1/2Φ(u

α
Δx

(1), vαΔx(1))
}

× (t, xn
j+ 1

2
(t)+)ζ(t, x

n
j+ 1

2
(t))dt.

Concerning Algorithm 4.1, the error term (EA) due to local averagings is identically
zero while the error term (ES) due to the sampling procedure is given by
(5.34)

(ES)nj (Δx, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
U
(
uα
Δx(t

n+1, x)
)
−U

(
uα
Δx

(2)(tn+1, x)
))

ζ(tn+1, x)dx.

For Algorithm 4.2, the error terms (EA) and (ES), respectively, read

(5.35) (EA)nj (Δx, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
(uα

Δx
(2), vαΔx

(2))(tn+1, x)
)

− Φ
(
(uα

Δx
(1), vαΔx

(1))(tn+1, x)
))

ζ(tn+1, x)dx

and
(5.36)

(ES)nj (Δx, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
U
(
uα
Δx(t

n+1, x)
)
−U

(
uα
Δx

(3)(tn+1, x)
))

ζ(tn+1, x)dx.
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Remark 5.6. In (5.32), the superscript (1) has been omitted in the notation of the
(volume) integral over Dn

j since time discontinuities in the subsequent steps tn+1,(1),

tn+1,(2), tn+1,(3) form a negligible set in the proposed Lebesgue integral.

Proof. The proposed inequality is proved for the second algorithm in section 4.2.
Its derivation for the method in section 4.1 follows the same lines. Since again
(uα

Δx, v
α
Δx) is nothing but a piecewise constant solution of the entropy conservation

law (5.30) over the domain Dn
j , multiplying (5.30) by any given non-negative test

function ζ ∈ C1
0 (R

+
t × R) and integrating over (t, x) ∈ Dn

j yield∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα
Δx

(1), vαΔx
(1))

(
tn+1, x

)
ζ(tn+1, x)dx

−
∫ x

j+1
2

x
j− 1

2

Φ(uα
Δx, v

α
Δx)(t

n, x)ζ(tn, x)dx

+

∫ tn+1

tn

{
Ψ(uα

Δx
(1), vαΔx

(1))− σn
j+1/2Φ(u

α
Δx

(1), vαΔx
(1))

}
× (t, xn

j+1/2(t)−)ζ(t, x
n
j+1/2(t))dt

−
∫ tn+1

tn

{
Ψ(uα

Δx
(1), vαΔx

(1))− σn
j−1/2Φ(u

α
Δx

(1), vαΔx
(1))

}
× ζ(t, xn

j−1/2(t)+)ζ(t, x
n
j−1/2(t))dt

−
∫∫

Dn
j

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx = 0,

(5.37)

where the left and right traces at any given interface xn
j+1/2(t) are well defined since

both uα
Δx(t, .) and vαΔx(t, .) have uniformly bounded total variation in space. Using

the definition (5.33) of Gn
j+1/2 evaluated on the right trace, inequality (5.37) can be

recast as ∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα
Δx

(1), vαΔx
(1))

(
tn+1, x

)
ζ(tn+1, x)dx

−
∫ x

j+1
2

x
j− 1

2

Φ(uα
Δx, v

α
Δx)(t

n, x)ζ(tn, x)dx+ Gn
j+1/2 − Gn

j−1/2

−
∫∫

Dn
j

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx = Sn

j ,

(5.38)

where

Sn
j :=

∫ tn+1

tn

{
− σn

j+1/2

(
Φ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)+)

− Φ(uα
Δx

(1), vαΔx
(1))(t, xn

j+1/2(t)−)
)

+
(
Ψ(uα

Δx
(1), vαΔx

(1))(t, xn
j+1/2(t)+)

−Ψ(uα
Δx

(1), vαΔx
(1))(t, xn

j+1/2(t)−)
)}

ζ(t, xn
j+ 1

2
(t))dt

≤ 0.

(5.39)
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Due to the jump inequality (5.31) established in Lemma 5.4, Sn
j is non-positive.

Then by construction vαΔx(t
n, x) = f(uα

Δx(t
n, x)) for all x in (xj− 1

2
, xj+ 1

2
) so that

the consistency condition (3.14) which links the entropy U to its relaxation extension
Φ gives

(5.40) Φ(uα
Δx, v

α
Δx)(t

n, x) = U(uα
Δx(t

n, x)), x ∈ (xj− 1
2
, xj+ 1

2
), j ∈ Z.

Hence, by (5.38)–(5.39), we infer

∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα
Δx

(1), vαΔx
(1))

(
tn+1, x

)
ζ(tn+1, x)dx

−
∫ x

j+1
2

x
j− 1

2

U(uα
Δx(t

n, x))ζ(tn, x)dx+ Gn
j+1/2 − Gn

j−1/2

−
∫∫

Dn
j

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx ≤ 0.

(5.41)

After the second step on the local averaging (4.17)–(4.21), we thus deduce from
(5.41) the inequality

∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα
Δx

(2), vαΔx
(2))(tn+1, x)ζ(tn+1, x)dx

−
∫ x

j+1
2

x
j− 1

2

U(uα
Δx(t

n, x))ζ(tn, x)dx+ Gn
j+1/2 − Gn

j+1/2

−
∫∫

Dn
j

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx

≤ (EA)nj (Δx, α, ζ),

(5.42)

where (EA)nj (Δx, α, ζ) denotes the local averaging error term defined in (5.35). Un-

der the sub-characteristic condition (4.2), the Gibbs principle (3.23) established in
Lemma 3.4 ensures that in the third step, the following inequality holds pointwisely
in x,

U(uα
Δx

(3))
(
tn+1, x

)
= Φ

(
uα
Δx

(3), f(uα
Δx

(3))
) (

tn+1, x
)

≤ Φ(uα
Δx

(2), vαΔx
(2))

(
tn+1, x

)
,

(5.43)

where by construction uα
Δx

(3)(tn+1, x) = uα
Δx

(2)(tn+1, x). The expected inequality
(5.32) then holds at the end of the last step devoted to the sampling procedure,
with an additional error term given by (5.36). This concludes the proof. �

We are in a position to prove the convergence of the family of discrete solutions
given either by (4.1) or (4.2) to the unique Kruz̆kov solution of (2.1).
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Proof of Theorem 5.1. For any given non-negative test function ζ∈C1
0 ((0,∞)×Rx),

we sum up the inequalities (5.32) for j ∈ Z to get∫
R

U(uα
Δx)

(
tn+1, x

)
ζ(tn+1, x)dx−

∫
R

U(uα
Δx)(t

n, x)ζ(tn, x)dx

−
∫ tn+1

tn

∫
R

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx

≤
∑
j∈Z

(
(EA)nj (Δx, α, ζ) + (ES)nj (Δx, α, ζ)

)
, n ≥ 0.

(5.44)

Summing with respect to n ∈ N then yields

−
∑
n≥0

∫ tn+1

tn

∫
R

Φ(uα
Δx, v

α
Δx)∂tζ +Ψ(uα

Δx, v
α
Δx)∂xζdtdx

−
∫
R

U(uα
Δx)(0, x)ζ(0, x)dx ≤ EA + ES ,

(5.45)

where we have set

EA =
∑
n≥0

∫
R

(
Φ(Uα

Δx
(2)(tn+1, x))− Φ(Uα

Δx
(1)(tn+1, x))

)
ζ(tn+1, x)dx,(5.46)

ES =
∑
n≥0

∫
R

(
U(uα

Δx(t
n+1, x))− U(uα

Δx
(3)(tn+1, x))

)
ζ(tn+1, x)dx.(5.47)

First, the dominated convergence theorem readily ensures from the definition of the
discrete initial data that

(5.48)

∫
Rx

U(u0
Δx(x))ζ(0, x)dx →

∫
Rx

U(u0(x))ζ(0, x)dx as Δx → 0.

Next we prove that in the limit Δx → 0 with Δt/Δx kept constant

∑
n≥0

∫ tn+1

tn

∫
Rx

Φ(uα
Δx, v

α
Δx)(t, x)∂tζdtdx →

∫
R

+
t ×Rx

U(uα)(t, x)∂tζdtdx.

To this end, we make use of the following triangle inequality:

∣∣∣∣∣∣
∑
n≥0

∫ tn+1

tn

∫
Rx

(
Φ(uα

Δx, v
α
Δx)(t, x)− U(uα)(t, x)

)
∂tζdtdx

∣∣∣∣∣∣
≤

∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα
Δx(t, x), v

α
Δx(t, x))− Φ

(
uα
Δx(t, x), f(u

α
Δx(t

n, x))
)∣∣|∂tζ|dtdx

+
∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα
Δx(t, x), f(u

α
Δx(t

n, x))
)

− Φ
(
uα
Δx(t, x), f(u

α
Δx(t, x))

)∣∣|∂tζ|dtdx
+

∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα
Δx(t, x), f(u

α
Δx(t, x))

)
− U(uα)(t, x)

∣∣|∂tζ|dtdx
:= I1 + I2 + I3.

(5.49)
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Inequality (5.4) together with the sup norm estimate (5.1) yield

∫ tn+1

tn

∫
Rx

∣∣Φ(uα
Δx, v

α
Δx)(t, x)− Φ

(
uα
Δx(t, x), f(u

α
Δx(t

n, x))
)∣∣∣∣∂tζdt∣∣dx

≤ C ‖ ∂tζ ‖L∞(R+
t ×Rx)

∫ tn+1

tn

∫
supp(ζ(t,.))

|vαΔx(t, x)− f(uα
Δx(t

n, x))|dxdt

≤ C

∫ tn+1

tn
(s− tn)ds�supp(ζ(t,.))

≤ CΔt2�supp(ζ(t,.)),

(5.50)

where �supp(ζ(t,.)) denotes the characteristic function of the test function ζ(t, .) at
time t. Hence, if Δt/Δx is kept constant, we infer

I1 ≤ CΔx,(5.51)

where C is independent of Δx. Similarly a combination of (5.3) and (5.1) yields

I2 ≤ CΔx.(5.52)

Concerning I3, since the extracted subsequence {uα
Δx}Δx>0 is uniformly bounded

in the sup-norm and converges to uα in L∞(
(0, T ), L1

loc(R)
)
for all T > 0 and a.e.,

the dominated convergence theorem applies and we have

∑
n≥0

∫ tn+1

tn

∫
Rx

Φ (uα
Δx, f(u

α
Δx)) (t, x)∂tζdtdx =

∫
R

+
t ×Rx

U(uα
Δx)(x, t)∂tζdtdx

→
∫
R

+
t ×Rx

U(uα)(t, x)∂tζdtdx

as Δx → 0, thus I3 vanishes in the reported limit. Exactly the same steps can be
applied to show that

∑
n≥0

∫ tn+1

tn

∫
Rx

Ψ(uα
Δx, f(u

α
Δx)) (t, x)∂xζdtdx →

∫
R

+
t ×Rx

F(uα)∂xζdtdx, as Δx → 0.

Next, we rewrite the averaging error term as follows:

EA =
∑
n≥0

∑
j∈Z

(EA)nj ,

(EA)nj =

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
U

α
Δx

(2)(tn+1, x)
)
− Φ

(
U

α
Δx

(1)(tn+1, x)
))

ζ(tn+1, x)dx.

(5.53)

Introducing the averaged quantity

(5.54) ζn+1
j =

1

xn+1
j+1/2 − xn+1

j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

ζ(tn+1, x)dx,

with

(5.55) ||ζ(tn+1, .)− ζn+1
j ||L∞((xn+1

j−1/2
,xn+1

j+1/2
)) ≤ CΔx�supp(ζ),
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the following identity holds:

(EA)nj =

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
U

α
Δx

(2)(tn+1, x)
)
−Φ

(
U

α
Δx

(1)(tn+1, x)
))

(ζ(tn+1, x)− ζn+1
j )dx

+

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
U

α
Δx

(2)(tn+1, x)
)
− Φ

(
U

α
Δx

(1)(tn+1, x)
)
dx ζn+1

j

:= (I4)
n+1
j + (I5)

n+1
j .

The convexity of the entropy Φ ensures the following pointwise inequality
(5.56)

Φ
(
U

α
Δx

(1)(tn+1, x)
)
− Φ

(
U

α
Δx

(2)(tn+1, x)
)

−∇Φ
(
U

α
Δx

(2)(tn+1, x)
)
·
(
U

α
Δx

(1)(tn+1, x)− U
α
Δx

(2)(tn+1, x)
)
≥ 0.

Now we make use of the local averaging procedure (4.17) together with the definition
(4.21) proposed in the second step, to get the identity

U
α
Δx

(2)(tn+1, x) := U
n+1,(2)
j

=
1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

U
α
Δx

(1)(tn+1, x)dx, x ∈ (xn+1
j− 1

2

, xn+1
j+ 1

2

).

(5.57)

We thus infer from (5.56) and (5.57) the following bound:

(5.58) (I5)
n+1
j ≤ ζn+1

j ∇Φ(U
n+1,(2)
j ) ·

∫ xn+1
j+1/2

xn+1
j−1/2

(
U

n+1,(2)
j − U

α
Δx

(1)(tn+1, x)
)
dx = 0.

Then in view of the local error sup-norm estimate stated in (5.55), we deduce

(5.59) (EA)nj ≤ CΔx

∫ xn+1
j+1/2

xn+1
j−1/2

|Uα
Δx

(2)(tn+1, x)− U
α
Δx

(1)(tn+1, x)|dx�supp(ζ).
Invoking the identity (5.57), we get from the uniform BV bounds (5.2):

(EA)nj ≤
CΔx�supp(ζ)

xn+1
j+1/2 − xn+1

j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

|Uα
Δx

(1)(tn+1, x)− U
α
Δx

(1)(tn+1, y)|dxdy

≤ TVR(U
α
Δx(t

n+1, .))
CΔx

xn+1
j+1/2 − xn+1

j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

|x− y|dxdy�supp(ζ)
≤ CΔx3�supp(ζ).

Therefore, with Δt/Δx kept constant, we deduce that the averaging error term is
non-positive as Δx goes to zero

(5.60) (EA) ≤ CΔx
∑
n≥0

∑
j∈Z

�supp(ζ)ΔxΔt ≤ CΔx.

To conclude, the overall sampling error ES(Δx, α, ζ) can be shown to converge to
zero as Δx → 0 for almost any given sequence α ∈ A = (0, 1)N, using exactly the
same arguments as those developed by Glimm [10] in the convergence analysis of
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his scheme (see also Serre [25]). With Serre’s notations, consider dν(α) the measure
defined on the Borel sets of the space of sequences A = (0, 1)N, then the estimate∫

A
|ES(Δx, α, ζ)|2 dν(α) ≤ C sup

t≥0
TV(uα

Δx(t, ·))Δx ≤ CΔx(5.61)

follows, thanks to the property that uα
Δx(t, x) has uniformly bounded total variation

for all α ∈ A = (0, 1)N. We refer the reader to [25] (Lemma 5.4.2, Chapter 5) for
a proof. The proposed estimate actually ensures that for any given test function
ζ ∈ C1

0(R
+
t ×Rx), there exists a negligeable set Nζ ⊂ A such that for all sequences

in A/ Nζ , the sampling error E(Δx, α, ζ) goes to zero with Δx. We can therefore
conclude that the limit function uα verifies∫

R
+
t ×Rx

(
U(uα)∂tζ + F(uα)∂xζ

)
dtdx+

∫
Rx

U(u0)ζ(0, x)dx ≥ 0,(5.62)

for almost any given sampling sequence α ∈ A and for any non-negative test func-
tion ζ ∈ C1

c ((0,∞)× Rx). Again, in the case of a genuinely non-linear flux function,
the proposed inequality holds for a single strictly convex entropy pair. After Panov
[23], it suffices to observe that in addition uα verifies by construction∫

R
+
t ×Rx

(
uα∂tζ + f(uα)∂xζ

)
dtdx+

∫
Rx

u0ζ(0, x)dx = 0,(5.63)

namely uα is a weak solution which satisfies one entropy inequality (5.62): it neces-
sarily coincides with the Kruz̆kov solution. In the situation of a general non-linear
flux function, the inequality (5.62) holds for the whole Kruz̆kov family which readily
implies that uα is nothing but the Kruz̆kov solution of the Cauchy problem under
consideration. �

6. Numerical examples

In this section we present numerical results to highlight the importance of han-
dling infinitely many entropy pairs in the design of the anti-diffusive law Θ(uL, uR)
for a flux function without genuine non-linearity. To this end, we consider the initial
value problem

(6.1)

∂tu+ ∂x

(
u3

3

)
= 0, t > 0, x ∈ (0, 1),

u(0, x) = u0(x) =

{
uL = −1, x < 0.5,

uR = +1, x > 0.5,

with Neumann boundary conditions. The exact solution of this Riemann problem
is a compound wave made of a shock attached to a rarefaction wave, as depicted
in the figures displayed hereafter. The initial data in (6.1) is chosen so that the
entropy jump for the quadratic entropy pair is zero

(6.2) −σ(uL, uR)(
u2
R

2
− u2

L

2
) + (

u4
R

4
− u4

L

4
) = 0, σ(uL, uR) =

1

3
.

Hence choosing the anti-diffusive law (3.24) designed for genuinely non-linear flux
functions comes with Γ(uL, uR) = 0 in (3.25) so that the optimal value Θ(uL, uR)
in (3.24) boils down to 1. With such a law any of the two methods in sections 4.1
and 4.2 capture a weak solution made of a single discontinuity propagating with
speed σ(uL, uR) = 1/3. This weak solution is entropy violating. It is therefore of
central importance to promote the anti-diffusive law (3.62) to enforce the validity
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of all the Kruz̆kov entropy inequalities. Numerical results displayed below assess
these issues.

The solution of the IBVP (6.1) is approximated using the Jin-Xin method with
and without defect measure corrections to illustrate their relative performance.
With defect measure, we implemented both Algorithms 4.1 and 4.2. The anti-
diffusive law is first set to the optimal law (3.62) especially designed for general
non-linear flux function. It is then set to (3.24) as a comparison for our numerical
purposes. In the calculations, we use the low variance van der Corput sequence
α ≡ {αn}n≥0 (see [15] for instance) defined by

(6.3) αn =

m∑
k=0

ik2
−(k+1), with n =

m∑
k=0

ik2
k,

where the ik represents the binary expansion of the integer n = 1, 2, . . . . The first
few elements of this sequence are

(6.4)
α1 = 0.5, α2 = 0.25, α3 = 0.75, α4 = 0.125,
α5 = 0.625, α6 = 0.375, α7 = 0.875, α8 = 0.0625.

The number of points in space is taken to be 250 and the CFL condition is set
at the value of 0.45. Exact and discrete solutions for the Jin-Xin method without
defect measure corrections are compared in Figure 1. Corresponding results for the
Jin-Xin method with defect measure corrections based on the optimal law (3.62)
are displayed in Figures 2 and 3. Observe the fairly good agreement achieved with
the exact solution. Results obtained for the optimal law (3.24) are plotted in Figure
4. As expected, the method captures a wrong weak solution.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Example (6.1). Jin-Xin method without defect mea-
sure corrections. Solid line: exact solution; circles: numerical so-
lution.
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Figure 2. Example (6.1). Algorithm 4.1: Jin-Xin method with
defect measure corrections based on the anti-diffusive law (3.62)
for a general non-linear flux. Solid line: exact solution; circles:
numerical solution.
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Figure 3. Example (6.1). Algorithm 4.2: Jin-Xin method with
defect measure corrections based on the anti-diffusive law (3.62)
for a general non-linear flux. Solid line: exact solution; circles:
numerical solution.

In the end, we give another example constituting two shocks meeting each other
and finally merging into one. The problem is stated as follows:

(6.5)

∂tu+ ∂x

(
u2

2

)
= 0, t > 0, x ∈ (0, 1),

u(0, x) = u0(x) =

⎧⎪⎨
⎪⎩
uL = −1, x < 0.25,

uR = +1, 0.25 ≤ x < 0.75,

uR = −1, x ≥ 0.75,
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Figure 4. Example (6.1). Jin-Xin method with defect measure
corrections based on the anti-diffusive law (3.24) designed for a
genuinely non-linear flux. Solid line: exact solution; circles: nu-
merical solution.
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Figure 5. Example (6.5). Jin-Xin method without defect mea-
sure corrections. Solid line: exact solution; circles: numerical so-
lution.

and the Neumann boundary condition is used. We choose mesh size as Δx = 0.025
and set CFL number to be 0.2. The results are displayed in Figures 5, 6, and 7
and the output times are t = 0.25 and t = 0.5. In all figures, the black curve is the
exact solution and red circle denotes the numerical solution. Here both Algorithms
4.1 and 4.2 capture shock very well whereas the Jix-Xin method without defect
measure produces smeared results.
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Figure 6. Example (6.5). Algorithm 4.1: Jin-Xin method with
defect measure corrections based on the anti-diffusive law (3.62)
for a general non-linear flux. Solid line: exact solution; circles:
numerical solution.
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Figure 7. Example (6.5). Algorithm 4.2: Jin-Xin method with
defect measure corrections based on the anti-diffusive law (3.62)
for a general non-linear flux. Solid line: exact solution; circles:
numerical solution.
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