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Abstract
We study the inverse problem of radiative transfer equation  (RTE) using 
stochastic gradient descent method (SGD) in this paper. Mathematically, 
optical tomography amounts to recovering the optical parameters in RTE 
using the incoming–outgoing pair of light intensity. We formulate it as a 
PDE-constraint optimization problem, where the mismatch of computed 
and measured outgoing data is minimized with same initial data and RTE 
constraint. The memory and computation cost it requires, however, is typically 
prohibitive, especially in high dimensional space. Smart iterative solvers that 
only use partial information in each step is called for thereafter. Stochastic 
gradient descent method is an online learning algorithm that randomly 
selects data for minimizing the mismatch. It requires minimum memory and 
computation, and advances fast, therefore perfectly serves the purpose. In this 
paper we formulate the problem, in both nonlinear and its linearized setting, 
apply SGD algorithm and analyze the convergence performance.

Keywords: stochastic gradient descent, radiative transfer equation,  
optical tomography, online learning

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical tomography is a form of computed tomography that extracts tomographic images of 
objects to be studied using information of light transmitted and scattered through it. It has 
been vastly used in many applications: in medical imaging near infrared light (NIR) is sent 
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into biological tissues for tumor or bone structure [23, 24]; in outer space studies: during 
Galileo’s travel around Jupiter, pictures are taken by the near infrared mapping spectrometer 
(NIMS), and scientists recover components of atmosphere on each satellite [11]. Typically 
scientists inject a certain amount of light into a bulk of material, and measure the outgoing 
light intensities at the boundaries. By collecting many such incoming and outgoing light inten-
sity pairs, scientists infer for the optical information of the material.

Mathematically, light is typically characterized by the radiative transfer equation (RTE). It 
characterizes photon particles that scatter and get absorbed in materials with various optical 
properties. Optical tomography, therefore is formulated as the inverse problem of the radiative 
transfer equation. The equation reads:

v · ∇xf + σ(x) f =

∫

V
k(x, v, v′) f (x, v′)dv′, (1)

where f (x, v), defined on phase space, is the distribution of particles at location x with velocity 
v. Here x ∈ Ω ⊂ Rd  with d = 2, 3, and v ∈ V = Sd−1, the unit sphere in Rd. k(x, v, v′) is the 
scattering coefficient and it shows the probability of particles moving in direction v′ changing 
to direction v at location x, and σ(x) is the total absorption coefficient that represents certain 
amount of photon particles being absorbed by the material. The equation has a unique solution 
with the following boundary condition:

f |Γ− = φ(x, v), (2)

where Γ− collects the coordinates on ∂Ω with incoming velocities (and Γ+ collects the 
outgoings):

Γ± = {(x, v) : x ∈ ∂Ω,±v · nx > 0}.

Here nx stands for the normal direction pointing out of the domain at point x ∈ ∂Ω. The 
wellposedness of the equation in the general Lp space has been studied in [12]. Define the 
albedo operator that maps the incoming boundary condition to the outgoing data:

A : φ(x, v) → (nx · v) f (x, v)|Γ+
. (3)

In the forward problem setting, the optical properties σ and k are known and one com-
putes (nx · v) f |Γ+

 for arbitrarily given φ. In the inverse setting, one obtains all possible 
(φ, (nx · v) f |Γ+) pairs and uses them (A information) to recover σ and k. Note there are mul-
tiple ways to define A depending on the measurements. For example, A could map φ to f |Γ+ 
or the angular averaged measurements 

∫
(nx · v) f dv.

The problem, due to its large application, has been extensively studied from many aspects. 
On the analytical side people concern the wellposedness and the stability. More precisely, we 
ask: 1. Does A contain enough information to extract all coefficients; 2. How sensitive the 
recovery is towards the measurements. The first question was initially addressed by a pioneer 
paper in [10], in which the authors used the singular decomposition technique to prove the 
uniqueness of the recovery in 3D if σ has no v dependence. This technique was later extended 
to study angular average data [3, 4] and the case where σ has the v dependence [35]. The 
second question was looked at as early as in [39], and the bad conditioning was addressed 
by increasing the modulation frequency in the time-harmonic case [5]. In [8], the authors 
studied the stability’s dependence on the Knudsen number and recover, to some extent, the ill- 
conditioning of the Calderón type problem in the diffusion limit. See [2] for a review.

On the computation side, different application setups provide different types of measure-
ments, and it drives the development of various numerical techniques [9, 13, 18, 29, 32, 37, 
38]. A very general descriptions are found in influential books [14, 26]. Generally speaking 
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people regard it as an optimization problem with PDE constraints. More precisely, one tries 
to minimize the mismatch between the measurements and the numerical results assuming the 
RTE is satisfied. In this process, L2, L1 or TV norm of the coefficients are added as penalties to 
fit certain a prior knowledge. The biggest challenge here, of course, is the size of the problem: 
in every iteration a forward solver is called, and this deals with the distribution function f that 
lives on phase space and has N5 degrees of freedom in 3D (assuming each direction takes N 
points). Some techniques have been applied to reduce the cost. This includes using the lineari-
zation as an approximation [31], applying gradient-based instead of the Jacobian [34] etc. An 
early review was given by Arridge and Ren [1, 31].

None of the algorithms, however, is online. With traditional approaches, one typically 
assumes that many experiments are done, and a large number of pairs of (φ, (nx · v) f |Γ+) are 
collected ahead of time. These data points are stored and used all-together in the computa-
tion as a whole batch. An immediate disadvantage is the run-time memory and computational 
cost: in each iteration, all experiment measurements are called for to adjust the parameter. We 
develop online algorithms for inverting RTE in this paper. In particular, we apply the stochastic 
gradient-descent method. It is a standard online algorithm: we start with one data point (one 
incoming–outgoing pair), and gradually adjust by incorporating new ones randomly selected 
from the data pool. This way, in each iteration, only very few data points are required, sig-
nificantly accelerating the optimization. We stop once error tolerance is achieved. This online 
routine minimally requires data points, and avoids experiment waste. As will be shown later, 
numerically it is drastically more efficient too. We have to mention that we are not the very first 
group to explore the possibility of incorporating the random sampling techniques to inverse 
problems. The randomized version of the Kaczmarz’s method (originally extensively studied 
in [16]) was proposed in [19] for elliptic equations with Dirichlet-to-Neumann map as the data.

In the following, we review the stochastic gradient descent method in section 2, and show 
the formulation of the inverse problem in both the linearized and the original nonlinear setting 
in section 3. Section 4 collects our numerical experiments.

2. Stochastic gradient descent method

We briefly review the stochastic gradient descent method in a general setting. The notation is 
consistent within this section, and will be adjusted accordingly in later sections.

Stochastic gradient descent (SGD) algorithm and many of its variants are often used to 
solve optimization problems of the form

minJ (σ) =
1
N

N∑
k=1

Jk(σ), (4)

where J  is average of all Jk, which maps the trainable parameters σ ∈ Rd  to R . N is the 
training sample size and could be very large depending on applications. To solve the problem 
using the standard gradient descent method, one updates σn  for each step, the parameter at 
nth step, using:

σn+1 = σn − η∇xJ (σn) = σn −
η

N

N∑
k=1

∇σJk(σn). (5)

Here η is the gradient descent time step, or sometimes termed learning rate. This method 
requires derivative with respect to σ for all Jk evaluated at σn  and the computation could be 
prohibitively expensive for big N.
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SGD method is a stochastic alternative of gradient descent method (GD). It replaces the 
full gradient ∇σJ  by only one sampled version in each iteration. In its simplest form, the 
SGD iteration is written as

σn+1 = σn − ηn∇σJγn(σn), (6)

where ηn is still the learning rate which may or may not vary in n. The learning direction 
is no longer the gradient of the whole cost function but is replaced by that of one sample 
Jγn randomly chosen from the sample pool ({γn} is a random variable evenly chosen from 
{1, 2, · · · , N}). Per iteration, SGD requires only one sample’s derivative in σ at σn . Since the 
computational complexity is much reduced compared with GD, SGD is of favor for many 
large scale problems [6, 7].

There are many works addressing the performance of SGD. Studies were done on quantify-
ing the convergence rate, choosing optimal learning rate, checking condition number depend-
ence, and extending to nonconvex objectives. Many different variants (large batch training, 
stochastic average gradient, problem in the linear setting, and semi-stochastic method etc) 
[17, 22, 30, 33, 36, 40] have been studied too for various of purposes. The convergence in the 
most general setting is still unknown, and several techniques have been employed to explain it 
[6, 25, 27]. Among them we specifically mention the technique that links SGD algorithm with 
stochastic partial differential equations (SDEs). The computation of SDE itself also attracts 
some studies [28].

In fact, if one rewrites SGD as:

σn+1 − σn = −η∇σJ (σn) + η∇σ(J − Jγn)(σn), (7)

with η independent on n, it could be explained as the discretization for the following SDE:

dXt = b(Xt)dt + a(Xt)dWt, (8)

with η being the time step, b(σ) = −∇σJ (σ) being the drift, and a(x) = (ηΣ) 1/2 is the 
Brownian motion with the covariance defined by:

Σ =
1
N

∑
k

(∇J (σ)−∇Jk(σ)) (∇J (σ)−∇Jk(σ))
� . (9)

This observation was made rigorous in [20], and we cite the theorem here:

Theorem 1. Let T  >  0 and define Σ as in (9). Assume J , Jk are Lipschitz continuous, have 
at most linear asymptotic growth and have sufficiently high derivatives. Then, the stochastic 
process Xt with t ∈ [0, T] satisfying

dXt = −∇J (Xt)dt + (ηΣ(Xt))
1/2dWt (10)

is an order 1 weak approximation of the SGD, meaning: for every g of polynomial growth, 
there exists C  >  0, independent of η, such that for all n = 0, 1, ..., nT = T/η,

|Eg(Xnη)− Eg(σn)| < Cη. (11)

Here Xnη is the solution to the SDE (8) evaluated at nη and σn  is the nth iteration solution to 
the SGD algorithm 6.

Consider the connection between SDE and the Fokker–Planck equation, the rewrite of the 
scheme (7) can also be regarded as the discretization for:

K Chen et alInverse Problems 34 (2018) 075010
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∂tu = b(x) · ∇u +
1
2
ηΣ : ∇2u (12)

and this was made rigorous in [15] by using a small jump approximation in Markov process.
These results essentially claim that the SGD results can be interpreted by the solution to the 

SDE and the Fokker–Planck. Once the connection is drawn, the analysis to the SDE could be 
carried to understand the convergence behavior of SGD. Indeed, the equation contains a drift 
term and a diffusion term, in charge of bringing two types of behaviors. Suppose the initial 
guess is far away from the optimal and ∇σJ  is very big, then the drift term will dominate. 
The solution therefore will firstly move according to the direction given by the drift term and 
quickly converge to a state to have ∇σJ = 0. Once the drift term is small enough, the dif-
fusion term will dominate, and this gives a Brownian motion like oscillating behavior. The 
two phases are termed the descent phase and the fluctuations phase, and the transition time is 
usually determined by setting E(Xt) =

√
Var(Xt).

The solution to the SDE could be made more explicit when η, the learning rate is small. In 
the zero limit of η, the diffusion term shrinks. By performing the standard asymptotic expan-
sion in η to (8), the solution to the SDE, in the leading order, becomes:

Xt ∼ N (X0,t, ηSt), (13)

a Gaussian process centers at X0,t, a deterministic process that satisfies:

d
dt

X0,t = −∇J (X0,t),

with fluctuation St governed by:

d
dt

St = −StHt − HtSt +Σt. (14)

Here Ht = ∇2J (X0,t) is the Hessian of J  evaluated at X0,t, and Σt = Σ(X0,t), with Σ defined 
in (9). The interested readers are referred to [20] for more details.

3. Inverting for optical properties of RTE

We apply SGD to the inverse problem in RTE. We first unify the notation. We focus on the 
critical case in this paper, meaning the absorption and the scattering term have the same inten-
sities. The method takes minimum changes when the two terms are different. The calculation 
will be presented in remark 1 and numerical experiments will be demonstrated in section 4. 
The equation writes, in 2D:

{
v · ∇f = σ(x1, x2)L[ f ], x = (x1, x2) ∈ [0, 1]2, v ∈ S
f |Γ− = φ(x1, x2, v)

,

where L[ f ] is the collision term:

L[ f ] =
∫

S
f dv − f = 〈 f 〉v − f .

Here dv is a normalized measure. If we write v = (cos θ, sin θ) then:
{
cos θ∂x1 f + sin θ∂x2 f = σ(x1, x2)L[ f ], (x1, x2, θ) ∈ [0, 1]2 × [−π,π]
f |Γ− = φ(x1, x2, θ)

.

 

(15)
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In the equation Γ− collects coordinates on the four boundary lines with velocities pointing 
into the domain:

Γ− = {x1 = 0, x2 ∈ [0, 1], cos θ > 0} ∪ {x1 = 1, x2 ∈ [0, 1], cos θ < 0}
∪ {x1 ∈ [0, 1], x2 = 0, sin θ > 0} ∪ {x1 ∈ [0, 1], x2 = 1, sin θ < 0},

and Γ+ collects the rest.
For every run of the experiment, one turns on light supported on Γ− with prescribed inten-

sities, termed φ(k) and collects outgoing intensities, termed ψ(k). We note that ψ(k) contains 
pollution in the measuring procedure. The superindex k labels the round of experiment.

Throughout the section we may encounter the following norms:

‖f‖2
± =

∫

Γ±

|f |2dxdv, ‖f‖2
2 =

∫

Ω×S
|f |2dxdv.

The following two subsections are devoted to nonlinear and linearized versions of the 
inverse problem, both of which employ dual problems for extracting information.

3.1. Nonlinear version

We look for the scattering coefficient σ(x1, x2) in the nonlinear setting in this section. This is 
achieved by matching the result of the albedo operator acting on the incoming data φ(k) and 
the measured data ψ(k). More precisely we perform the PDE-constraint optimization. Define 
the cost function:

Jk =
1
2
‖(n · v) f (k) − ψ(k)‖2

+ +
α

2
‖σ‖2

2 (16)

and the PDE constraint:

(v · ∇ − σL) f (k) = 0, f (k)|Γ− = φ(k), (17)

then we minimize:
{
minσ

1
N

∑
k J (k) = 1

N

∑
k

( 1
2‖(n · v) f (k) − ψ(k)‖2

+ + 1
2α‖σ‖

2
2

)
s.t. v · ∇f (k) = σ(x1, x2)L[ f (k)], f (k)|Γ− = φ(k) . (18)

A more compact form of the problem writes:

min
σ

1
N

∑
k

(
1
2
‖A(σ)[φ(k)]− ψ(k)‖2

+ +
1
2
α‖σ‖2

2

)
 (19)

where A is the albedo operator determined by σ that maps the incoming data φ to the outgo-
ing data (n · v) f |Γ+

 with f satisfying (17). A Kolmogorov regularizer ‖σ‖2 is added. Both the 
mismatch term and regularization term are measured in L2 norm. Note that the data is of the 
form of (n · v) f |Γ+

 but not f |Γ+.
The update formula given by SGD is straightforward:

σn+1 = σn − ηn
d

dσ
Jγn(σn), (20)

with γn randomly selected from {1 , · · · , N}. This means in each iteration, to update σ from 
time step n to n  +  1, one randomly select a incoming–outgoing pair (φ(γn),ψ(γn)) and use 
the corresponding Fréchet derivative d

dσJγn  evaluated at the previous data σn . To compute 
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the Fréchet derivative, however, we need to employ the dual problem. We now derive it, and 
ignore sub-index γn for conciseness of the notation.

We use the Lagrangian formulation. For all independent f, σ and the duals g and λ, we 
define the Lagrangian:

L(σ, f , g,λ) = J (σ, f ) + 〈g, (v · ∇x − σL) f 〉2 + 〈λ, f |Γ− − φ〉−, (21)

with the last two terms coming from multiplying the two constraints (the equation and the 
boundary condition) by the Lagrangian multiplier (g,λ). If the two constraints in (17) are 
satisfied, f and σ are no longer independent, and the last two terms disappear. On this special 
manifold, the Lagrangian is equivalent to J . We denote such f by fσ. On f = fσ manifold:

L(σ, fσ , g,λ) = J (σ, fσ). (22)

Take derivative with respect to σ:

dJ
dσ

=
∂L

∂σ
+

∂L

∂f
∂f
∂σ

.

Suppose g and λ are selected properly to make ∂L∂f = 0, then:

dJ
dσ

=
∂L

∂σ
=

∂J
∂σ

−
∫

S
gL[ f ]dv = ασ −

∫

S
gL[ f ]dv, (23)

a formulation that could be explicitly computed.
To have ∂L∂f = 0, we note that

∂L

∂f
=

∂J
∂f

+
∂

∂f
〈g, (v · ∇x − σL) f 〉Ω×S +

∂

∂f
〈λ, f |Γ− − φ〉−

=
∂

∂f

[
1
2
〈(v · n) f − ψ, (v · n) f − ψ〉+ + 〈g, (v · ∇x − σL) f 〉Ω×S + 〈λ, f |Γ− − φ〉−

]

=
∂

∂f

[
1
2
〈(v · n) f − ψ, (v · n) f − ψ〉+ + 〈(v · n)g, f 〉+ + 〈(−v · ∇x − σL)g, f 〉Ω×S

+〈λ, f |Γ− − φ〉− + 〈(v · n)g, f 〉−
]

where in the last equation we have used:

〈g, (v · ∇x − σL) f 〉Ω×S = 〈(−v · ∇x − σL)g, f 〉Ω×S +

∫

Γ+∪Γ−

(n · v) fgdxdv.

We combine terms supported in different domains, and let them vanish:



(−v · ∇x − σL)g = 0, (x, v) ∈ Ω× S
(n · v) f − ψ + g = 0, (x, v) ∈ Γ+

λ+ (n · v)g = 0, (x, v) ∈ Γ−

. (24)

The first two equations  combined provide the restriction of g, i.e. g satisfies the dual 
problem:

{
−v · ∇g = σL[g]
g|Γ+

= −(n · v) f |Γ+
+ ψ

. (25)
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In each iteration, to update (20), we compute (25) with the current guess σn  for g using the 
mismatch being the boundary condition, and then generate the Fréchet derivative using (23). 
We summarize the procedure in algorithm 1.

Algorithm 1. Find solution to the minimization problem (18).

Data: N experiments with

      1. incoming data {φ(k)};

      2. outgoing measurements: {ψ(k)}
      3. error tolerance ε;
      4. initial guess σ0 .
Result:The minimizer σ to the optimization problem (18) that is within ε accuracy in residue.

while ‖ d
dσJγn(σn)‖ > ε do

      Step I: randomly pick γn ∈ {1 , · · · , N};

      Step II: compute the forward problem (17) using boundary φ = φ(γn) with σ = σn for f (γn);

       Step III: compute the dual problem (25) using boundary −(v · n) f (γn)|Γ+ + ψ(γn) with 
σ = σn for g(γn);

      Step IV: compute the Fréchet derivative (23): d
dσJγn(σn) = ασn −

∫
S1 L[ f (γn)]g(γn)dv;

      Step V: update using (20): σn+1 = σn − η d
dσJγn(σn).

     n  =  n  +  1.
end

We emphasize that for clinic interests, N data points {φ(k),ψ(k)} do not need to be pre-
pared beforehand. Before converging, in each step, an NIR laser is randomly placed on Γ− to 
generate φ(k) and recerivers are placed on Γ+ to collect ψ(k). Experiments are stopped once 
the algorithm gives convergence. In this way, no redundant information is collected and this 
online algorithm maximally saves the experimenting time.

Remark 1. It is of clinical interests that sometimes the equation (15) is not in the critical 
case and the total absorption term is different from the scattering case. For simplicity we set 
the scattering being 1 and study here how to recover the absorption term. The equation writes

v · ∇xf = Lf − σf (26)

with boundary condition

f |Γ− = φ.

And the goal is to use the information of A to recover σ. The minimization form writes as:
{
minσ

1
N

∑
k Jk =

1
N

∑
k

( 1
2‖(n · v) f (k) − ψ(k)‖2

+ + 1
2α‖σ‖

2
2

)
s.t. v · ∇f (k) = L[ f (k)]− σ(x1, x2) f (k), f (k)|Γ− = φ(k) .

Following the same procedure, for all k, the Lagrangian is defined:

L(σ, f , g,λ) = J (σ, f ) + 〈g, (v · ∇x − L+ σ) f 〉2 + 〈λ, f |Γ− − φ〉−,

with the last two terms coming from the Lagrangian multiplier (g,λ). On f = fσ manifold, the 
two terms drop and the Lagrangian is equivalent to J , and:

L(σ, fσ , g,λ) = J (σ, fσ). (27)
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Take derivative with respect to σ:

dJ
dσ

=
∂L

∂σ
+

∂L

∂f
∂f
∂σ

= ασ +

∫

S
g f dv.

In the second equation we purposely select g and λ to have ∂L∂f = 0. This requires:



(−v · ∇x − L)g + σg = 0, (x, v) ∈ Ω× S
(n · v) f − ψ + g = 0, (x, v) ∈ Γ+

λ+ (n · v)g = 0, (x, v) ∈ Γ−

.

Once again the first two equations combined provide the restriction of g, the dual equation:
{
−v · ∇g = L[g]− σg
g|Γ+

= −(n · v) f |Γ+
+ ψ

. (28)

In conclusion, to use SGD, we use the following in each iteration:

σn+1 = σn − ηn
d

dσ
Jγn = σn − ηn

(
ασn +

∫

S
g f dv

)
,

where f solves (26) with φ(γn) being the boundary condition and σn  being the media, and g 
solves (28) with ψ(γn) and σn .

3.2. Linearized procedure

In this section we describe the SGD applied on the linearized problem. The linearization is 
conducted upon σ0 , a background scattering coefficient believed to be very close to the true 
σ. The equation reads:

{
v · ∇xf = σLf , (x, v) ∈ Ω× S,
f |Γ− = φ

, (29)

and its linearization is conducted assuming:

σ̃(x) = σ(x)− σ0(x) and |σ̃| � |σ| (a.e.).

Then the linearized problem with the same inflow boundary condition reads as

Table 1. Numerical cost comparison: we compare the number of RTEs needs to be 
computed per iteration, the number of iterations needed for convergence, and the total 
amout of RTEs requried using SGD and GD. The last column shows the cost ratio. 
Larger sample size N provides bigger savings.

N

SGD GD

Ratio (%)
RTE per 
iteration Iteration

Total 
RTEs

RTE per 
iteration Iteration

Total 
RTEs

100 2 2000 4000 200 100 20 000 20.0
200 2 1047 2094 400 87 34 800 6.02
400 2 935 1870 800 85 68 000 2.75
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{
v · ∇xf0 = σ0Lf0, (x, v) ∈ Ω× S,
f0|Γ− = φ

. (30)

Let

f̃ (x, v) = f (x, v)− f0(x, v)

be the fluctuation, we subtract the two equations (29) and (30) for:
{

v · ∇xf̃ = σ0Lf̃ + σ̃Lf0
f̃ |Γ− = 0

, (31)

where we have omitted the higher order term σ̃Lf̃ . To extract information to match the given 
data, we once again use the dual problem. Suppose we would like to find the information 
at (x∗, v∗) ∈ Γ+, then we assign a delta function at the point for g to use as the boundary 
condition:

{
−v · ∇xg = σ0Lg
g|Γ+

= δx∗,v∗(x, v)
. (32)

Multiply (32) by f̃  and multiply (31) by g and subtract them, we get

(n∗ · vx∗)f̃ (x∗, v∗) =
∫

Ω

σ̃

∫

S1
L[ f0]gdvdx. (33)

Note the left hand side is known since:

(n∗ · vx∗)f̃ (x∗, v∗) = (n∗ · vx∗) f (x∗, v∗)− (n∗ · vx∗) f0(x∗, v∗) (34)

with the first term being a measurement ψ(x∗, v∗), and the second computed from (30). We 
denote it by:

b(x∗, v∗;φ) := (v∗ · nx∗)f̃ (x∗, v∗) = ψ(x∗, v∗)− (v∗ · nx∗) f0(x∗, v∗;φ), (35)

with f0 implicitly depend on the inflow φ. We also denote the Fredholm kernel on the right 
hand side:

β(x, x∗, v∗;φ) :=
∫

S1
L[ f0](x, v;φ)g(x, v; δx∗,v∗)dv, (36)

as a function of x, x∗, v∗ implicitly depend on φ. Then the equation rewrites:
∫

Ω

β(x, x∗, v∗;φ)σ̃(x)dx = b(x∗, v∗;φ). (37)

This formulation shows that to recover σ̃ amounts to invert the first type Fredholm integral. 
Note that this equation holds true for every (x∗, v∗) ∈ Γ+.

The equal sign rarely holds true in reality due to the data pollution. Numerically each 
experiment prepares one specific incoming and outgoing pair (φ(k),ψ(k)), which uniquely 
defines b(k) and β(k) according to (35) and (36). We then seek for σ that minimizes the follow-
ing cost:

min
σ

1
N

∑
k

J(k) =
1
N

∑
k

(
1
2
‖
∫

Ω

β(k)σdx − b(k)‖2
+ +

α

2
‖σ‖2

2

)
 (38)
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where we abuse the notation σ to denote σ̃. The first term in J  is the mismatch in (37) and the 
second term is the regularizer with a hyper-parameter α. Both terms are measured in L2. In a 
compact form, it writes as:

min
σ

1
N

∑
k

(
1
2
‖A0(σ)[φ

(k)]− ψ(k)‖2
+ +

α

2
‖σ‖2

2

)
,

where A0 is the linearized albedo operator that maps the incoming flow φ supported on Γ− to 
an outgoing flow measured at (x∗, v∗) ∈ Γ+.

A0(σ)[φ] =

∫

Ω

β(x, x∗, v∗;φ)σ(x)dx

On this formulation, the application of SGD is straightforward:

σn+1(x) = σn(x)− ηn

(∫

Γ+

β(γn)(x, x∗, v∗)
(∫

Ω

β(γn)(x̃, x∗, v∗)σn(x̃)dx̃ − b(γn)(x∗, v∗)
)

dx∗dv∗ + ασn(x)

)

 (39)
with γn randomly selected from {1 , · · · , N} at every step. We summarize the algorithm:

Algorithm 2. SGD applied on the minimization problem (38).

Data: N experiments with

      1. incoming data φ(k) for {k = 1 , · · · , N};

      2. outgoing measurements ψ(k) for {k = 1 , · · · , N};
      3. error tolerance ε;
      4. initial guess σ0 .
Result: The minimizer σ to the optimization problem (38) that is within ε accuracy.

Step I: compute the dual problem (32) using δx∗,v∗ for all (x∗, v∗) ∈ Γd
+;

while ‖ d
dσJγn(σn)‖ > ε do

      Step II: randomly pick γn ∈ {1 , · · · , N};

      Step III: compute the background problem (30) using φ(γn) for f (γn)
0 ;

      Step IV: compute β(γn) by (36);

      Step V: compute b(γn) using (35) with ψ(γn) and f (γn)
0 ;

      Step VI: update using (39).
      n  =  n  +  1.
end

3.2.1. Discretization. We briefly describe the discrete version of (38). This is to replace the 
integration by its numerical version, and σ and b(k) are replaced by their discrete counterparts 
as well. To be precise,

∫

Ω

β(k)σdx → A(k)σ,

where A(k) is a matrix of size n+ × nx, where n+ is the number of coordinates in Γ+ and nx is 
the number of coordinates in Ω. Its entries are defined by:

A(k)
mn = β(k)(xn, x∗,m, v∗,m)∆xn,

with ∆xn  being the volume grid point xn represents. For evenly distributed grids in 2D, 
∆xn = ∆x2 where ∆x is the mesh size. In this way:
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(
A(k)σ

)
m
=

∑
n

β(k)(xn, x∗,m, v∗,m)σ(xn)∆xn,

numerically approximates 
∫
β(k)σdx evaluated at (x∗,m, v∗,m), the mth pair on Γ+. Notations σ 

and b(k) are abused to denote both continuous and discrete versions.
Now the objective function becomes:

Jk(σ) =
1
2
‖A(k)σ − b(k)‖2

2 +
α

2
‖σ‖2

2. (40)

Typically when rewritten in this way, α needs to be adjusted to incorporate the constant in the 
numerical integration, but we abuse the notation and still use α.

Numerically to update in each step, one needs to take gradient of Jk with respect to σ. 
Given the simple form we are studying here, it is simply, denoted by G(k):

G(k)(σ) = ∇σJk = A(k)�A(k)σ − A(k)�b(k) + ασ.

Denote

µk := A(k)�A(k), and νk := −A(k)�b(k), (41)

then it has a simpler form:

G(k)(σ) = (µk + α)σ + νk.

Note α is a number and µk  is a matrix of size nx × nx and νk  is a vector of nx length. We also 
immediately have:

G(σ) = ∇σJ =
1
N

N∑
k=1

∇σJk =
1
N

N∑
k=1

G(k). (42)

Define

µA := E[A(γk)
�
A(γk)] =

1
N

N∑
k=1

A(k)�A(k), and νA := − 1
N

N∑
k=1

A(k)�b(k),

 

(43)

then (42) has a simpler form:

G(σ) = (µA + α)σ + νA. (44)

To update from n to n  +  1 step, one randomly pick γn and update σn  using the gradient 
information of ∇σJγn:

σn+1 = σn − ηG(γn)(σn) = σn − η ((µγn + α)σn + νγn) . (45)

4. Error analysis

In this section we analyze the convergence of SGD on the linearized problem (38). Recall the 
minimization:

min
σ

J = min
σ

1
N

N∑
k=1

J (k) =
1
N

∑
k

(
1
2
‖
∫

Ω

β(k)σdx − b(k)‖2
+ +

α

2
‖σ‖2

2

)
,

 

(46)
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where 
∫
Ω
β(k)σdx , upon integrating over x ∈ Ω provides a function supported on (x∗, v∗) ∈ Γ+, 

and the update formula (45). Denote σ∗ the true solution to the minimization problem, mean-
ing G(σ∗) = 0, and subtract it from the equation (45), we get the updating formula for the 
error. Denote en = σn − σ∗, the error at nth step, then:

en+1 = en − ηG(γn)(σn)

= en − η (G(σn)− G(σ∗)) + η
(

G(σn)− G(γn)(σn)
)

= en − η (µA + α) en + η
(

G(σn)− G(γn)(σn)
) 

(47)

= en − η (µA + α) en︸ ︷︷ ︸
decay

+ η ((µA − µγn)σn + νA − νγn)︸ ︷︷ ︸
fluctuation

.
 (48)

From the first to the second line, we used the fact that G(σ∗) = 0, and from the second to the 
third line, we use the fact that G is linear on σ as seen in (44), and definitions in (41) and (43).

We further denote

B = I− ηµA − ηα, and dn = η [(µA − µγn)σn + νA − νγn ] , (49)

then the update formula becomes:

en+1 = Ben + dn. (50)

According to this formula, we immediately see that the decay of en is controlled by two 
pieces: the first term provides the iterative decay while the second term gives fluctuation that 
represents the randomness from sampling γn. The key of error analysis is to:

 1.  find appropriate η so that B = I− η(µA + α) has smaller than 1 spectrum, leading to 
convergence; 

 2.  show the fluctuation term has mean zero, and thus it is not producing extra error on average; 
 3.  show the fluctuation term has very small variance, and thus the chance of producing extra 

error is small.

The first argument is relatively straightforward, and the latter two amount to analyze the 
behavior of dn. We first summarize it in lemma 1 and collect error analysis on the mean and 
the variance in theorems 2 and 3, respectively.

Lemma 1. Assume

E
(
‖µA − µγn‖2

2

)
< Cµ, and E

(
‖νA − νγn‖2

2

)
< Cν , ∀n.

Using the definition in (49) we have:

 1.  E(dn) = 0 for all n; 
 2.  Cov[di, dj] = 0 for all 1 � i < j � n; 
 3.  Cov[dn, dn] � Cη2(E

(
‖σn‖2

2

)
+ 1) .

Proof. 

 1.  According to the definition:

1
η
E(dn) = E((µA − µγn)σn) + E(νA − νγn).
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  The second term is zero due to equations (41) and (43). To study the first term we first 
realize that the randomness comes from both γn and σn . Due to (20), σn  only depends on 
{γ1, . . . , γn−1}, and thus it is independent of γn. Therefore:

E((µA − µγn)σn) = E(µA − µγn)E(σn).

  Given (41) and (43), we see E((µA − µγn)σn) = 0 and thus dn is mean zero.
 2.  Since di is mean zero:

Cov[di, dj] = E(did�
j ) = E

(
diE(d�

j )
)
= 0.

  The first equation comes from di and dj being mean zero. The second equation holds true 
because i  <  j.

 3.  For the third covariance:

1
η2 Cov[dn, dn] =

1
η2 E(dnd�

n )

=E
(
(µA − µγn)σnσ

�
n (µA − µγn)

�)+ E
(
(νA − νγn)(νA − νγn)

�)

+ E
(
(µA − µγn)σn(νA − νγn)

�)+ E
(
(νA − νγn)σ

�
n (µA − µγn)

�) .

  Take arbitrary x ∈ RNx with ‖x‖2 = 1 and multiply on both sides, we have

1
η2 x�Cov[dn, dn]x =x�E

(
(µA − µγn)σnσ

�
n (µA − µγn)

�) x + x�E
(
(νA − νγn)(νA − νγn)

�) x

+ 2x�E
(
(µA − µγn)σn(νA − νγn)

�) x

�2CµE
(
‖σn‖2

2

)
+ 2Cν .

  To obtain the inequality we used the fact that

x�E
(
(µA − µγn)σnσ

�
n (µA − µγn)

�) x =x�E
(
(µA − µγn)E

(
σnσ

�
n

)
(µA − µγn)

�) x

�CµE
(
‖σn‖2

2

)

  and that

2x�E
(
(µA − µγn)σn(νA − νγn)

�) x =2E
(
x�(µA − µγn)E(σn)(νA − νγn)

�x
)

�E
[(

x�(µA − µγn)E(σn)
)2

+
(
(νA − νγn)

�x
)2
]

�CµE
(
‖σn‖2

2

)
+ Cν .

We achieve the conclusion by multiplying η2 on both sides and choose C = 2max{Cµ , Cν}.
 □

With this lemma we study the mean and the variance of the error in the following two 
theorems.

Theorem 2. Denote σ∗ the minimizer of problem (46) and the expected value of error:

un = E(en) = E(σn − σ∗).

Assume that µA (defined in (43) has a bounded spectrum, meaning there exists CA such that:

‖µA‖2 � CA, (51)

then for 0 < η < 2
CA+α, the expected value of error decays to zero exponentially fast:
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‖un‖2 � λn‖u0‖2, (52)

where |λ| < 1 will be defined in (54).

Proof. We start from the iteration formula for en in (20). Take expectation on both sides:

un+1 = un − η(µA + α)un + ηE(dn). (53)

Since dn is mean zero according to the previous lemma, (53) becomes:

un+1 = (I− ηµA − ηα)un.

With 0 < η < 2
CA+α and define

λ := ‖I− ηµA − ηα‖2, (54)

λ is guaranteed to be controlled by 1 and we achieve the conclusion. □ 

Theorem 3. With small learning rate η, the error of SGD algorithm has bounded covari-
ance:

Cov[en, en] � η, ∀n.

Proof. We once again use:

en+1 = Ben + dn,
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Figure 1. Real scattering coefficient.
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with

B = I− ηµA − ηα, and dn = (µA − µγn)σn + νA − νγn .

By induction,

en = Bne0 +

n−1∑
j=1

Bn−jdj.

Take covariance of both sides and recall Cov[di, dj] = 0 for all i �= j:

Cov[en, en] =
∑

i,j

Cov[Bn−idi, Bn−jdj] =
∑

i

Bn−iCov[di, di](Bn−i)�.

Take arbitrary x ∈ RN×1 with ‖x‖2 = 1 and multiply on both sides, we have

x�Cov[en, en]x =
∑

i

(x�Bn−i)Cov[di, di](x�Bn−i)� �
∑

i

Cη2λ2(n−i)(E[‖σi‖2
2] + 1)

where the inequality incorporates the previous lemma. Further notice that 
E[‖σi‖2

2] � E[‖ei‖2
2] + ‖σ∗‖2

2, we absorb the constant:
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Figure 2. Nonlinear setting with initial guess being a constant deviation from the true 
media. (a) Initial guess σ0  is a constant deviation from the true media. (b) Difference of 
σ0  and the true media. (c) σ2000. (d) Difference of σ2000 and the true media.
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x�Cov[en, en]x �
∑

i

C̃η2λ2(n−i)(E[‖ei‖2
2] + 1), (55)

where C̃ = C + ‖σ∗‖2. This inequality only serves as a iterative formula. Upon assuming 
E[‖ei‖2

2] is uniformly bounded by M, then:

x�Cov[en, en]x � C̃η2(M + 1)
1 − λ2n

1 − λ2 � η. (56)

The last inequality comes from the definition of λ = ‖I− ηµA − ηα‖2 = O(1 − η). Since x 
is arbitrary, we achieve the conclusion.

To show that there exists a constant M  >  0 such that E[‖ei‖2
2] is truly uniformly bounded by 

M, we use mathematical induction. It is easy to prove the argument is true for i  =  0 by choos-
ing M = 2max{1,E[‖e0‖2

2]} = max{2, 2‖e0‖2
2}. Then we assume the argument is true for all 

i  <  n and we want to show that E[‖en‖2
2] � M . We notice that

E[‖en‖2
2] = Tr(Cov[en, en]) � N‖Cov[en, en]‖2,

then since (55) is true for any x, we have
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Figure 3. Nonlinear setting with initial guess being a random field. (a) Initial guess σ0  
is a random field. (b) Difference of σ0  and the true media. (c) σ2000. (d) Difference of 
σ2000 and the true media.
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‖Cov[en, en]‖2 �
∑

i

C̃η2λ2(n−i)(E[‖ei‖2
2] + 1).

Combine the above two inequalities and our induction assumption for i  <  n, we derive that

E[‖en‖2
2] � N

(
C̃η2(M + 1)

1 − λ2(n−1)

1 − λ2 + C̃η2(E[‖en‖2
2] + 1)

)
.

For small enough η, this leads to:

E[‖en‖2
2] � 2N

(
C̃η2(M + 1)

1 − λ2(n−1)

1 − λ2 + C̃η2
)

.

Use the fact λ = O(1 − η), we can further choose η small such that

E[‖en‖2
2] �

1
2
(M + 1) +

1
2
=

M
2

+ 1 � M,

which finishes the mathematical induction. □ 

We finally comment that the two theorems above in fact resonate the analysis in the general 
setting as stated in section 2. There are two main pieces in the error: the iterative decaying 
term, and the fluctuation term. If the initial guess gives an order 1 error, then the decaying term 
dominates first, and one simply see the error converging to zero exponentially fast. Once the 

Iteration Time t
0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
el

at
iv

e 
E

rr
or

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Constant deviation initial guess
Random initial guess

Figure 4. Nonlinear setting. The convergence of relative error in time. We see that 
the error decays almost exponentially fast at the beginning with small fluctuations and 
gradually saturate. The learning rate ηn is extremely small after 1000 times steps and 
the decay significantly slows down.

K Chen et alInverse Problems 34 (2018) 075010



19

error becomes as small as the variance (which is at η level), the fluctuation term dominates. 
To force the error converging to zero, numerically one could gradually decrease η so that the 
error fluctuates around zero with smaller and smaller variance. The result will be seen in our 
numerical results too.

5. Numerical test

To illustrate our theoretical results, we present a few numerical test below. The computational 
space domain is a unit square Ω = [0, 1]2 with mesh size dx = 1/20 = 0.05, and the velocity 
domain a unit circle S with mesh size dθ = 2π

40 . Therefore in the discrete setting:

Ωd × Sd = {(xm, θn) = (m1dx, m2dx,−π + ndθ) : with m1, m2 = 0, · · · , 20, n = 0, · · · , 40},

and

Γd
− = {(x1 = m1dx, x2 = m2dx, θ = ndθ)}

with
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Figure 5. Linearized setting with initial guess being a constant deviation from the true 
media. (a) Initial guess σ̃0  is a constant deviation. (b) Difference of σ̃0  with the true 
media σ̃. (c) σ̃20000. (d) Difference of σ̃20000 with the true media σ̃.
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{m1 = 0, m2 ∈ [0, 20], n ∈ [10, 30]} ∪ {m1 = 20, m2 ∈ [0, 20], n ∈ ([0, 10] ∪ [30, 40])}
∪ {m1 ∈ [0, 20], m2 = 0, n ∈ [20, 40]} ∪ {m1 ∈ [0, 20], m2 = 20, n ∈ [0, 20]}.

We use GMRES [21] to solve the forward problem (15) with tolerance 10−12. The scattering 
coefficient in our experiment is set to be

σ(x1, x2) =
1
20

[
1 + 8 exp

(
−10(x1 −

1
4
)2 − 10(x2 −

1
4
)2
)
+ 4 exp

(
−10(x1 −

3
4
)2 − 10(x2 −

3
4
)2
)]

.

 (57)
Its evaluation in Ω ranges from 0.05 to 0.45, as plotted in figure 1.

5.1. Nonlinear case

In the nonlinear case (18), we use 1000 data points {(φ( j),ψ( j)) : 1 � j � 1000}, where 
φ( j)(x, v) is a Dirac delta function centered at a random boundary point and pointing to a 
random inflow direction. ψ( j)(x, v) is the corresponding measurement on the outflow bound-
ary, i.e.
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Figure 6. Linearized setting with initial guess being a random field. (a) Initial guess σ̃0  
is a random field. (b) Difference of σ̃0  with the true media σ̃. (c) σ̃20 000. (d) Difference 
of σ̃20 000 with the true media σ̃.
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φ( j)(x, v) = δ(x − x( j))δ(v − v( j)), (x( j), v( j)) ∈ Γ− and ψ( j)(x, v) = (nx · v) f (x, v;φ( j))|Γ+
.

 (58)
For our numerical experiments, we set the regularization parameter α = 1 and learning rate 
ηn = η0

1+η0αn with η0 = 0.0044. Note that the learning rate is a hyperparameter that can be 
adjusted according to users’ preferences. We choose the recommended 1n from [7]. We test our 
algorithm with two different initial guesses: 1. Initial guess is a constant deviation from the 
real scattering coefficient σ0 = σ + 0.18; 2. Initial guess is the product of the scattering coef-
ficient and a random field: σ0 = σR, where R ∈ R21×21 has i.i.d. random variable components 
drew from uniform distribution U([0.1, 3.1]). In each iteration, two forward problems (one 
original and one dual) are solved to compute the gradient and we run SGD algorithm for 2000 
steps.

We present the numerical solutions in figures 2 and 3 for constant deviation and random 
deviation as the initial guess respectively. In both, the upper left plot shows the initial guess 

Figure 7. Linearized setting. The convergence of relative error in time. The error 
decays almost exponentially fast at the beginning with small fluctuations and gradually 
saturate. The two panels are for changing-in-time learning rate and the constant learning 
rate respectively.

Figure 8. Linearized setting. The green dashed line shows the convergence of relative 
error with the initial guess far away from the true solution. The plot on the right is the 
zoom-in to the first 400 steps. The oscillation introduced from the stochasticity in the 
algorithm is obvious.
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σ0 , and the difference compared with the true media is plotted in the upper right. The lower 
left and lower right plots show the numerical solution after 2000 iterations and its difference 
from the true media. We also record the relative error between σn  and σ and plot the decay 
in figure 4. Note that due to the nontrivial regularization term, we cannot expect the solution 
converging to the true media. As seen in figure 4 the error saturates at 0.2. It does provide very 
good recovery visually as seen in figures 2 and 3.

5.2. Linear case

We use the same data set in the linearized setting. The background state is given as propor-
tional to the real media σ0 = 0.95σ , and thus the to-be-recovered perturbed media σ̃, by defi-
nition (3.2) ranges from 0.0025 to 0.0225. We choose same regularization coefficient α = 1. 
We also test the problem using the constant learning rate η0 = 0.0002 and the learning rate 
recommended in [6]: ηn = η0

1+η0αn with η0 = 0.0002.
We once again use constant deviation and random deviation as the initial guess for the SGD 

algorithm. For constant deviation initial guess we set σ̃0 = σ̃ + 0.0111 whereas for random 
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Figure 9. The plots show the absorption coeffient recovery. The two plots on the left 
panel show the media at initial time step and after 2000 iterations. The errors are shown 
in the two plots on the right. (a) Initial guess σ0  is a constant deviation from the true 
media. (b) Difference of σ0  and the true media. (c) σ2000. (d) Difference of σ2000 and 
the true media.
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initial guess we set σ̃0 = σ̃R with R ∈ R21×21 drew its components from uniform distribution 
U([1, 3]).

As presented in algorithm 2, several offline adjoint problems are pre-computed using 
 background state σ0  with Dirac delta outflow boundary conditions. In each iteration, only one 
forward problem is solved using background state σ0  and random input φ(γn) for f0(x, v;φ(γn)). 
We run SGD algorithm with 20000 iterations. The numerical results are demonstrated in fig-
ures 5 and 6. They have constant and random deviation as the initial guess respectively. The 
decay of the relative error for both types of learning rates are shown in figure 7. In figure 8 we 
plot and compare the convergence of the error when the initial guess largely deviates from the 
true solution: σ0 = 0.2000. The initial relative error is as large as 17.12.

Comparing to the nonlinear case, the convergence of relative error requires more iterations 
as here we aim to recover the small residue σ̃ = σ − σ0, which is much smaller than σ.

In table 1 we record the number of RTEs that need to compute per iteration, the number 
of iterations needs to achieve convergence, and the total number RTEs computed for all three 
sample sizes, and both methods. Note that in each iteration, SGD requires computation of one 
forward RTE ~(17) and one dual RTE (25), while GD requires computation of N forward and 
N duals. Note also that with N = 100 both SGD and GD fail to converge before achieving the 
maximum number of allowed iterations.
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Figure 10. SGD is used to recover the absorption coeffient with initial guess being a 
random field. The media given at the initial step and after 2000 iterations are plotted, 
together with the errors. (a) Initial guess σ0  is a random field. (b) Difference of σ0  and 
the true media. (c) σ2000. (d) Difference of σ2000 and the true media.
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5.3. Numerical cost study

We dedicate this subsection for comparing numerical cost of SGD and the classical GD method. 
Initial guess is set as σ0 = σR with R ∈ R21×21 drew from uniform distribution U([0.1, 3.1]). 
Regularizer α = 1 and learning rate η0 = 0.0044. Both SGD and GD are used for the optim-
izer with the sample size N being 100, 200 and 400. The computation is terminated once error 
tolerance TOL = 0.2 is reached, or maximum number of iteration is achieved. We set maxi-
mum number of iteration 2000 for SGD and 100 for GD.

5.4. Absorption coefficient recovery

We recover the absorption coefficient in this subsection following the strategy in remark 1. 
The scattering coefficient is set as σs(x1, x2) = 1 and the to-be-recovered absorption coef-
ficient is set as:

σa(x1, x2) =
1
20

[
1 + 8 exp

(
−10(x1 −

1
4
)2 − 10(x2 −

1
4
)2
)
+ 4 exp

(
−10(x1 −

3
4
)2 − 10(x2 −

3
4
)2
)]

 (59)

as plotted in figure 1. 1000 data points {(φ( j),ψ( j)) : 1 � j � 1000} are prepared. Numerically 
to run SGD, we set the regularization coefficient α = 1, and the learning rate ηn = η0

1+η0αn with 
η0 = 0.0441. Two initial guesses are made: one initial guess is a constant away from the true 
media σ0 = σ + 0.18, and another being a random initial σ0 = σR. The numerical solution 
after 2000 iterations are presented in figures  9 and 10 for constant deviation and random 
deviation initial guesses respectively. In figure 11 we show the decay of relative errors with 
respect to the time steps.
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