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Abstract The existence of solution for the 2D-Keller-Segel system in the subcritical case,
i.e. when the initial mass is less than 8π , is reproved. Instead of using the entropy in the free
energy and free energy dissipation, which was used in the proofs (Blanchet et al. in SIAM J.
Numer. Anal. 46:691–721, 2008; Electron. J. Differ. Equ. Conf. 44:32, 2006 (electronic)),
the potential energy term is fully utilized by adapting Delort’s theory on 2D incompressible
Euler equation (Delort in J. Am. Math. Soc. 4:553–386, 1991).
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1 Introduction

The 2D Keller-Segel system

ut = �u − div(u∇c), x ∈ R
2, t ≥ 0,

−�c = u, x ∈ R
2, t ≥ 0,

u(x,0) = u0(x), x ∈ R
2,

(1.1)

has widely been studied in the literature. Keller-Segel-type systems are used to describe
the motion of biological cells or organisms in response to chemical gradients. The main
feature of this system is that it can describe the mass aggregation phenomena in chemotaxis.
The system (1.1) considered here is the simplest version of the Keller-Segel system in the
parabolic-elliptic case, one can check more complete models in [12]. The sharp bound on
the critical mass was given by Dolbeault and Perthame in [9]. It was announced there that if
the initial mass is less than 8π then weak solutions exist globally, while in the case of initial
mass larger than 8π , there must be a mass concentration. Later on, in [1] they completed
the global existence of weak solution in the subcritical case, i.e. when the initial mass is less
than 8π . A second proof of global weak solutions in the subcritical case was given in [2]
where one uses the gradient flow structure of this system and the techniques of variational
schemes based on optimal mass transportation.

In the case of critical mass, weak solutions with bounded second moment initial data
exist globally leading to aggregation onto a single Dirac Delta in infinite time [3]. There
is an in-depth analysis of the unbounded initial second moment case by Blanchet, Carlen
and Carrillo in [4]. By making full use of the gradient flow structure of the equation [2]
and relative entropy, they give conditions for initial data to belong to the basin of attraction
for each of the infinitely many stationary solutions in the critical case. In this note, we
focus on the subcritical case

∫
R2 u0(x)dx < 8π and give an alternative proof for the global

existence of weak solution based on the analogy to Delort’s theory of 2D incompressible
Euler equation [7, 8, 16].

We will be dealing in this work with measure solutions in most of the arguments. Nev-
ertheless, we will denote our solutions as if they were L1-densities with notation u(x, t)dx

by abusing a bit of the notation. The ith-moments of the solution u(x, t), i = 0,1,2, are
defined by

m0(t) :=
∫

R2
u(x, t)dx, m1(t) :=

∫

R2
xu(x, t)dx, m2(t) :=

∫

R2
|x|2u(x, t)dx.

By a direct computation, we have the following formal conservation relations for these mo-
ments:

m′
0(t) = d

dt

∫

R2
u(x, t)dx = 0,

m′
1(t) = d

dt

∫

R2
xu(x, t)dx = 0,

m′
2(t) = d

dt

∫

R2
|x|2u(x, t)dx = 4m0 − m2

0

2π
.
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Furthermore, there is a natural free energy of the system,

F
[
u(·, t)] :=

∫

R2
u(x, t) logu(x, t)dx − 1

4π

∫

R2

∫

R2
u(x, t)u(y, t) log

1

|x − y|dxdy (1.2)

and the formal free energy dissipation relation,

d

dt
F

[
u(·, t)] +

∫

R2
u|∇(logu − c)|2dx = 0.

Thus the free energy is expected to decay in time, F [u(·, t)] ≤ F (u0). Notice that in the
free energy (1.2), there is a competition between diffusion and nonlocal aggregation exactly
matching at m0 = 8π , which is the key ingredient of Keller-Segel system.

One of the key ingredients in all the new proofs and improvements for the parabolic-
elliptic Keller-Segel system (1.1) in [1–4, 9] is the connection to a functional inequality, the
so-called logarithmic Hardy-Littlewood-Sobolev (log-HLS) inequality. We recall the log-
HLS inequality, [5, 6, 13, 17], for nonnegative f ∈ L1(R2), f log(e + |x|2) ∈ L1(R2), and
f logf ∈ L1(R2),

∫

R2
f (x) logf (x)dx − 2

m0

∫

R2

∫

R2
f (x)f (y) log

1

|x − y|dxdy + C(m0) ≥ 0, (1.3)

where m0 = ∫
R2 f (x)dx, C(m0) := m0(1 + logπ − logm0).

By the log-HLS (1.3), the free energy (1.2) has lower bounds either

F
[
u(·, t)] ≥

(

1 − m0

8π

)∫

R2
u(x, t) logu(x, t)dx − m0

8π
C(m0),

or

F
[
u(·, t)] ≥ 2

(
1

m0
− 1

8π

)∫

R2

∫

R2
u(x, t)u(y, t) log

1

|x − y|2 dxdy − C(m0).

For convenience, we denote by

F1

[
u(·, t)] :=

∫

R2
u(x, t) logu(x, t)dx,

F2

[
u(·, t)] :=

∫

R2

∫

R2
u(x, t)u(y, t) log

1

|x − y|dxdy.

(1.4)

Thus in the case m0 < 8π , both entropy F1[u(·, t)] and the potential energy F2[u(·, t)]
can be bounded by the initial free energy F [u0]. In the existence proof in [1], the a priori
estimates are mainly from the entropy F1[u(·, t)], the second moment m2(t) and the free en-
ergy dissipation

∫
R2 u|∇(logu−c)|2dx. Especially, they get some regularity and Lp-bounds

for the density from the dissipation. In this note, we point out that either F1[u(·, t)] and
m2(t) can guarantee the global existence of weak solution or F2[u(·, t)] and m2(t) can
be used too. However, the bounds for F1[u(·, t)] and m2(t) are not enough to define
c(x, t), while F2[u(·, t)] and m2(t) are enough as we will show in Sect. 5. An estimate
on ∇c ∈ L2

loc(R
2) for all times will also be given by using the potential energy F2[u(·, t)].

On the other hand, the bounds for F1[u(·, t)] and m2(t) are enough to show that the weak
solutions are densities, i.e., u ∈ L1(R2), see [1] and Sect. 3 below, while F2[u(·, t)] and
m2(t) allow only to show that u is a positive Radon measure of mass m0 without atomic part
for all times. The definition of weak solution of (1.1) that we construct is
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Definition 1.1 A curves of measures u(x, t) ∈ L∞(0, T : M0(R
2)) ∩ Lip(0, T ;H−m

loc (R2))

for some m > 0 and for all T > 0 is called a global weak solution of (1.1) if ∀ϕ ∈
C∞

0 ([0, T ) × R
2) and for all T > 0, it holds

∫ T

0

∫

R2
ϕtu(x, t)dxdt +

∫

R2
ϕ(x,0)u0(x)dx +

∫ T

0

∫

R2
�ϕu(x, t)dxdt

= 1

4π

∫ T

0

∫

R2

∫

R2

(∇ϕ(x) − ∇ϕ(y)) · (x − y)

|x − y|2 u(x, t)u(y, t)dxdydt, (1.5)

where M0(R
2) is the space of nonnegative Radon measures with mass m0.

The main contribution of this note is to show that the potential energy F2[u(·, t)] in
(1.4) is enough to rule out the concentration phenomena. We also give the rate estimate that
eliminate concentration. More precisely, we can provide estimates on the maximal density
function defined by DiPerna and Majda [8] associated to a measure u(x) defined by

Mr(u) = sup
x,t

∫

B(x,r)

u(y)dy.

Our main result is:

Theorem 1.1 Assume u0 ∈ L1+(R2) with mass m0 < 8π such that m2(0) and F [u0] are
bounded, then (1.1) has a global weak solution in the sense of Definition 1.1 such that its
maximal density function satisfies for all 0 < r < 1

4

Mr

(
u(·, t)) ≤ C

(

log
1

4r

)−1/2

.

Moreover, the potential

c(x, t) = 1

2π

∫

R2
log

1

|x − y|u(y, t)dy

is well defined and ∇c ∈ L∞(0, T ;L2
loc(R

2)) for all T > 0.

The note is arranged in the following sections. In Sect. 2, we introduce the regularized
problem and give the necessary uniform bounds. In Sect. 3, we quickly review part of the
results from [1, 17] by using the entropy and show that one can use Dunford-Pettis’ criterion
to get the existence. In Sect. 4, we show the existence by getting estimates for the positive
part of the potential energy and the maximal density function to eliminate concentration.
In the last section, we show that c(x, t) is well defined and its gradient is locally in L2(R2).

2 Regularized Problem and Uniform Estimates

The regularized problem we start with is

uε
t = �uε − div(uε∇cε), x ∈ R

2, t ≥ 0,

cε(x, t) = 1

4π

∫

R2
log

1

|x − y|2 + ε2
uε(y, t)dy, x ∈ R

2, t ≥ 0,

uε(x,0) = uε
0(x) ∈ L1

+(R2), x ∈ R
2,

(2.1)
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where ε < 1
2 . By standard parabolic theory, the system (2.1) admits a unique smooth fast-

decaying at infinity solution (uε, cε) when initial data are regularized and truncated uε
0. It is

obvious that the mass ‖uε(·, t)‖L1(R2) is conserved.

Lemma 2.1 Let uε be the solution of (2.1), then
∫

R2
uε(x, t)dx = m0.

We denote the free energy functional for the regularized problem

Fε

[
uε(·, t)] =

∫

R2
uε loguεdx − 1

2

∫

R2
uεcεdx

=
∫

R2
uε(x, t) loguε(x, t)dx

− 1

8π

∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy.

Then the energy dissipation relation and the moment bounds still holds for the regularized
problem:

Lemma 2.2 Let uε , cε be the solution of (2.1), then

d

dt
Fε

[
uε(·, t)] = −

∫

R2
uε|∇ loguε − ∇cε|2dx ≤ 0 (2.2)

and

d

dt
m2(t) = d

dt

∫

R2
|x|2uε(x, t)dx ≤ 4m0. (2.3)

Proof Since the first equation in (2.1) can be rewritten as uε
t = div[uε∇(loguε − cε)] where

cε = 1

4π

∫

R2
log

1

|x − y|2 + ε2
uε(y, t)dy,

then, by multiplying it by loguε − cε + 1, integrating in x and performing an integration by
parts, we directly get

∫

R2
[(uε loguε)t − uε

t c
ε]dx = −

∫

R2
uε|∇ loguε − ∇cε|2dx.

The symmetry of the kernel log(|x − y|2 + ε2) implies trivially that

1

8π

d

dt

∫

R2×R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy =

∫

R2
uε

t c
εdx,

from which (2.2) is deduced.
Now, a direct calculation on the regularized problem (2.1) gives

d

dt
m2(t) = 4

∫

R2
uε(x, t)dx + 2

∫

R2
uε(x, t)x · ∇cε(x, t)dx
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= 4m0 − 1

2π

∫

R2

∫

R2
uε(x, t)uε(y, t)

|x − y|2
|x − y|2 + ε2

dxdy

≤ 4m0. �

For the regularized nonlocal kernel, we have a log-HLS-type inequality, due to the mono-
tonicity of the logarithmic function and the nonnegativity of uε .
∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy ≤ 2

∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|dxdy.

The log-HLS inequality for uε(x, t) implies that
∫

R2
uε(x, t) loguε(x, t)dx ≥ 1

m0

∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy − C(m0),

(2.4)
where the constant C(m0) is given in (1.3). Finally, let us assume without loss of generality
that the sequence of approximated initial data satisfies that for all 0 < ε < 1

2

Fε

[
uε

0

] ≤ C
(

F [u0],m2(0)
)
. (2.5)

This last assumption can easily be realized by noting that F [u0] < ∞ and m2(0) < ∞ imply
that both terms in the free energy are well-defined and the regularized free energy is decreas-
ing and Fε[u0] ↘ F [u0] as ε → 0 by monotone convergence theorem. Once the logarithmic
kernel is regularized then we can use standard cut-off and convolution regularization of the
initial data to find uε

0 satisfying (2.5).

3 Existence by Using Entropy

Lemma 3.1 Let uε be the solution of (2.1), then for all T > 0 and all 0 ≤ t ≤ T we have
∫

R2
uε| loguε|dx ≤ C

(
F [u0],m2(0),8π − m0, T

)
. (3.1)

Proof The proof is standard, see [1, 17]. For completeness, we gives some details. Using
the refined version of logarithmic Hardy-Littlewood-Sobolev inequality (2.4) and the free
energy dissipation relation (2.2), we have

Fε

[
uε

0

] ≥ Fε

[
uε(·, t)] ≥

∫

R2
uε loguεdx + 1

4π

(

−C(m0)
m0

2
− m0

2

∫

R2
uε loguεdx

)

=
(

1 − m0

8π

)∫

R2
uε loguεdx − m0

8π
C(m0),

which leads to
∫

R2
uε loguεdx ≤

(

Fε

[
uε

0

] + m0

8π
C(m0)

)
8π

8π − m0
. (3.2)

We separate the entropy into its positive and negative part in the following,
∫

R2
uε loguεdx =

∫

R2
uε log+ uεdx −

∫

R2
uε log− uεdx.
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The negative part of the entropy can be classically controlled by the second moment, see
[2, Lemma 2.2] for instance, as

∫

R2
uε log− uεdx ≤

∫

R2
|x|2uεdx + π

e
. (3.3)

Combining (3.3) with (3.2), the second moment estimate (2.3) and (2.5), we have

∫

R2
uε log+ uεdx ≤ C

(
F [u0],m2(0),8π − m0, T

)
,

which leads to (3.1). �

A direct application of the Dunford-Pettis criterion [11] and some measure theory argu-
ments [2, Lemma 2.3] implies the following classical compactness.

Proposition 3.1 Let {fk}k∈N be a bounded sequence in L1+(Rn), such that {fk| logfk|}k∈N

and {|x|2fk}k∈N are bounded in L1+(Rn). Then {fk}k∈N is weakly compact in L1(Rn). As a
consequence, it holds that {fk(x)}k∈N and {fk(x)fk(y)}k∈N are L1-weakly compact sets and
for any convergent subsequence (without relabeled) we have

fk(x) ⇀ f (x) in L1
(
R

n
)
,

fk(x)fk(y) ⇀ f (x)f (y) in L1
(
R

n × R
n
)
.

The existence of weak solution in Definition 1.5 is a direct consequence of this last
proposition. We refer to [1, 2] for more details of the proof and properties of the solutions.

4 Existence by Using Potential Energy

Step 1. Limit functions: By the conservation of mass Lemma 2.1 and the control of mass at
infinity Lemma 2.2, we can apply Prohorov compactness theorem to show that there exists
u(x, t) ∈ L∞(0, T : M0(R

2)) such that uε(·, t) ⇀∗ u(·, t), weakly-∗ as measures in M0(R
2)

for a.e. t ∈ (0, T ) as ε → 0, for some not relabeled sequence of ε by abuse of notation.

Step 2. Estimate for positive part of potential energy: The positive part of the potential
energy can be controlled in the following lemma, see similar arguments in [18].

Lemma 4.1 Let uε be the solution of (2.1), then for all T > 0 and all 0 ≤ t ≤ T we get

∫

R2

∫

R2
uε(x, t)uε(y, t) log+ 1

|x − y|2 + ε2
dxdy ≤ C

(
F [u0],m2(0),8π − m0, T

)
. (4.1)

Proof Using the log-HLS-type inequality (2.4) and the free energy dissipation relation (2.2),
we have

Fε

[
uε

0

] ≥ Fε

[
uε(·, t)]

≥
(

1

m0
− 1

8π

)∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy − C(m0).
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Or equivalently we have
∫

R2

∫

R2
uε(x, t)uε(y, t) log

1

|x − y|2 + ε2
dxdy ≤ (Fε[uε

0] + C(m0))8πm0

8π − m0
. (4.2)

The positive part of the potential energy can be bounded using (4.2) and (2.5) in the follow-
ing way,

∫

R2

∫

R2
uε(x, t)uε(y, t) log+ 1

|x − y|2 + ε2
dxdy

=
∫ ∫

R2×R2
uε(x, t) log

1

|x − y|2 + ε2
uε(y, t)dxdy

−
∫ ∫

|x−y|2+ε2≥1
uε(x, t) log

1

|x − y|2 + ε2
uε(y, t)dxdy

≤ C
(

Fε

[
uε

0

]
,m0

) +
∫ ∫

|x−y|2+ε2≥1
uε(x, t) log

(|x − y|2 + ε2
)
uε(y, t)dxdy

≤ C
(

Fε

[
uε

0

]
,m0

) +
∫ ∫

|x−y|2+ε2≥1
uε(x, t)

(|x|2 + |y|2 + C
)
uε(y, t)dxdy

≤ C
(

F [u0],m0,m2(0), T
)
. �

Step 3. Estimate on maximal density function:

Lemma 4.2 Let uε be a solution to the regularized problem (2.1) and let u(x, t) ∈ L∞(0, T :
M0(R

2)) be a weak-∗ adherence point of uε for some not relabeled sequence. It holds that
for all T > 0, a.e. t ∈ (0, T ), and 0 < r < 1

4

Mr

(
uε(·, t)) ≤ C

(

log
1

(2r)2 + ε2

)−1/2

and Mr

(
u(·, t)) ≤ C

(

log
1

4r

)−1/2

. (4.3)

Proof A direct computation using (4.1) implies that

(∫

B(x,r)

uε(y, t)dy

)2

log

(
1

(2r)2 + ε2

)

≤
∫

B(x,r)×B(x,r)

log
1

|y − z|2 + ε2
uε(y, t)uε(z, t)dydz

≤
∫

R2×R2
log+ 1

|y − z|2 + ε2
uε(y, t)uε(z, t)dydz ≤ C,

giving the desired estimate on Mr(u
ε(·, t)). For Mr(u(·, t)), let us take a “mesa” function

0 ≤ θ(x) ≤ 1 being 1 in B(x, r) and 0 outside B(x,2r), then by the convergence in Step 2
we get

∫

B(x,r)

u(y, t)dy ≤
∫

R2
θ(y)u(y, t)dy = lim

ε→0

∫

R2
θ(y)uε(y, t)dy

≤ lim
ε→0

∫

B(x,2r)

uε(y, t)dy ≤ lim
ε→0

C

(

log
1

(4r)2 + ε2

)−1/2

= C

(

log
1

4r

)−1/2

. �
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Lemma 4.3 Let us define the measure dμ = u(x, t)u(y, t)dxdy, then for all T > 0, a.e.
t ∈ (0, T ), and 0 < r < 1

4

μ({(x, y) ∈ R
2 × R

2, |x − y| ≤ r}) ≤ C

(

log
1

4r

)−1/2

.

As a consequence, we conclude that μ({(x, y) ∈ R
2 × R

2, x = y}) = 0.

Proof With the help of (4.3), we deduce

∫

|x−y|≤r

uε(x)uε(y)dxdy =
∫

R2
uε(x)

∫

B(x,r)

uε(y)dxdy ≤ m0C

(

log
1

(2r)2 + ε2

)−1/2

.

(4.4)
Proceeding as in the proof of the previous Lemma using the auxiliary function θ , we get
from (4.4) that

μ
(
(x, y) ∈ R

2 × R
2, |x − y| ≤ r

) ≤ lim
ε→0

∫

|x−y|≤2r

uε(x)uε(y)dxdy

= Cm0

(

log
1

4r

)−1/2

. �

Step 4. Proof of the existence: Let ϕ ∈ C∞
0 ([0, T ) × R

2) be a test function for (2.1), then
simple computations lead to

∫ T

0

∫

R2
ϕt (x, t)uε(x, t)dxdt +

∫

R2
ϕ(x,0)uε

0(x)dx +
∫ T

0

∫

R2
�ϕ(x, t)uε(x, t)dxdt

= 1

4π

∫ T

0

∫

R2

∫

R2

(∇ϕ(x, t) − ∇ϕ(y, t)) · (x − y)

|x − y|2 + ε2
uε(x, t)uε(y, t)dxdydt. (4.5)

Passing to the limit as ε → 0 in the left hand side of (4.5) is obvious using the compactness
of Step 2. In the next discussions, we will focus on the integral on the right hand side of
(4.5). Let us define for all 0 ≤ ε < 1

2 the kernel

Kε(x, y, t) := (∇ϕ(x, t) − ∇ϕ(y, t)) · (x − y)

|x − y|2 + ε2
. (4.6)

Taking into account that ϕ is a smooth function combined with the last part of Lemma 4.3,
we know that as ε → 0, Kε(x, y, t) → K0(x, y, t) a.e. in μ, where K0(x, y, t) is given
by (4.6) with ε = 0. Since the kernel verifies for all t ∈ [0, T ] that |Kε(x, y, t)| ≤
‖D2ϕ(·, t)‖L∞(R2), then the dominated convergence theorem shows that

∫

R2×R2
Kε(x, y, t)dμ →

∫

R2×R2
K0(x, y, t)dμ.

On the other hand, let us consider the difference of the right-hand sides as

I :=
∫

R2

∫

R2
(uε(x, t)uε(y, t) − u(x, t)u(y, t))Kε(x, y, t)dxdy = I ε

1 + I ε
2 ,
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where for some 0 < r < 1
4 , we define

I ε
1 =

∫ ∫

|x−y|≤r

(uε(x, t)uε(y, t) − u(x, t)u(y, t))Kε(x, y, t)dxdy

and I ε
2 = I − I ε

1 . By Lemma 4.2, we have

|I ε
1 | ≤ C‖D2ϕ‖L∞([0,T ]×R2)

(

log
1

(2r)2 + ε2

)−1/2

.

Notice that as ε → 0, we have

sup
|x−y|>r

|Kε(x, y, t) − K0(x, y, t)| = sup
|x−y|>r

∣
∣
∣
∣K0(x, y, t)

ε2

|x − y|2 + ε2

∣
∣
∣
∣ → 0,

from which we obtain that |I ε
2 | → 0 as ε → 0. A similar argument can be found in [10, 15].

Finally, we can take limit in (4.5) and get the existence of weak solution except the time
regularity u ∈ Lip(R+;H−4

loc (R2)) which will be given at the end of Sect. 5.

5 Drift Potential c(x, t)

We know that the limit u in Sect. 4 belongs to L∞(0, T : M0(R
2)) and we will show in this

section that its potential energy is bounded. Consequently, we can use these facts to define c,
give a uniform estimate on ∇c and obtain the time regularity of u. This will complete the
proof of the main Theorem 1.1.

Step 1. Uniform local estimate for ∇cε in the regularized problem:

Lemma 5.1 Let cε be the solution of (2.1), then for any fixed R > 0, for all T > 0 and a.e.
t ∈ (0, T )

∫

|x|≤R

|∇cε(x, t)|2dx ≤ C(R, F [u0],m2(0),8π − m0, T ).

Proof The drift in (2.1) is given by

∇cε(x, t) = − 1

2π

∫

R2

x − y

|x − y|2 + ε2
uε(y, t)dy.

By choosing a smooth cut-off function 0 ≤ θ(x) ≤ 1 such that θ(x) = 1 for |x| ≤ R,
θ(x) = 0 for r ≥ 2R, we obtain

∫

|x|≤R

|∇cε(x, t)|2dx

≤
∫

R2
θ(x)|∇cε(x, t)|2dx

=
∫

R2×R2
uε(y, t)uε(z, t)

(∫

R2
θ(x)

(x − y) · (x − z)

(|x − y|2 + ε2)(|x − z|2 + ε2)
dx

)

dydz.
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Let us define for all 0 ≤ ε < 1
2

Kε(θ, y, z) :=
∫

R2

θ(x)(x − y) · (x − z)

(|x − y|2 + ε2)(|x − z|2 + ε2)
dx. (5.1)

By [14, Lemma 2.2], the integral kernel Kε(θ, y, z) can be controlled by

Kε(θ, y, z) ≤ C(R) log+ 1

|y − z|2 + ε2
. (5.2)

Then it follows that
∫

|x|≤R

|∇cε(x, t)|2dx ≤
∫

R2×R2
Kε(θ, y, z)uε(y, t)uε(z, t)dydz

≤ C(R)

∫

R2×R2
log+ 1

|y − z|2 + ε2
uε(y, t)uε(z, t)dydz ≤ C,

where in the last inequality we have used Lemma 4.1. �

Step 2. Estimates on the potential energy: Adapting some ideas in [15], we obtain bounds
for the potential energy of the weak solution.

Lemma 5.2 Let u ∈ L∞(R+; M0(R
2)) be a weak solution of (1.1), then for all T > 0 and

a.e. t ∈ (0, T )

∫

R2

∫

R2
| log |x − y||u(x, t)u(y, t)dxdy ≤ C

(
F [u0],m2(0),8π − m0, T

)
. (5.3)

Proof The negative part of the potential energy can be controlled by the second moment

∫

R2

∫

R2
log− 1

|x − y|u(x, t)u(y, t)dxdy ≤
∫

R2

∫

R2
(|x|2 + |y|2)u(x, t)u(y, t)dxdy ≤ C.

We only need to show that the positive part of the potential energy is bounded, i.e.

∫

R2

∫

R2
log+ 1

|x − y|u(x, t)u(y, t)dxdy ≤ C, (5.4)

where we will use the uniform bounds for the regularized potential energy in Lemma 4.1.
Notice that

log+ 1

|x − y|2 + ε2
↗ log+ 1

|x − y|2 , as ε → 0, a.e. in μ.

By the monotone convergence theorem, we get

lim
ε→0

∫

R2×R2
log+ 1

|x − y|2 + ε2
dμ =

∫

R2×R2
log+ 1

|x − y|2 dμ.

This together with Lemma 4.1 gives (5.4). �
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Step 3. Well-defined potential: Due to (5.3) and Fubini-Tonelli’s theorem, c can be well
defined by u as

c(x, t) = 1

2π

∫

R2
log

1

|x − y|u(y)dy.

Moreover, the proof of Lemma 5.1 implies
∫

|x|≤R

|∇c|2 ≤
∫

R2×R2
K0(θ, y, z)u(y, t)u(z, t)dydz

with K0(θ, y, z) given by (5.1) with ε = 0. As in (5.2), one also has bounds on the integral
kernel K0(θ, y, z) [7, 14]

K0(θ, y, z) ≤ C(R) log+ 1

|y − z| .

Then it follows from (5.3) that
∫

|x|≤R

|∇c|2 ≤ C. (5.5)

Thus we have ∇c ∈ L∞(0, T ;L2
loc(R

2)) for all T > 0.

Step 4. Time regularity of u: Take ϕ(x) ∈ C2
0 ∩H 4(R2) with compact support as test function

for the first equation in (1.1), then we have by using the second equation of (1.1) and a simple
computation that

∫

R2
ϕutdx =

∫

R2
�ϕudx +

∫

R2
∇2ϕ : ∇c ⊗ ∇cdx − 1

2

∫

R2
�ϕ|∇c|2dx.

Hence, we get for all T > 0 from (5.5) and taking into account the compact support of ϕ

that
∣
∣
∣
∣

∫

R2
ϕutdx

∣
∣
∣
∣ ≤ C‖D2ϕ‖L∞(R2) ≤ C‖ϕ‖H 4(R2)

and by the duality ut ∈ H−4
loc (R2) yielding the time regularity u ∈ Lip(0, T ;H−4

loc (R2)).
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