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Abstract
As a counterpoint to recent numerical methods for crystal surface evolution, which
agree well with microscopic dynamics but suffer from significant stiffness that pre-
vents simulation on fine spatial grids, we develop a new numericalmethod based on the
macroscopic partial differential equation, leveraging its formal structure as the gradient
flow of the total variation energy, with respect to a weighted H−1 norm. This gradient
flow structure relates to several metric space gradient flows of recent interest, includ-
ing 2-Wasserstein flows and their generalizations to nonlinear mobilities. We develop
a novel semi-implicit time discretization of the gradient flow, inspired by the classi-
cal minimizing movements scheme (known as the JKO scheme in the 2-Wasserstein
case). We then use a primal dual hybrid gradient (PDHG) method to compute each
element of the semi-implicit scheme. In one dimension, we prove convergence of the
PDHG method to the semi-implicit scheme, under general integrability assumptions
on the mobility and its reciprocal. Finally, by taking finite difference approximations
of our PDHG method, we arrive at a fully discrete numerical algorithm, with itera-
tions that converge at a rate independent of the spatial discretization: in particular, the
convergence properties do not deteriorate as we refine our spatial grid. We close with
several numerical examples illustrating the properties of our method, including facet
formation at local maxima, pinning at local minima, and convergence as the spatial
and temporal discretizations are refined.
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1 Introduction

The evolution of a crystal surface near a fixed crystallographic plane of symmetry is
determined by the desire to minimize the surface free energy [19, 39]. In terms of the
height h(x, t) of the surface, x ∈ � ⊆ R

d , d ≥ 1, t ≥ 0, the free energy is given by
the well-known total variation energy,

E(h) =
∫

�

|∇h(x, t)| dx . (1.1)

Facets on the crystal surface are identified with the regions {x : ∇h(x, t) = 0}.
To formally obtain a PDE describing the surface dynamics, we briefly recall some

tools from hydrodynamic flows in statistical mechanics. Setting the atomic volume
equal to one, the step chemical potential is given by first variation of the energy [48],

μs = δE

δh
= −�1h, with �1h := ∇ ·

( ∇h

|∇h|
)

.

By the Gibbs–Thomson relation [28, 29, 37, 43] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
�s = �0 exp[μs/(kBT )], where �0 is a constant reference density [21, 50], T is a
temperature, and kB is the Boltzmann constant. An application of Fick’s law then
predicts that the flux is

J = −Ds ∇�s = −Ds�
0∇eμs/(kBT ) ,

where Ds is the surface diffusion constant [37]. In this way, we obtain the hydrody-
namic equation

∂t h + ∇ · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

∂t h = �e−�1h . (1.2)

A detailed, yet non-rigorous, derivation of (1.2) from microscopic dynamics can be
found in [33]. As far as the authors are aware, the exact form of PDE (1.2) only
appeared in [33] for the first time.

That being said, PDEs of the type (1.2) have arisen in various settings in statistical
mechanics. Away from facets, this equation is consistent with the continuum limit of
the Burton–Cabrera–Frank (BCF) theory for moving steps in 2+1 dimensions [4, 37].
See also [3] for a numerical study of 1d facet dynamics. This equation also relates to
a family of Kinetic Monte Carlo models of crystal surface relaxation, including both
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the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p > 1 [13, 29, 38]. Progress towards a rigorous under-
standing of the convergence of related models in statistical mechanics to their limiting
PDEs has been made recently in the work of Katsevich [24, 25].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h
is a linear combination of positive and negative Dirac masses, so e−�1h is not well-
defined.Consequently, Eq. (1.2)must be interpreted in a generalized sense.One avenue
considered in previous work is to take a first order approximation of the exponential
in the Gibbs–Thomson relation, replacing ex with 1+ x , which leads to the H−1 total
variation flow studied by Giga et al., [14–16, 26, 41]

∂t h = �(−�1h) . (1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original Eq. (1.2), which causes local maxima to form
expanding facets, while local minima remain stationary. Ultimately, determining an
appropriate notion of weak solution for Eq. (1.2) and proving existence of solutions
remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation,we seek to develop a computationally efficient numericalmethod for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [33] and the fourth author and Weare [38], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with the ensemble averages of the Kinetic
Monte Carlo models described in those works and respected the different dynamics
occurring near the local maxima and minima of the crystal surface. The work [33]
studied precisely the Eq. (1.2), however [38] only studied the dynamics of equations
of the form ∂t h = �e−�ph for p > 1. On the other hand, these studies were not
motivated by a strong notion of convergence to the macrosopic PDE dynamics, and
due to the inherent stiffness of the model, were only effective on coarse spatial grids,
with serious numerical convergence issues arising on fine grids, even in one dimension.

In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H−1 norms. To see this structure,
note that Eq. (1.2) may be rewritten in the following conservative form,

∂t h + ∇ ·
(
M(h)∇ ∂E

∂h

)
= 0, (1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e−�1h . (1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and Eq. (1.4) is posed with periodic boundary conditions. We
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normalize the initial data h(x, 0) = h0(x) to have mean zero,
∫
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H−1 norm weighted by the mobility M(h), which we describe in detail in Sect. 2.
For example, choosing the constant mobility M(h) ≡ 1, one recovers classical H−1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 42]. (Since h
has mean zero, h + 1 is a probability density as long as h ≥ −1.). There has also
been significant work on equations of this form in the context of reaction diffusion
equations [31] and Cahn–Hilliard equations [32], among many others. See also the
recent work by Gao [11] who considered the related setting of an exponential mobility
determined by a logarithmic correction to the 1 Laplacian.

Again, the problem of exponentiating −�1h arises in the definition of the mobility
(1.5). In order to circumvent this difficulty and thereby ensure that the weighted H−1

gradient flow structure is well-defined, we introduce the following novel approxima-
tion: given ϕ ∈ C∞

c (Td), ϕ ≥ 0,
∫
Td ϕ = 1, ϕε(x) := ϕ(x/ε)/εd , we consider

Mε(h) := e−ϕε∗�1h . (1.6)

Unlike previous approximations of e−�1h via 1 − �1h, our approximation respects
the inherent asymmetry near local maxima and minima of h, becoming large when
−�1h 	 0 and vanishing when −�1h 
 0.

With this approximation in hand, we are able to precisely define the weighted H−1

gradient flow of the total variation energy E with mobility Mε . Then, with the goal of
computing this flow numerically, we discretize the gradient flow in time, with a fixed
time step τ > 0, via the following semi-implicit method:

hn+1 ∈ argmin
h

E(h) + 1

2τ
‖h − hn‖2

H−1
hn

. (1.7)

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2, 23]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 30] and the references therein. In the context of crystal surface evolution, our
work builds upon the well-known literature using implicit Euler time discretizations
to simulate Hilbertian gradient flows, including the H−1 total variation flow described
in Eq. (1.3) [27]. From this perspective, our work is closely related to recent work by
Giga and Ueda [17]. As we describe below, we will compute minimizers of Eq. (1.7)
via a primal dual algorithm (PDHG), paralleling Giga and Ueda’s use of a primal dual
algorithm (split Bregman) to computeminimizers of the implicit scheme for their H−1

total variation flow . The key difference between our approach and this previouswork is
the fact that we consider a weighted H−1 gradient flow, depending on the exponential
mobility, instead of a classical H−1 gradient flow, in which the exponential mobility
is linearized. This allows our approach to capture the asymmetry of the dynamics at
local minima and maxima.
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We show that the Euler–Lagrange equation characterizing solutions of the semi-
implicit scheme is a discrete time version of the conservative PDE (1.4):

hn+1 − hn

τ
= −∇ ·

(
Mε(h

n)∇ ∂E
∂hn+1

)
. (1.8)

(See Eqs. 2.6 and 2.9 below.) Consequently, interpolating in time,

hτ (x, t) = hn, if t ∈ [nτ, (n + 1)τ ) ,

and sending our regularization ε and time step τ to zero, one formally expects that
hτ (x, t) approaches a solution of the crystal surface evolution Eq. (1.2). We leave
analysis of this convergence to future work, since it directly relates to the challenging
open problem of proving existence of solutions to the crystal surface equation. Still,
we believe that the success of our numerical method, which is based on this semi-
implicit scheme, provides empirical evidence that the gradient flow framework is the
appropriate setting for studying generalized solutions to this equation.

In order to translate the semi-implicit scheme (1.7) into a fully discrete numerical
method,we use a primal dual hybrid gradient (PDHG) [9] approach,whichwe describe
in detail in Sect. 3. This approach allows us to handle the presence of the 1-Laplacian, as
well as preserve the energy decreasing property at the discrete level. Given the nth step
of the semi-implicit scheme hn , our PDHGmethod iteratively defines a new sequence
h(m) that is initialized at hn and converges to hn+1. A key point in the definition of our
PDHGmethod is that we use different norms to penalize the primal and dual variables.
As discovered by Jacobs, Léger, Li, and Osher [22], appropriate selection of the norms
is essential to obtaining a scheme that is convergent at the spatially continuous level
and leads to a fully discrete numerical method with rate of convergence that does not
deteriorate as the spatial discretization is refined; see Remark 3.2. Our PDHGmethod
is well-defined for the total variation energy E (1.1) and any integrable mobility M(h),
including the regularized exponential mobility (1.6). Provided that the mobility and
its reciprocal remain integrable along the sequence hn , which holds for the regularized
exponential mobility, our main convergence result Theorem 3.4 proves that the inner
PDHG interates h(m) converge to a solution of the outer scheme hn+1. We prove this
result in one spatial dimension, which coincides with the context of our numerical
simulations. Furthermore, if our initialization hn has the regularity (hn)′ ∈ BV (T),
our theorem provides a rate of convergence for the PDHG method. We remark that
existing convergence results for PDHG algorithms do not apply in our context, since
our initialization of the primal variable hn is, in general, infinite Ḣ1 distance from
the optimizer hn+1 [9, 47]. We instead build upon the approach introduced by Jacobs,
Léger, Li, and Osher for the Rudin-Osher-Fatemi image denoising model [22, 44].

While our convergence proof does not extend naturally to higher dimensions, due
to the fact that we use the one dimensional Sobolev embedding BV (T) ⊆ L∞(T), our
numerical method does extend to higher dimensions. In particular, the definition of our
method at the spatially continuous level in Sect. 3.1 is independent of the dimension,
and our Algorithm 4.1 can be extended to higher dimensions simply by replacing
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the matrix approximation of the operators ∇ and −�h by their higher dimensional
counterparts.

Finally, in Sect. 4, we use this time discretization of theweighted H−1 gradient flow
as the basis for a fully discrete numerical scheme, replacing the spatially continuous
operators in our PDHGmethodwith their finite difference counterparts. InRemark 4.1,
we describe how the convergence of this fully discrete scheme, with a rate independent
of the spatial discretization, follows from similar arguments as given in Theorem 3.4.
Achieving convergence rates that are uniform in the spatial discretization is essential
in the context of our problem, since it allows us to choose our inner primal time step
in the PDHGmethod to be relatively large, even as we refine the spatial discretization.
Note that this would not be permitted by classical PDHG methods, in which the
inner time steps are required to shrink quickly as the spatial discretization is refined.
The importance of choosing large inner primal time steps arises due to the fact that
convexity properties of ‖ · ‖2

H−1
hn

depend on lower bounds on the eigenvalues of the

weighted Laplacian�−1
hn (see Eq. 2.3), whichmay deteriorate along the flow.Choosing

large inner primal time steps allow us to overcome this deterioration of convexity, in
agreement with our estimates for the optimal choice of time steps in Theorem 3.4.

We conclude, in Sect. 5, with several numerical examples that illustrate properties
of our method. Our scheme accurately captures facet formation at local maxima and
pinning at local minima. Unlike previous numerical methods, which required a coarse
spatial discretization, we observe near first order convergence in both space and time
as the spatial discretization and time step τ are refined. Finally, we also illustrate the
importance of norm selection in our PDHG method, showing that selecting norms
following the classical L2 approach can cause the number of iterations required for
convergence to increase dramatically as the spatial discretization is refined.

There are several directions for future work. As mentioned above, we believe that
the strength of our numerical method gives hope that the weighted gradient flow
setting is the appropriate context in which to define and prove existence of generalized
solutions to the crystal surface evolution equation, by analyzing the convergence of the
semi-implicit method as τ → 0 and ε → 0. Our semi-implicit time discretization and
PDHG algorithm can also be naturally extended to related crystal evolution PDEs: see
Remark 3.3, where we describe how the 1-Laplacian in Eq. (1.2) can be replaced by the
standard Laplacian. Finally, our convergence result for the PDHG scheme holds for
general, integrable mobilities M(h). Consequently, it would be natural to extend our
approach to simulate related gradient flows for other choices of nonlinear mobilities,
such as M(h) = (1 + h)(1 − h) [8, 10, 32].

2 Crystal height evolution as a weighted H−1 gradient flow

We now describe the weighted H−1 gradient flow structure of the crystal height evolu-
tion PDE (1.2). In Sect. 2.1, we define the weighted H−1 spaces and the corresponding
notions of gradient flow. In Sect. 2.2, we introduce the semi-implicit time discretiza-
tion of the gradient flow, which is the basis of our numerical scheme. In Sect. 2.3, we
discuss how to apply this framework to the crystal height evolution equation.
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2.1 Weighted H−1 gradient flow

For any h : Td → R, let M(h) ∈ L1(Td) denote a nonnegative mobility. Using this
mobility, we define the weighted Hilbert space H1

h (Td) as the completion of C∞(Td)

functions with mean zero, under the weighted norm or inner product

‖v‖2
H1
h

=
∫
Td

M(h)|∇v|2 dx , (2.1)

(u, v)1 =
∫
Td

M(h)∇u · ∇v dx . (2.2)

We define H−1
h (Td) := (

H1
h (Td)

)∗
to be the dual space of H1

h and let 〈·, ·〉 denote the
duality pairing.

By the Riesz-Fréchet representation theorem, the duality mapping J : H1
h → H−1

h
given by

〈J (v), u〉 = (v, u)1, ∀u ∈ H1
h

is surjective. Now, consider the weighted Laplacian operator

�hu = ∇ · (M(h)∇u) ,

which is well defined for u ∈ C∞(Td), in the sense of distributions. For u, v ∈
C∞(Td) with mean zero, by definition of (·, ·)1 and integration by parts, we have

〈J (v), u〉 = (v, u)1 = −
∫
Td

u�hv dx .

Hence, we identify J (v) = −�hv.
The inverse map J−1 : H−1

h → H1
h , φ �→ J−1(φ) is then given by

〈ψ, J−1(φ)〉 = (ψ, φ)−1 = −
∫
Td

ψ(�−1
h φ) dx , ∀ψ ∈ H−1

h ,

where (·, ·)−1 denotes the inner product for H
−1
h and�−1

h denotes the inverse operator
of �h with mean zero. Consequently, we obtain,

‖ψ‖2
H−1
h

= −
∫
Td

ψ�−1
h ψ dx . (2.3)

We now turn to the differential structure induced by the H−1
h norm. Given a convex

functional E : H−1
h → R ∪ {+∞}, its subdifferential is

∂H−1
h
E(ψ) =

{
ξ ∈ H−1

h (Td) : E(ϕ) ≥ E(ψ) + (ϕ − ψ, ξ)−1 ∀ϕ ∈ H−1
h

}
.

For example, the identity mapping ψ �→ {ψ} is the subdifferential of the convex
functional E(ψ) = 1

2‖ψ‖2
H−1
h
.

123



638 K. Craig et al.

Using this notion of subdifferential, we may define H−1
h gradient flows. In order

for our construction of the weighted Hilbert spaces to remain valid, we require that
M(h) remains nonnegative and integrable along the flow, that is, the flow remains in
the space

L1
M =

{
h : Td → R : M(h) ∈ L1 and M(h) ≥ 0

}
.

Next, we introduce a notion of time derivative for a flow h(t) evolving through the
Hilbert spaces H−1

h(t).

Definition 2.1 Given h : [0, T ] → L1
M such that h(t) ∈ H−1

h(t) for all t ∈ [0, T ], we
say that h(t) is differentiable with respect to ‖ · ‖H−1

h(t)
in case, for all t ∈ [0, T ], there

exists ε > 0 so that, for all s ∈ (t − ε, t + ε)∩[0, T ], h(s) ∈ H−1
h(t) and h(s) is Fréchet

differentiable with respect to ‖ · ‖H−1
h(t)

.

With this, we can now define an H−1
h(t) gradient flow.

Definition 2.2 Given h : [0, T ] → L1
M such that h(t) ∈ H−1

h(t) is differentiable, we say

h is an H−1
h(t) gradient flow of an energy E : H−1

h(t) → R∪ {+∞} with initial condition
h0 in case

{
∂t h(t) ∈ −∂H−1

h(t)
E(h(t)) for all t ∈ [0, T ],

h(0) = h0.
(2.4)

In particular, given an energy E : H−1
h → R ∪ {+∞}, we formally obtain the

following expression for its gradient with respect to H−1
h (Td),

lim
ε→0

E(ψ + εξ) − E(ψ)

ε
=

∫
Td

∂E

∂ψ
ξ =

∫
Td

�−1
h �h

∂E

∂ψ
ξ =

(
�h

∂E

∂ψ
, ξ

)
−1

Therefore,

∇H−1
h
E(ψ) = �h

∂E

∂ψ
. (2.5)

Consequently, under sufficient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H−1
h (Td) gradient flows correspond to solutions of the conservative PDE (1.4),

∂t h = −∇H−1
h
E(h) ⇐⇒ ∂t h + �h

∂E

∂h
= 0 ⇐⇒ ∂t h + ∇ ·

(
M(h)∇ ∂E

∂h

)
= 0.

(2.6)
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2.2 Semi-implicit scheme for H−1
h gradient flows

We now describe a semi-implicit analogue of the classical minimizing movement
scheme to discretize our H−1

h gradient flows in time: given hn ∈ L1
M ∩ H−1

hn , solve

hn+1 ∈ argmin
h∈H−1

hn

E(h) + 1

2τ
‖h − hn‖2

H−1
hn

. (2.7)

In the particular case M(h) = h + 1, h ≥ −1, H−1
h gradient flows are 2-Wasserstein

gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [23], in which the Wasserstein distance
is approximated by the corresponding weighted H−1 norm at the previous time step
[5].

We begin by showing that, as long as the energy E is convex, lower semicontinuous,
and has compact sublevels with respect to an appropriate topology and E(hn) < +∞,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3 Fix hn ∈ L1
M ∩ H−1

hn and consider an energy E : H−1
hn → R∪{+∞}.

SupposeE is convex and that there exists a topologyσ so thatE and H−1
hn are both lower

semicontinuous with respect to σ and the sublevel sets of E are relatively σ -compact
in H−1

hn . Then, if E(hn) < +∞, there exists a unique hn+1 so that

hn+1 ∈ argmin
h∈H−1

hn

�(h), for �(h) := E(h) + 1

2τ
‖h − hn‖2

H−1
hn

. (2.8)

Remark 2.4 Our assumption that hn ∈ L1
M , or equivalently, that the mobility M(hn)

is integrable and nonnegative, is necessary for the weighted Hilbert spaces H1
h to be

well-defined and, hence, for their dual spaces H−1
h to be well-defined. In particular,

we must have hn ∈ L1
M in order to define the discrete scheme in Eq. (2.8), and in

particular, this is necessary for a solution hn+1 of the scheme to exist. Analogous
requirements on the mobility have arisen in recent work by Cancés, Gallouët, and
Todeschi [5], in which they consider a fully-implicit time discretization, in the special
case that M(h) = h + 1 and h > −1.

Remark 2.5 We choose to introduce the additional topology σ in Proposition 2.3 due
to the fact that, in general, the topology induced by H−1

hn
may not be strong enough

to ensure lower semicontinuity of the energy. In particular, this is the case for the
exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3 First, we consider existence. Since �(hn) = E(hn) < +∞,

inf
h∈H−1

hn (T)

�(h) < +∞,

and we may choose a minimizing sequence hk ∈ H−1
hn (T) so that limk→+∞ �(hk) =

infh �(h). Since �(h) ≥ E(h), {hk} belongs to a sublevel set of E , so up to a sub-
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sequence, there exists h̄ so that hk
σ−→ h̄ ∈ H−1

h . By lower semicontinuity of E and
‖ · ‖H−1

hn (T)
with respect to σ , lim infk→+∞ �(hk) = �(h̄). Thus, h̄ is a solution of

(2.7), so a solution exists.
It remains to show uniqueness. Suppose hn+1 and h̄ are distinct solutions of (2.7).

Define hα = (1 − α)hn+1 + αh̄. Then, by the convexity of E and the strict convexity
of h �→ ‖h − hn‖2

H−1
hn
,

�(hα) < (1 − α)�(hn+1) + α�(h̄) = inf
h∈H−1

h (Td )

�(h),

which is a contradiction. Therefore hn+1 = h̄, so solutions of (2.7) are unique. ��
Given a discrete sequence {hn} defined by our semi-implicit scheme (2.7), the

convexity of � and the fact that hn+1 is a global minimum imply that we have the
following Euler–Lagrange equation characterizing hn+1,

0 ∈ ∂H−1
hn

�(hn+1) ⇐⇒ hn+1 − hn

τ
∈ −∂H−1

hn
E(hn+1). (2.9)

Consequently, interpolating in time, hτ (x, t) = hn , if t ∈ [nτ, (n+1)τ ), one formally
expects that, under sufficient regularity of E and hn , as τ → 0, hτ (x, t) approaches a
solution of the H−1

hn gradient flow, in the sense of Definition 2.2.
A key difficulty in the analysis of this limit is proving that the discrete time solutions

hn remain in the space L1
M , so that the weighted dual Sobolev spaces H−1

hn remain
well-defined. For example, in the present work, for our regularization of the mobility
(1.6), a sufficient condition is that�1hn ∈ M(Td), the space of finite Borel measures.
Developing sufficient conditions on the initial data h0 so that hn ∈ L1

M for all n ≥ 1
can be thought of as a type of a priori estimate and would be an important first step
toward solving the challenging open problem of proving existence of solutions to the
PDE (1.2). While the requirement hn ∈ L1

M is independent of the choice of energy E ,
the energy E does provide an important tool for proving this type of estimates, since it
can be shown to decrease along solutions of the discrete time scheme (see Lemma 3.7
(1)), providing a weak notion of regularity, E(hn) < +∞.

We leave the rigorous study of the convergence of the discrete time scheme to
the continuum PDE to future work. Our hope is that the framework developed in the
present paper will provide the first steps toward the rigorous study of this limit and,
ultimately, a proof of existence for solutions to the crystal height evolution equation.

2.3 H−1
h gradient flow for crystal surface evolution

We now describe how our crystal surface evolution equation fits into this gradient flow
framework. As discussed in the introduction, the crystal surface evolution PDEmay be
formally rewritten in conservative form (1.4) for an exponential mobility (1.5) and the
total variation energy. However, in order for this formal description to coincide with a
well-defined H−1

h gradient flow, we must extend the energy to a functional defined on
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all of H−1
h , satisfying the hypotheses of Proposition 2.3, and the mobility must remain

nonnegative and integrable along the flow. We now consider each of these issues.

2.3.1 Total variation energy on H−1
h

Since H1
h is defined as the completion of C∞ functions with mean zero under the

H1
h norm, any element ψ ∈ H−1

h is uniquely defined by its action on such smooth
functions. In particular, if there exists f ∈ L1 with mean zero so that 〈ψ, v〉 =∫
Td f v dx for all v ∈ C∞ with mean zero, we will identify ψ with f and say ψ ∈ L1.
(We restrict to f with mean zero, since such an f is only determined up to a constant.)

In this way, we extend the definition of the total variation energy to H−1
h ,

E(ψ) :=
{

‖ψ‖T V if ψ ∈ L1(Td) and
∫

ψ = 0,

+∞ otherwise,
(2.10)

where, for any ψ ∈ L1(Td),

‖ψ‖T V := sup
φ

{
−

∫
Td

ψ∇ · φ : φ ∈ C∞(Td), ‖φ‖∞ ≤ 1

}
. (2.11)

Furthermore, if ‖ψ‖T V < +∞, then the distributional derivative ∇ψ is a signed
measure and

‖ψ‖T V = sup
φ

{∫
Td

∇ψ · φ : φ ∈ L∞(Td), ‖φ‖∞ ≤ 1

}
. (2.12)

We now show that E satisfies the hypotheses of Proposition 2.3, so that the semi-
implicit scheme is well defined.

Proposition 2.6 Consider h ∈ L1
M, so that M(h) is nonnegative and integrable, and

consider the total variation energy E : H−1
h → R∪{+∞} defined in Eq. (2.10). Then

E is convex, and, letting σ denote the topology of convergence in distribution, E and
‖ · ‖H−1

h
are both lower semicontinuous with respect to σ and the sublevel sets of E

are relatively σ -compact in H−1
h .

Proof The convexity of E follows immediately from the fact that L1 ∩ H−1
h is convex

and ‖ · ‖T V is a convex functional on L1.
Next, we show that E and ‖ · ‖H−1

h
are lower semicontinuous with respect to con-

vergence in distribution. We begin with ‖ · ‖H−1
h
. Suppose ψk ∈ H−1

h converges to
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ψ ∈ H−1
h in distribution. Then,

lim inf
k→∞ ‖ψk‖H−1

h
= lim inf

k→∞ sup
φ∈C∞,‖φ‖

H1
h
≤1

〈ψk, φ〉 ≥ sup
φ∈C∞,‖φ‖

H1
h
≤1

lim inf
k→+∞〈ψk, φ〉

= sup
φ∈C∞,‖φ‖

H1
h
≤1

〈ψ, φ〉 = ‖ψ‖H−1
h

We now show lower semicontinuity of E with respect to a sequence ψk ∈ H−1
h

converging to ψ ∈ H−1
h in distribution. Without loss of generality, we may assume

that lim infk→∞ E(ψk) < +∞, or the result is trivially true. Consider a subsequence,
ψkl that attains the limit, i.e. lim infk→∞ E(ψk) = liml→∞ E(ψkl ) and for which

E(ψkl ) < +∞. For simplicity of notation, we identify this subsequence with the
original sequence ψk . Since E(ψk) < +∞ for all k, along this sequence, the energy
coincides with ‖ · ‖T V . Thus,

lim
k→∞ E(ψk) = lim

k→∞ ‖ψk‖T V = lim
k→+∞ sup

φ∈C∞,‖φ‖∞≤1
−

∫
ψk∇ · φ

≥ sup
φ∈C∞,‖φ‖∞≤1

lim
k→+∞ −

∫
ψk∇ · φ = sup

φ∈C∞,‖φ‖∞≤1

−
∫

ψ∇ · φ = ‖ψ‖T V = E(ψ).

Wenow show relative compactness of the sublevel sets of E . Suppose supk E(ψk) ≤
C for some C ∈ R. By classical results, there exists ψ ∈ L1(Td) such that E(ψ) =
‖ψ‖T V ≤ C and ψk → ψ in L1(Td) [51, Corollary 5.3.4]. Since convergence in
L1(�) implies convergence in distribution and ‖ · ‖H−1

h
is lower semicontinuous in

distribution, we conclude ψ ∈ H−1
h , which gives the result. ��

2.3.2 Regularization of mobility

Whilewe require that themobility remain nonnegative and integrable along the flow, in
order for the spaces H−1

h to remain well defined, this fails for the exponential mobility
(1.5), even for smooth functions in one dimension. For example, for any h ∈ C∞(T),
the function h′/|h′| : T → {−1, 0, 1} is piecewise constant, and −�1h = −(h′/|h′|)′
is signed measure, consisting of a linear combination of positive and negative Dirac
masses, corresponding to local maxima and minima of h. Thus, e−�1h is not well-
defined.

Consequently, we instead approximate the mobility by convolving −�1h with a
mollifier. Given ϕ ∈ C∞

c (Td), ϕ ≥ 0,
∫
Td ϕ = 1, define the mollifier ϕε(x) =

ϕ(x/ε)/ε. We then consider the mobility

Mε(h) := e−ϕε∗�1h, (2.13)
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which well defined for h ∈ C1(Td), since ϕε ∗ �1h = ∇ϕε ∗ (∇h/|∇h|) ∈ C∞(Td)

for all ε > 0. In one dimension, this regularization replaces each Dirac mass in �1h
with an appropriately weighted mollifier ϕε . Since ϕε ∗ �1h → �1h in the narrow
topology as ε → 0, for any v ∈ C∞(Td), we have

lim
ε→0

∫
Td

Mε(h)|∇v|2 dx =
∫
Td

M(h)|∇v|2 dx ,

so that the weighted Hilbert norms defines in Eq. (2.1) converge along smooth func-
tions. For this reason, there is hope that the gradient flow structure induced by the dual
norms also converge as ε → 0, in the sense of Sandier and Serfaty [45, 46], but we
leave the rigorous analysis of this limit to future work.

3 A PDHGmethod for computing the semi-implicit scheme

In the previous section, we defined the following semi-implicit scheme for approxi-
mating H−1

h gradient flows,

hn+1 ∈ argmin
h∈H−1

hn

�(h), for �(h) := E(h) + 1

2τ
‖h − hn‖2

H−1
hn

. (3.1)

In order to use this scheme as a numerical method for simulating solutions of the
crystal growth equation, we need an approach to compute the minimizer hn+1 of �.

In this section, we reformulate the above minimization problem as a saddle-point
problem, so that solutions can be computed via operator splitting methods. In partic-
ular, given an element of the discrete time sequence hn we apply a primal dual hybrid
gradient (PDHG) method [9] to compute the next element in the sequence hn+1. The
PDHGmethod is essentially composed of alternating implicit Euler steps in the primal
and dual variables, subject to appropriate averaging; see Remark 3.1. An important
aspect of our method is that the implicit Euler step in the primal variables is taken with
respect to an Ḣ1 norm,while the implicit Euler step in the dual variables is with respect
to an L2 norm. Appropriate selection of the norms is essential to proving convergence
of the scheme; see Remark 3.2. This also leads to a fully discrete numerical method
that converges with a rate independent of the spatial discretization; see Remark 4.1.

We begin, in Sect. 3.1, by defining our PDHG scheme. In Sect. 3.2, we state our
main theorem: in one dimension, provided that the reciprocal of the mobility remains
integrable, the PDHG scheme converges in the ergodic sense to the solution hn+1. We
prove this result in Sect. 3.3. Our results apply to the total variation energy (2.10) and
any nonnegative, integrable mobility M(h).

3.1 Definition of PDHG scheme

To place our problem in the framework of the PDHG method, note that, by definition
of the total variation energy (2.10–2.12), minimizing � is equivalent to solving the
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following saddle point problem

inf
h∈L1,

∫
h=0

�(h) = inf
h∈L1,

∫
h=0

sup
φ∈L∞

L(h, φ), (3.2)

L(h, φ) :=
∫

∇h · φ + 1

2τ
‖h − hn‖2

H−1
hn

− F∗(φ), (3.3)

F∗(φ) :=
{
0 if ‖φ‖∞ ≤ 1,

+∞ otherwise.
(3.4)

To numerically compute a minimizer of this problem, we apply PDHG, initializing
the inner iterations, denoted by h(m), with the value of the semi-implicit sequence at
the previous step h(0) := hn and initializing the dual variables to be zero, φ(0) = 0.
The PDHG algorithm [9, equation 11] is then given as follows:

h(m+1) = argmin
h∈L1,

∫
h=0

1

2τ
‖h − h(0)‖2

H−1
h(0)

+
∫

∇h · φ(m) + 1

2λ
‖h − h(m)‖2

Ḣ1 (3.5)

h̄(m+1) = 2h(m+1) − h(m) (3.6)

φ(m+1) = argmax
φ∈L∞

−F∗(φ) +
∫

∇ h̄(m+1) · φ − 1

2σ
‖φ − φ(m)‖22, (3.7)

where λ, σ > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and φ, respectively.

The PDHG iterations are easier to compute than our original minimization problem
(3.1), since their optimizers are characterized by the Euler–Lagrange equations:

h(m+1) =
(

−� − λ

τ
�−1

hn (· − hn)

)−1 (
−�h(m) + λ∇ · φ(m)

)
(3.8)

h̄(m+1) = 2h(m+1) − h(m) (3.9)

φ(m+1) = (id+σ∂F∗)−1(φ(m) + σ∇ h̄(m+1)) , (3.10)

where

(id+σ∂F∗)−1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler–Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

hn+1 = (�−1
hn + τ�1)

−1
(
�−1

hn h
n
)

.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Fig. 4 below. Third, as predicted in
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our main convergence theorem, Theorem 3.4, we are able to choose λ large to ease
inversion of �h : see Fig. 6 below.

Remark 3.1 (Interpretationas proximal point algorithm) In the special case thatλ = σ ,
the PDHG method can be characterized as a proximal point algorithm on the product
space Ḣ1(T) × L2(T)d , endowed with the norm ‖ · ‖L := ‖L1/2 · ‖2 for

L =
[ −� λ∇·
−σ∇ id

]
.

For further details in a slightly simpler case see, for example, He and Yuan [20].

Remark 3.2 (Choice of norms) It is essential to the convergence of the PDHGalgorithm
that we use a Ḣ1 norm penalization in our definition of h(m+1), instead of an L2

penalization, as in our definition of φ(m+1). As observed by Jacobs, Léger, Li, and
Osher [22], this choice of norms ensures that the gradient operator ∇ : Ḣ1 → (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see Eqs. (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (Extension to the standard Laplacian) It is possible to extend the above
algorithm to the case of crystal evolution equations with alternative surface energy
interactions. In particular, when�1 is replaced by� = �2 (see e.g. [1, 12, 13, 18, 34–
36]), onewould replace F∗(φ)with F∗(φ) = χ‖φ‖2≤1. In this case, (I+σ∂F∗)−1(u) =
u/‖u‖2. On the other hand, for general �p, p �= 1, 2, there is no explicit formula for
this operator (the proximal map).

3.2 Convergence of PDHG to semi-implicit scheme

We now prove that, in one dimension, if the reciprocal of the mobility is integrable,
we have

lim
M→+∞ �(h(M)) = inf

h∈L1(Td ),
∫
h=0

�(h) = �(hn+1),

where (h(M), φ(M)) are the ergodic sequences, defined by

(
h(M), φ(M)

)
=

(
1

M

M∑
m=1

h(m),
1

M

M∑
m=1

φ(m)

)
. (3.11)

Furthermore, if the initial condition for our PDHG scheme h(0) := hn is sufficiently
regular, we obtain quantitative estimates on the rate of convergence.

Our main result is the following:

Theorem 3.4 Suppose the PDHG algorithm is initialized with

1. h(0) := hn ∈ L1
M (T) ∩ H−1

hn (T) with E(hn) < +∞ and 1/M(hn) ∈ L1(T);
2. φ(0) ∈ L∞(T) with ‖φ(0)‖∞ ≤ 1 .
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Then, for all ε > 0, there exist M∗, λ∗, σ∗ so that an ε-approximate solution may be
obtained using the step sizes λ∗ and σ∗ in at most M∗ iterations of our scheme, i.e.

�(h(M)) − �(hn+1) ≤ ε , ∀M ≥ M∗,

where h(M) is the ergodic sequence and hn+1 is the unique minimizer of �. The
constants M∗, λ∗, σ∗ depend on ε, ‖hn‖T V , ‖M(hn)‖1, ‖1/M(hn)‖1, and the rate at
which the function δ �→ ‖hn ∗ϕδ −hn‖T V converges to zero, where ϕδ(x) = ϕ(x/δ)/δ
is a compactly supported mollifier.

If, in addition, the initialization h(0) := hn satisfies ∇hn ∈ BV (T), then

‖hn ∗ ϕδ − hn‖T V ≤ δ‖∇hn‖T V M1(ϕ) ,

so there exists a computable constant c depending on ‖hn‖T V , ‖∇hn‖T V , ‖M(hn)‖1,
‖1/M(hn)‖1 and ϕ, so that for

M∗ := 2π
16c

ε2
, λ∗ = c

ε
, σ∗ = ε

c
,

we have that (h(M), φ(M)) is an ε-approximate solution for all M ≥ M∗.

Remark 3.5 The assumption hn ∈ L1
M∩H−1

hn ,E(hn) < +∞ ensures sufficient regular-
ity so that the subsequent step of the scheme hn+1 is well-defined; see Propositions 2.3
and 2.6.

Remark 3.6 Our assumption that the reciprocal of the mobility is integrable is similar
to analogous assumptions in recent work on weighted Hilbert space discretizations
for 2-Wasserstein gradient flows. In particular, Cancés, Gallouët, and Todeschi [5]
consider a fully implicit scheme for M(h) = h + 1 > 0 on a compact domain, which
ensures 1/M(h) ∈ L∞, hence the reciprocal of the mobility is integrable.

In the particular case of the regularized exponential mobility (2.13), the constraint
that hn ∈ L1

M and 1/M(hn) ∈ L1 is equivalent to requiring M(hn) and 1/M(hn) be
integrable. In fact, they are both in L∞(T) for all ε > 0, due to the estimate

|∇ϕε ∗ sgn(hn(x))| ≤ 1

ε
‖∇ϕ‖1.

The key step in our proof of Theorem 3.4, is to estimate

min
‖h(0)−h‖Ḣ1≤R

�(h) − �(hn+1), h(0) := hn, (3.12)

by a quantitative bound that goes to zero as R → +∞. This is the content of Proposi-
tion 3.11 below. This estimate shows that, even though the initialization of our PDHG
scheme h(0) = hn will, in general, be an infinite Ḣ1(T) distance from the optimizer
hn+1, we can still make the objective function� arbitrarily close to the optimumwhile
remaining finite Ḣ1(T) distance from the initialization.
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3.3 Proof of convergence of PDHG

We begin by collecting a few basic estimates for the outer semi-implicit time dis-
cretization, which are immediate consequences of the definition of the sequence in
Eq. (2.7), since �(hn+1) ≤ �(hn).

Lemma 3.7 (basic estimates for semi-implicit scheme) Let E be the total variation
energy (2.10–2.11), and suppose hn ∈ L1

M (T) ∩ H−1
hn (T) ∀ n ∈ N and E(h0) < +∞.

Then,

1. ‖hn+1‖T V ≤ ‖hn‖T V ≤ · · · ≤ ‖h0‖T V < +∞,
2. ‖hn+1 − hn‖H−1

hn
≤ 2τ‖hn‖T V ≤ 2τ‖h0‖T V .

Next, we collect a few elementary properties of the space H−1
h (T).

Lemma 3.8 Suppose h ∈ L1
M (T) and ψ ∈ H−1

h (T). Then there exists ηψ ∈ L1(T) so
that ‖ηψ‖1 ≤ ‖ψ‖H−1

h
‖M(h)‖1 satisfying

〈ψ, f 〉 =
∫
T

ηψ · ∇ f for all f ∈ C∞(T) and ‖ψ‖2
H−1
h

=
∫
T

|ηψ |2
M(h)

.

Proof By the definition of H−1
h as the dual of H1

h and theRiesz-Fréchet Representation
theorem, there exists ξψ ∈ H1

h so that

〈ψ, f 〉 =
∫
T

M(h(x))∇ f (x) · ∇ξψ(x)dx for all f ∈ C∞(T) with mean zero

(3.13)

and

‖ψ‖2
H−1
h

= ‖ξψ‖2
H1
h

=
∫
T

M(h(x))|∇ξψ(x)|2dx . (3.14)

Note that, due to the fact that we may add or subtract a constant from f without
modifying ∇ f , Eq. (3.13) holds for all f ∈ C∞(T).

Define ηψ(x) = ∇ξψ(x)M(h(x)). Since ξψ ∈ H1
h and M(h) ∈ L1, by Hölder’s

inequality,

‖ηψ‖1 ≤ ‖∇ξψ

√
M(h)‖2‖

√
M(h)‖2 ≤ ‖ξψ‖H1

h
‖M(h)‖1/21 = ‖ψ‖H−1

h
‖M(h)‖1/21 .

Finally, substituting ηψ in Eqs. (3.13) and (3.14) above gives the result. ��
Wewill also use the following elementary estimate relating the L∞ and TV norms.

Lemma 3.9 If g ∈ L1(T),
∫
g = 0, and ‖g‖T V < +∞, then ‖g‖∞ ≤ ‖g‖T V .
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Proof Since g ∈ BV (T)with
∫
T
g = 0, there exist x0, x1 ∈ T such that g(x0) ≥ 0 and

g(x1) ≤ 0. By the characterization of the total variation norm in terms of variations
of g over partitions of T, for any such x0 and x1, we have

|g(x0)| + |g(x1)| = g(x0) − g(x1) = |g(x0) − g(x1)| ≤ ‖g‖T V .

Hence ‖g‖∞ ≤ ‖g‖T V . ��
In order to quantify the decay of (3.12), we construct a competitor hδ that satisfies

the constraint ‖hn − hδ‖Ḣ1 ≤ R and for which we can estimate �(hδ) − �(hn+1) by
considering the total variation energy E and the norm h �→ ‖h − hn‖H−1

hn
separately.

Lemma 3.10 (construction of competitor) Let hn+1 denote the minimizer of �. Then,
there exists hδ ∈ BV (T) so that

1. ‖hδ − hn‖Ḣ1 ≤ 2
√
2π
δ

‖ϕ‖∞‖hn‖T V
2. ‖hδ − hn‖2

H−1
hn

− ‖hn+1 − hn‖2
H−1
hn

≤ 16πδM1(ϕ)‖hn‖2T V ‖1/M(hn)‖1;
3. ‖hδ‖T V − ‖hn+1‖T V ≤ ‖hn ∗ ϕδ − hn‖T V .
Proof In order to construct our approximating sequence hδ , we first prove some basic
properties of hn+1 − hn . By Lemma 3.7 (1), we have ‖hn+1‖T V ≤ ‖hn‖T V < +∞,
so ‖hn+1 − hn‖T V ≤ 2‖hn‖T V . Furthermore, since hn+1 and hn have mean zero, so
does hn+1 − hn . Thus, by Lemma 3.9, we conclude

‖hn+1 − hn‖∞ ≤ ‖hn+1 − hn‖T V ≤ 2‖hn‖T V . (3.15)

By Lemma 3.7 (2), we also have

‖hn+1 − hn‖H−1
hn

≤ 2τ‖hn‖T V . (3.16)

Therefore, by Lemma 3.8, for ψ = hn+1 − hn , there exists η ∈ L1(T) so that

‖η‖1 ≤ ‖hn+1 − hn‖H−1
hn

‖M(hn)‖1, (3.17)

〈hn+1 − hn, f 〉 =
∫

η f ′ for all f ∈ C∞(T), (3.18)

‖hn+1 − hn‖2
H−1
hn (T)

=
∫ |η|2

M(hn)
. (3.19)

Since hn+1 − hn ∈ L∞(T), Eq. (3.18) implies that the distributional gradient η′ ∈
L∞(T), so by Poincaré’s inequality, η ∈ W 1,∞(T) with

‖η‖∞ ≤ 2π‖η′‖∞ = 2π‖hn+1 − hn‖∞ ≤ 4π‖hn‖T V (3.20)

We now use η to construct our approximation hδ . Fix a compactly supported mol-
lifier ϕ : R → [0,+∞), suppϕ ⊆ B2π (0), and let ϕδ(x) = ϕ(x/δ)/δ. (This mollifier

123



A proximal-gradient algorithm for crystal surface evolution 649

does not need to coincide with that used to regularize the mobility.) Define

ηδ := η ∗ ϕδ. (3.21)

so (hn+1 − hn) ∗ ϕδ = η′
δ . We then choose our approximation hδ to be

hδ = hn + (hn+1 − hn) ∗ ϕδ (3.22)

With this definition of hδ in hand, we turn to the proof of item (1) above. By
inequality (3.15), we have for all f ∈ C∞(T),

∣∣∣∣
∫

f ′(hn − hδ)

∣∣∣∣ =
∣∣∣∣
∫

f ′(hn+1 − hn) ∗ ϕδ

∣∣∣∣ =
∣∣∣∣
∫

(ϕδ ∗ f )′(hn+1 − hn)

∣∣∣∣
≤ ‖ϕδ ∗ f ‖∞‖hn+1 − hn‖T V ≤ 2

√
2π

δ
‖ϕ‖∞‖hn‖T V ‖ f ‖2.

This ensures hn − hδ ∈ H1(T) and implies the bound in item (1).
Now, we turn to item (2). First, we estimate the rate at which ηδ converges to η. By

definition of ηδ , the fact ‖η′‖∞ = ‖hn+1 − hn‖∞ ≤ 2‖hn‖T V , and inequality (3.15),

|ηδ(x) − η(x)| =
∣∣∣∣
∫
T

ϕδ(x − y)(η(y) − η(x))dy

∣∣∣∣ ≤ ‖η′‖∞
∫
T

ϕδ(x − y)|x − y|dy
≤ 2δM1(ϕ)‖hn‖T V (3.23)

where M1(ϕ) is the first moment of ϕ.
Next, we estimate ‖hδ − hn‖H−1

hn
in term of ηδ . By definition,

‖hδ − hn‖H−1
hn

= ‖(hn+1 − hn) ∗ ϕδ‖H−1
hn

= sup
f ∈C∞(T) s.t.

∫
f =0

∫
(hn+1 − hn) ∗ ϕδ f

‖ f ‖H1
hn

= sup
f ∈C∞(T)

∫
(hn+1 − hn) ∗ ϕδ f

‖ f ‖H1
hn

,

where in the last equality, we use that
∫
hn+1 − hn = ∫

(hn+1 − hn) ∗ ϕδ = 0. Using
that (hn+1 − hn) ∗ ϕδ = (ηδ)

′, integrating by parts, and applying Hölder’s inequality,
we obtain that, for any f ∈ C∞(T),

∫
(hn+1 − hn) ∗ ϕδ f

‖ f ‖H1
hn

= −
∫

ηδ f ′

‖ f ‖H1
hn

= −
∫

ηδM(hn)−1/2M(hn)1/2 f ′
(∫

M(hn)| f ′|2)1/2

≤
(∫ |ηδ|2

M(hn)

)1/2

,

Thus, ‖hδ − hn‖H−1
hn

≤ (∫ |ηδ|2/M(h)
)1/2

.
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We apply this to prove item (2). By Eq. (3.19),

‖hδ − hn‖2
H−1
hn

− ‖hn+1 − hn‖2
H−1
hn

= ‖(hn+1 − hn) ∗ ϕδ‖2H−1
hn

− ‖hn+1 − hn‖2
H−1
hn

≤
∫ |ηδ|2

M(hn)
−

∫ |η|2
M(hn)

=
∫

1

M(hn)
(ηδ − η) (ηδ + η)

≤ ‖ηδ − η‖∞ (‖ηδ‖∞ + ‖η‖∞) ‖1/M(hn)‖1
≤ 16πδM1(ϕ)‖hn‖2T V

∥∥1/M(hn)
∥∥
1 ,

where, in the last inequality, we apply our uniform bound on η, inequality (3.20), and
our uniform estimate on the convergence of ηδ to η, inequality (3.23). This completes
the proof of (2).

We conclude by showing item (3). By the triangle inequality,

‖hδ‖T V − ‖hn+1‖T V = ‖hn + (hn+1 − hn) ∗ ϕδ‖T V − ‖hn+1‖T V
≤ ‖hn ∗ ϕδ − hn‖T V + ‖hn+1 ∗ ϕδ‖T V − ‖hn+1‖T V . (3.24)

Furthermore, for any f ∈ C∞(T),

−
∫

f ′(hn+1 ∗ ϕδ) = −
∫

(ϕδ ∗ f )′hn+1 ≤ ‖ϕδ ∗ f ‖∞‖hn+1‖T V
≤ ‖ f ‖∞‖hn+1‖T V .

Therefore ‖hn+1 ∗ ϕδ‖T V ≤ ‖hn+1‖T V , which combined with (3.24) gives item (3).
��

We now apply this lemma to prove our key estimate, quantifying the rate of con-
vergence of functions h that are a finite distance from the initialization hn in the Ḣ1

norm to the optimizer of �.

Proposition 3.11 For any compactly supported mollifier ϕδ , there exists an explicit
constant C > 0 depending on ‖hn‖T V , ‖M(hn)‖1, and ‖1/M(hn)‖1, so that

min‖hn−h‖Ḣ1≤R
�(h) − �(hn+1) ≤ C

R
+ ‖hn ∗ ϕδ − hn‖T V (3.25)

where δ = 2
√
2π
R ‖ϕ‖∞‖hn‖2T V .

Proof Let hδ be as in Lemma 3.10 and choose δ > 0 so that

2
√
2π

δ
‖ϕ‖∞‖hn‖T V = R. (3.26)
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Then Lemma 3.10 (1) guarantees that ‖hδ − hn‖Ḣ1 ≤ R, so hδ is a candidate for the
minimization problem (3.25). Therefore, it suffices to bound the objective functional
when h = hδ . By Lemma 3.10 (2) and (3), we have

(
1

2τ
‖hδ − hn‖2

H−1
hn

+ ‖hδ‖T V
)

−
(

1

2τ
‖hn+1 − hn‖2

H−1
hn

+ ‖hn+1‖T V
)

≤ 16πδM1(ϕ)‖hn‖2T V ‖1/M(hn)‖1 + ‖hn ∗ ϕδ − hn‖T V

which, combined with Eq. (3.26), gives the result. ��
We now turn to the proof of our main result, Theorem 3.4, which shows that the

PDGH algorithm converges to the optimizer in the ergodic sense: that is, if h(M) is the
ergodic sequence (3.11), then limM→+∞ �(h(M)) = �(hn+1).

Proof of Theorem 3.4 Following Chambolle and Pock [9, equation 17] and Jacobs,
Léger, Li, and Osher [22], we consider the partial primal-dual gap

GR1,R2(h, φ) := sup
φ̂:

∥∥∥φ̂−φ(0)
∥∥∥
2
≤R1

L(h, φ̂) − inf
ĥ:

∥∥∥ĥ−h0
∥∥∥
Ḣ1

≤R2

L(ĥ, φ) (3.27)

where L(h, φ) is the Lagrangian defined in Eq. (3.3). Since the gradient operator
∂x : Ḣ1(T) → L2(T) satisfies

‖h′‖2 = ‖h‖Ḣ1 , ∀h ∈ Ḣ1,

the operator norm of the gradient is one. Consequently, by Chambolle and Pock [9,
Theorem 1], if λσ ≤ 1, then along the ergodic sequences (3.11),

GR1,R2(h
(M), φ(M)) ≤ 1

M

(
R2
1

σ
+ R2

2

λ

)
. (3.28)

We seek to bound each term in the partial primal-dual gap separately. Since
‖φ(0)‖∞ ≤ 1 (in fact, in practice we take φ(0) = 0) we have

{φ̂ : ‖φ̂‖∞ ≤ 1} ⊆ {φ̂ : ‖φ̂ − φ(0)‖2 ≤ 2
√
2π}. (3.29)

Since φ̂ �→ L(h(M), φ̂) �= −∞ only if ‖φ̂‖∞ ≤ 1, this implies

sup
φ̂:

∥∥∥φ̂−φ(0)
∥∥∥
2
≤2

√
2π

L(h(M), φ̂) = sup
φ̂:‖φ̂‖∞≤1

L(h(M), φ̂) = �(h(M)). (3.30)

By definition of φ(m+1) in Eq. (3.7), F∗(φ(m+1)) < +∞, so ‖φ(m+1)‖∞ ≤ 1 for
all m ∈ N and the ergodic sequence also satisfies ‖φ(M)‖∞ ≤ 1 for all M ∈ N. Thus,
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for any R > 0,

inf
ĥ:

∥∥∥ĥ−hn
∥∥∥
Ḣ1

≤R

L(ĥ, φ(M)) ≤ inf
ĥ:

∥∥∥ĥ−hn
∥∥∥
Ḣ1

≤R

sup
φ:‖φ‖∞≤1

L(ĥ, φ) = inf
ĥ:

∥∥∥ĥ−hn
∥∥∥
Ḣ1

≤R

�(ĥ).

(3.31)

Combining these estimates, we conclude that for any R > 0,

�(h(M)) − �(hn+1)
(3.30)= sup

φ̂:
∥∥∥φ̂−φn

∥∥∥
2
≤2

√
2π

L(h(M), φ̂) − �(hn+1)

(3.27)= G2√2π,R(h(M), φ(M))+ inf
ĥ:

∥∥∥ĥ−hn
∥∥∥
Ḣ1

≤R

L(ĥ, φ(M))−�(hn+1)

(3.31)≤ G2√2π,R(h(M), φ(M)) + inf
ĥ:

∥∥∥ĥ−hn
∥∥∥
Ḣ1

≤R

�(ĥ) − �(hn+1)

(3.28)≤ 1

M

(
8π

σ
+ R2

λ

)
+ inf

ĥ:
∥∥∥ĥ−hn

∥∥∥
Ḣ1

≤R

�(ĥ) − �(hn+1)

(3.25)≤ 1

M

(
8π

σ
+ R2

λ

)
+ C

R
+ ‖hn ∗ ϕδ − hn‖T V ,

where δ = 2
√
2π
R ‖ϕ‖∞‖hn‖T V and C > 0 depends on ‖hn‖T V , ‖M(hn)‖1, and

‖1/M(hn)‖1. We may optimize the first term on the right hand side by choosing

σ = 2
√
2π/R, λ = R/2

√
2π,

in which case we obtain

�(h(M)) − �(hn+1) ≤ 4
√
2πR

M
+ C

R
+ ‖hn ∗ ϕδ − hn‖T V . (3.32)

We claim that, since ‖hn‖T V < +∞,

lim
R→+∞ ‖hn ∗ ϕδ − hn‖T V = 0. (3.33)

Thus, we conclude the existence of M∗, λ∗, σ∗ such that for all M ≥ M∗, we have an
ε-approximate solution.
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It remains to prove the claim (3.33). Note that if φ ∈ C∞ satisfies ‖φ‖∞ ≤ 1, then
‖ϕδ ∗ φ‖∞ ≤ 1 for all δ > 0. Hence,

‖hn ∗ ϕδ‖T V = sup
‖φ‖∞≤1

∫
−(hn ∗ ϕδ)φ

′ = sup
‖φ‖∞≤1

∫
−hn(φ ∗ ϕδ)

′

≤ sup
‖φ‖∞≤1

∫
−hnφ′ = ‖hn‖T V < +∞

This shows ‖hn ∗ ϕδ − hn‖T V < +∞. Hence, for all ε > 0, there exists φ ∈ C∞ so

‖hn ∗ ϕδ − hn‖T V ≤ −
∫

(hn ∗ ϕδ − hn)φ′ + ε = −
∫

hn(φ ∗ ϕδ − φ)′ + ε.

(3.34)

Since φ is a smooth function on a compact set, sending δ → 0, we conclude that
lim supδ→0 ‖hn ∗ ϕδ − hn‖T V ≤ ε. Since ε > 0 was arbitrary, this proves our claim,
again using Eq. (3.26), relating δ and R.

Now, suppose the function hn satisfies a higher regularity assumption: (hn)′ ∈
BV (T). Following the same argument as in Eq. (3.34), we have

‖hn ∗ ϕδ − hn‖T V = sup
‖φ‖∞≤1

∫
(hn)′ · (φ ∗ ϕδ − φ).

Furthermore,

∫
(hn)′ · (φ ∗ ϕδ − φ) =

∫∫
(hn)′(x) · (φ(x − y) − φ(x))ϕδ(y)dydx

= −δ

∫∫
T×T

∫ 1

0
((hn)′(x))t Dφ(x − sy)yϕ(y)dsdydx

≤ δ‖(hn)′‖T V M1(ϕ)‖φ‖∞

As a consequence, Eq. (3.32) becomes

�(h(M)) − �(hn+1) ≤ 4
√
2πR

M
+ C

R
+ δ‖(hn)′‖T V M1(ϕ),

where δ = C ′/R, for C ′ = 2
√
2π‖ϕ‖∞‖hn‖T V . Thus, to obtain an ε > 0 accurate

solution, we require

M ≥ 4
√
2πR

(
ε − C ′′

R

)−1

, for C ′′ = C + C ′‖(hn)′‖T V M1(ϕ).
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Optimizing in R ≥ 0, we obtain that for R = 2C ′′/ε, the choices

M∗ := 16
√
2πC ′′

ε2
, λ∗ = C ′′

√
2πε

, σ∗ =
√
2πε

C ′′ ,

ensure that (h(M), φ(M)) is an ε-approximate solution for all M ≥ M∗. ��

4 Fully discrete numerical method

In this section, we describe how the discrete time, spatially continuous PDHG algo-
rithm introduced in Sect. 3.1 can be implemented as a fully discrete numerical method
for simulating crystal surface evolution. In one spatial dimension, let [0, 2π ] be the
computational domain with periodic boundary conditions and �x and τ be the spa-
tial grid spacing and outer time step, respectively. Choose 0 = x1 < · · · < xNx =
2π − �x , where x j = ( j − 1)�x , �x = 2π

Nx
. For notational simplicity, let h and φ

denote the discrete vector approximations in R
Nx of the corresponding functions,

h = (h1, · · · , hNx )
t , φ = (φ1, · · · φNx )

t .

Let D and A be the matrix approximations of the operators ∇ and −�h , where D is
given by a centered difference method and A := Dt diag(M(h)1, . . . , M(h)Nx )D.

We discretize our PDHGmethod (3.8)–(3.10) via a finite difference scheme, replac-
ing the spatially continuous operators with their discrete counterparts. This leads to
Algorithm 4.1. Finally, we construct our numerical solution h(x, t) for the crystal
surface evolution equation by linearly interpolating between the spatial gridpoints and
taking a piecewise constant interpolation between the outer discrete time sequence hn .

Algorithm 4.1 PDHG for crystal surface evolution

Input: h0, T , τ , λ, σ , Choose δ > 0 sufficiently small
n = 0
while nτ ≤ T do

Let h(0) = hn , φ(0) = 0, and m = 0;
repeat

h(m+1) = (DtD + λ
τ A

−1(· − hn))−1
(
DtDh(m) − λDtφ(m)

)
,

h̄(m+1) = 2h(m+1) − h(m),
φ(m+1) = (I + σ∂F∗)−1(φ(m) + σDh̄(m+1)) ,
m = m + 1,

until stopping criteria are achieved: |(h(m+1) − h(m), φ(m+1) − φ(m))| < δ;

hn+1 = h̄(m+1) and n = n + 1,
end

Remark 4.1 (Convergence of fully discrete algorithm) Using standard estimates relat-
ing finite difference operators to their continuum counterparts, one could adapt our
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Fig. 1 Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to different behavior as ε → 0,
Nx → +∞. Above, we consider the spatially discrete mobility for height profile h(x) = sin(x). Left: For
the original mobility, with sgn(x), even when ε → 0 slowly as Nx → +∞, the L1 norm of the mobility
diverges. Right: Approximating with tanh(10x) allows us to send ε → 0 rapidly as Nx → +∞, while
preserving a uniform bound on the L1 norm of the mobility

main convergence result, Theorem 3.4, to be a convergence result for the fully dis-
crete PDHG method, which comprise the inner iterations of Algorithm 4.1. See, for
example, work by Wang and Lucier [49], which considers related estimates for the
Rudin-Osher-Fatemi image denoising model.

In practice, to avoid inverting a near-singular matrix in our computation of h(m+1),
we compute the inverse operator in the definition of h(m+1) via

(
DtD + λ

τ
A−1(· − hn)

)−1

u =
(τ

λ
ADtD + I

)−1 (τ

λ
Au + hn

)
. (4.1)

On the other hand, in order to compute φ(m+1), we use the explicit formula

(I + σ∂F∗)−1(u) = [
min(|ui |, 1) sgn(ui )

]
,

where ui denotes the i th component of the vector u. Note that, while other initializa-
tions of the dual variable φ(0) are possible (for example, initializing φ(0) to coincide
with the last value of φ(m+1) at the previous outer time step), we observe slightly better
performance always initializing φ(0) = 0.

We discretize our regularized mobility as follows:

M(h) := e−∇ϕε∗sgn( f ), f = minmod{D+h, D−h}, (4.2)

where D± denotes the forward/backward finite difference operators. The minimum
modulus limiter of the gradient allows us to respect shock-like objects in the facet
formation; see, e.g., [40]. Heuristically, this enforces the property of the original,
unregularized mobility (1.5) that once a region of the crystal surface becomes flat at
a location x0, i.e. d

dx h(x0, t) = 0, the surface remains flat at x0. We compute the
convolution in (4.2) via a fast Fourier transform.
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Finally, in our simulations, we sometimes approximate sgn(x) in the definition of
the mobility with tanh(10x). In order to achieve accurate facet formation, we must
strike a balance between choosing the spatial discretization Nx large and the mobility
regularization parameter ε > 0 small. As illustrated in Fig. 1, the original sgn(x)
function is extremely sensitive to small choices of ε, which quickly cause the L1

norm of the mobility to become unbounded as ε → 0, Nx → +∞, going against the
assumption in our convergence result for the PDHGmethod, Theorem 3.4, which was
proved for fixed ε > 0. On the other hand, the tanh(10x) approximation allows us to
refine ε and Nx simultaneously, while keeping the L1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.

5 Numerical results

In this section, we present a range of numerical examples illustrating the performance
of the proposed algorithm. In each test, we consider the stopping criteria ‖(h(m+1) −
h(m), φ(m+1) − φ(m))‖ < δ, where we take the threshold δ = 5 × 10−6. Unless
otherwise specified, the outer time step for the semi-implicit scheme hn is chosen to
be τ = T /10, where T is the final computational time, so that Nt = 10. In order to
ensure that the matrix inverse in the definition of h(m+1), Eq. (4.1), is well defined,
we choose λ sufficiently large so that τ

λ
‖ADtD‖ < 1. In the following examples, we

choose σ = 5 × 10−4, λ = 500 for all Nx . We consider three choices of initial data,
as shown in Fig. 2.

Fig. 2 Choices of initial data

(a) (b) (c)

Fig. 3 Dynamics of crystal surface evolution equation for different choices of initial data. Near maxima,
flat facets form and expand outward, while minima remain stationary

123



A proximal-gradient algorithm for crystal surface evolution 657

In Fig. 3, we display the dynamics of the crystal surface evolution equation for each
choice of initial data depicted in Fig. 2. We chose ε = 0.04, Nx = 200 in each of these
calculations, letting T = 10−2 in the case of the (a) Sinusoidal (h0 = hsine) and the (c)
Facet dynamics (h0 = hfacet) and T = 10−3 for the (b) Jump (h0 = hjump) dynamics.
Near the maxima, flat facets expand outward like a free boundary type solution, while
the minimum is stationary, as predicted in [33].

Remark 5.1 (Comparison to related numerical methods) We note that, qualitatively,
the solutions we find using the algorithm we present here match the solutions found in
[33] for Eq. (1.2), where the authors implemented a very different numerical scheme.
There, a numerical scheme was developed by regularizing the mobility and using stiff
solvers in time, with no theoretical basis for convergence to the desired dynamics,
though it produced comparable dynamics to those predicted by an exact formula for
the facet dynamics, also derived in [33]. Unfortunately, due to the extreme stiffness of
the problem, introduced by the mobility, it was impossible to successively refine the
grid in the previous numerical scheme to do a proper numerical convergence study.
(Indeed, we consider it a notable strength of our present method that we are able to
refine the spatial discretization and perform a robust numerical convergence analysis
in Fig. 6.) The inability to refine the grid in the previous scheme prevents quantitative
comparison with the new method introduced in the present paper. Instead, we simply
remark that, on coarse grids, both schemes provide qualitatively similar simulations
for each choice of initial data.

In Fig. 4, we analyze properties of the numerical method, under the same choices
of parameters as in Fig. 3 and with the same ordering of each type of initial data

(a) (b) (c)

(d) (e) (f)

Fig. 4 Top row a–c The total variation energy decreases in time along numerical solutions for our initial
data types, reflecting the underlying gradient flow structure. Bottom row d–f The L1 norms of the mobility
M(h) and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow for each type
of initial data
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(Sinusoidal, Jump, Facet). In the top row (a-c), we show the decrease in the discrete
TV norm ‖Dh‖1 in time along solutions of the equation for each of our initial data,
reflecting the gradient flow structure of the equation. In the bottom row (d-f), we plot
the L1 norms of the mobility M(h) and its reciprocal 1/M(h) for each type of initial
data. A key assumption in our convergence result for the PDHGmethod, Theorem 3.4,
is that both remain bounded, uniformly in the spatial discretization. We can see in the
above simulations that, while these norms are very large, they indeed remain bounded
along the flow.

In Fig. 5, we compare two different choices of mobility for Sinusoidal initial data:
(a) Eq. (4.2) and (b) a modified mobility, replacing sgn(x) with tanh(10x). In both
cases, we take ε = .04. As can be seen on the plot (c) containing the corresponding L1

norms for the modified mobility, on one hand, the modified mobility has the benefit
of drastically decreasing the L1 norm of the mobility and its reciprocal: compare the
plot (c) of Fig. 5 to plot (d) of Fig. 4 where the mobility is as in 4.2. The method also
requires fewer iterations to meet the stopping criteria. On the other hand, the modified
mobility allows for slightly more movement and facet formation at the minimum,
which goes against the predicted dynamics of the original equation: compare the plot
on the left with the plot in the middle.

(a) (b) (c)

Fig. 5 a, b We compare the dynamics for Sinusoidal initial data for the mobility given by Eq. (4.2) and
for a modified mobility, in which sgn(x) is replaced by tanh(10x). c While the original mobility more
accurately prevents facet formation at the local minimum, the modified mobility leads has smaller L1 norm
and requires fewer iterations to converge

(a) (b) (c)

Fig. 6 a Log–Log plot of relative L1 error versus spatial grid size. b Log–Log plot of relative L1 error
versus external time step. c Comparison of number of time steps required to meet stopping criteria for either
Ḣ1 or L2 penalization. We observe superior performance for the Ḣ1 penalization, especially as the spatial
grid is refined
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Finally, in Fig. 6, we analyze the rate of convergence of our method. We consider
sinusoidal initial data with the modified mobility, replacing sgn(x) with tanh(10x),
ε = .05 and T = 10−4. In plot (a) of of Fig. 6, we examine how the relative L1 error
depends on the number of spatial gridpoints Nx for a fixed temporal discretization,
Nt = 10. For Nx = 16, 32, 64, 128, 256, 512, we plot ‖h(Nx ) − h(2Nx )‖L1 . We
observe slightly sublinear convergence, in line with the low spatial regularity of our
solutions.

In plot (b) of Fig. 6, we examine how the relative L1 error scales with the external
time step, used to define the semi-implicit scheme hn via τ = T /Nt , for a fixed spatial
discretization Nx = 256. For Nt = 5, 10, 20, 40, 80, we plot ‖h(Nt )−h(2Nt )‖L1 .We
observe approximately first order convergence, in agreement with the interpretation of
our scheme as a semi-implicit version of the minimizing movements scheme, which
can be thought of as a generalized Euler method.

In plot (c) of Fig. 6, we illustrate the importance of the choice of norms in our
PDHG algorithm, as explained in Remark 3.2. This discussion is born out numerically
in that compare the number of iterations required for each method as the spatial grid
is refined, Nx = 32, 64, 124, 250, 500, 750. We consider T = 10−6 external time
steps, setting σ = 5× 10−5, λ = 5× 10−5 for the L2 algorithm (the largest we could
take to allow convergence for the L2 Algorithm to still converge at all scales) and
σ = 5 × 10−4, λ = 500 for our Ḣ1 algorithm, Algorithm 4.1. At the fully discrete
level, existing work [9] ensures that the PDHG algorithm would converge, even if the
norm penalization in the definition of h(m+1) was changed from a Ḣ1 norm to a L2

norm. At the level of Algorithm 4.1, this would amount to modifying the computation
of h(m+1) as follows:

h(m+1) =
(
I + λ

τ
A−1(· − hn)

)−1 (
h(m) − λDtφ(m)

)
. (5.1)

On one hand, to invert the matrix in the above formula, we need τ
λ
‖A‖ < 1. On

the other hand, existing convergence results on PDHG require λσ‖DtD‖ < 1, where
‖DtD‖ → +∞ as the spatial grid is refined. These requirements lead to significant
tension regarding the size of λ. In contrast, when choosing the Ḣ1 norm to penalize the
primal variables in our PDHG algorithm, the analogue of the constraint λσ‖DtD‖ < 1
is simply λσ < 1, since the gradient is a bounded operator on Ḣ1. Thus, our method
avoids this source of tension in the definition of the inner time steps λ, σ .

Remark 5.2 (Dependence on regularization ε > 0) In the preceding simulations, we
consider strictly positive regularization parameters ε > 0. Note that our methodwould
not perform well if ε → 0 for a fixed spatial discretization Nx and outer time step τ ,
since thiswould cause ‖1/M(h)‖1 to become unbounded, violating a key hypothesis in
our convergence result, Theorem 3.4. An examination of the proof of Proposition 3.11
and Theorem 3.4 shows that, as ‖1/M(hn)‖1 → +∞, we have λ∗ → +∞, σ∗ → 0,
and M∗ → +∞: the primal time step becomes arbitrarily large, the dual time step
becomes arbitrarily small, and the number of iterations required to obtain a solution
of a given accuracy becomes arbitrarily large.
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A challenging question that we leave to future work is to find a scaling relationship
between ε, Nx and τ that allows one to send ε → 0 as Nx → +∞ and τ → 0. This
is closely related to the question of proving existence of solutions to the PDE and
convergence of the outer time discretization to such solutions.

References

1. Ambrose, D.M.: The radius of analyticity for solutions to a problem in epitaxial growth on the torus.
Bull. Lond. Math. Soc. 51(5), 877–886 (2019)

2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability
measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

3. Bonzel, H., Preuss, E.: Morphology of periodic surface profiles below the roughening temperature:
aspects of continuum theory. Surf. Sci. 336(1–2), 209–224 (1995)

4. Burton, W.-K., Cabrera, N., Frank, F.: The growth of crystals and the equilibrium structure of their
surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 243(866), 299–358 (1951)

5. Cancès, C., Gallouët, T.O., Todeschi, G.: A variational finite volume scheme for Wasserstein gradient
flows. arXiv:1907.08305 (2019)

6. Carlier, G., Duval, V., Peyré, G., Schmitzer, B.: Convergence of entropic schemes for optimal transport
and gradient flows. SIAM J. Math. Anal. 49(2), 1385–1418 (2017)

7. Carrillo, J.A., Craig, K., Wang, L., Wei, C.: Primal dual methods for Wasserstein gradient flows.
arXiv:1901.08081 (2019)

8. Carrillo, J.A., Laurençot, P., Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness and
long-time asymptotics. J. Differ. Equ. 247(8), 2209–2234 (2009)

9. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm.Math.
Program. 159(1–2), 253–287 (2016)

10. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math.
Anal. 27(2), 404–423 (1996)

11. Gao, Y.: Global strong solution with BV derivatives to singular solid-on-solid model with exponential
nonlinearity. J. Diff. Equ. 267(7), 4429–4447 (2019)

12. Gao, Y., Katsevich, A.E., Liu, J.-G., Lu, J., Marzuola, J.L.: Analysis of a fourth order exponential pde
arising from a crystal surface jump process with Metropolis-type transition rates. Pure Appl. Anal. 3,
595–612 (2021)

13. Gao, Y., Liu, J.-G., Lu, J., Marzuola, J.L.: Analysis of a continuum theory for broken bond crystal
surface models with evaporation and deposition effects. Nonlinearity 33, 3816–3845 (2020)

14. Giga, M.-H., Giga, Y.: Very singular diffusion equations: second and fourth order problems. Jpn. J.
Ind. Appl. Math. 27(3), 323–345 (2010)

15. Giga, Y., Kohn, R.V.: Scale-invariant extinction time estimates for some singular diffusion equations.
Discrete Contin. Dyn. Syst 30(2), 509–535 (2011)

16. Giga, Y., Kuroda, H., Matsuoka, H.: Fourth-order total variation flow with Dirichlet condition: charac-
terization of evolution and extinction time estimates. Hokkaido Univ. Preprint Ser. Math. 1064, 1–36
(2015)

17. Giga, Y., Ueda, Y.: Numerical computations of split Bregman method for fourth order total variation
flow. J. Comput. Phys. 405, 109114 (2020)

18. Granero-Belinchón, R., Magliocca, M.: Global existence and decay to equilibrium for some crystal
surface models. arXiv:1804.09645 (2018)

19. Gruber, E., Mullins, W.: On the theory of anisotropy of crystalline surface tension. J. Phys. Chem.
Solids 28(5), 875–887 (1967)

20. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

21. Ihle, T., Misbah, C., Pierre-Louis, O.: Equilibrium step dynamics on vicinal surfaces revisited. Phys.
Rev. B 58(4), 2289 (1998)

22. Jacobs, M., Léger, F., Li, W., Osher, S.: Solving large-scale optimization problems with a convergence
rate independent of grid size. SIAM J. Numer. Anal. 57(3), 1100–1123 (2019)

23. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM
J. Math. Anal. 29(1), 1–17 (1998)

123

http://arxiv.org/abs/1907.08305
http://arxiv.org/abs/1901.08081
http://arxiv.org/abs/1804.09645


A proximal-gradient algorithm for crystal surface evolution 661

24. Katsevich, A.: From local equilibrium to numerical pde: metropolis crystal surface dynamics in the
rough scaling limit. arXiv:2108.03527 (2021)

25. Katsevich, A.: The local equilibrium state of a crystal surface jump process in the rough scaling regime.
arXiv:2106.04652 (2021)

26. Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95(5–6), 1187–1220 (1999)
27. Kohn, R.V., Versieux, H.M.: Numerical analysis of a steepest-descent pde model for surface relaxation

below the roughening temperature. SIAM J. Numer. Anal. 48(5), 1781–1800 (2010)
28. Krishnamachari, B., McLean, J., Cooper, B., Sethna, J.: Gibbs–Thomson formula for small island

sizes: corrections for high vapor densities. Phys. Rev. B 54(12), 8899 (1996)
29. Krug, J., Dobbs, H., Majaniemi, S.: Adatom mobility for the solid-on-solid model. Zeitschrift für

Physik B Condens. Matter 97(2), 281–291 (1995)
30. Li, W., Lu, J., Wang, L.: Fisher information regularization schemes for Wasserstein gradient flows. J.

Comput. Phys. 109449 (2020)
31. Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction–diffusion systems.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(2005), 20120346 (2013)
32. Lisini, S., Matthes, D., Savaré, G.: Cahn–Hilliard and thin film equations with nonlinear mobility as

gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253(2), 814–850 (2012)
33. Liu, J.-G., Lu, J., Margetis, D., Marzuola, J.L.: Asymmetry in crystal facet dynamics of homoepitaxy

by a continuum model. Physica D 393, 54–67 (2019)
34. Liu, J.-G., Strain,R.M.:Global stability for solutions to the exponential pde describing epitaxial growth.

Interfaces Free Bound. 21, 51–86 (2019)
35. Liu, J.-G., Xu, X.: Existence theorems for a multidimensional crystal surface model. SIAM J. Math.

Anal. 48(6), 3667–3687 (2016)
36. Liu, J.-G., Xu, X.: Analytical validation of a continuum model for the evolution of a crystal surface in

multiple space dimensions. SIAM J. Math. Anal. 49(3), 2220–2245 (2017)
37. Margetis, D., Kohn, R.V.: Continuum relaxation of interacting steps on crystal surfaces in 2+1 dimen-

sions. Multiscale Model. Simul. 5(3), 729–758 (2006)
38. Marzuola, J.L., Weare, J.: Relaxation of a family of broken-bond crystal-surface models. Phys. Rev. E

88(3), 032403 (2013)
39. Najafabadi, R., Srolovitz, D.J.: Elastic step interactions on vicinal surfaces of fcc metals (1994)
40. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J.

Comput. Phys. 87, 408–463 (1990)
41. Odisharia, I.V.: Simulation and Analysis of the Relaxation of a Crystalline Surface. New York Univer-

sity, New York (2006)
42. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun.

Partial Differ. Equ. 26(1–2), 101–174 (2001)
43. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Courier Corporation, New York (2013)
44. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica

D 60(1–4), 259–268 (1992)
45. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to ginzburg-landau.

Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 57(12), 1627–1672 (2004)
46. Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications.

Discrete Contin. Dyn. Syst. 31(4), 1427–1451 (2011)
47. Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal

method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)
48. Shenoy, V., Freund, L.: A continuum description of the energetics and evolution of stepped surfaces

in strained nanostructures. J. Mech. Phys. Solids 50(9), 1817–1841 (2002)
49. Wang, J., Lucier, B.J.: Error bounds for finite-difference methods for Rudin–Osher–Fatemi image

smoothing. SIAM J. Numer. Anal. 49(2), 845–868 (2011)
50. Zangwill, A., Luse, C., Vvedensky, D., Wilby, M.: Equations of motion for epitaxial growth. Surf. Sci.

274(2), L529–L534 (1992)
51. Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation,

vol. 120. Springer, Berlin (2012)

123

http://arxiv.org/abs/2108.03527
http://arxiv.org/abs/2106.04652


662 K. Craig et al.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Katy Craig1 · Jian-Guo Liu2 · Jianfeng Lu3 · Jeremy L. Marzuola4 · Li Wang5

Katy Craig
kcraig@math.ucsb.edu

Jian-Guo Liu
jliu@math.duke.edu

Jianfeng Lu
jianfeng@math.duke.edu

Li Wang
wang8818@umn.edu

1 Department of Mathematics, University of California, Santa Barbara, USA

2 Department of Mathematics and Department of Physics, Duke University, Durham, NC 27708,
USA

3 Department of Mathematics, Chemistry and Physics, Duke University, Durham, NC 27708, USA

4 Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, USA

5 School of Mathematics, University of Minnesota, Twin Cities, USA

123


	A proximal-gradient algorithm for crystal surface evolution
	Abstract
	1 Introduction
	2 Crystal height evolution as a weighted H-1 gradient flow
	2.1 Weighted H-1 gradient flow
	2.2 Semi-implicit scheme for Hh-1 gradient flows
	2.3 H-1h gradient flow for crystal surface evolution
	2.3.1 Total variation energy on H-1h 
	2.3.2 Regularization of mobility


	3 A PDHG method for computing the semi-implicit scheme
	3.1 Definition of PDHG scheme
	3.2 Convergence of PDHG to semi-implicit scheme
	3.3 Proof of convergence of PDHG

	4 Fully discrete numerical method
	5 Numerical results
	References




