Section 2.3 Some Applications of First Order Equations

1. A gas tank holds 200 gallons of pure jet fuel. Now a person is pumping the liquid out of this tank at a rate of 2 gallons per second while replacing it at an equal rate with a mixture which contains 50% water. Assume that the mixture within the tank remains wellstirred throughout this process.
(a) Find an initial value problem to describe the amount of water, $Q(t)$, in this tank.
Comments: (1) The total amount of the mixture in the tank remains unchanged. (2) $\frac{d Q}{d t}=$ rate in - rate out.
(b) Solve the problem from part (a).
(c) Find the limiting amount of water in the tank as $t \rightarrow \infty$.
(d) How long will it take for the amount of water to reach 99% of its limiting value?
2. A young person opened an account with initial deposit of M_{0} dollars in a bank that pays interest at an annual rate r. Let $M(t)$ be the amount of money in this account after t years. (a) If the interest is compounded continuously, find $M(t)$.
Comment: Continuous compounding means $\frac{d M}{d t}=r M$.
(b) Suppose that the interest is compounded n times per year instead of continuous compounding. Then find $M(t)$.
(c) What's the limiting value of $M(t)$ from part (b) as $n \rightarrow \infty$?
Comment: Recall that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.
(d) Now assume continuous compounding. Also, suppose that person deposits k dollars to the account each year. Find $M(t)$.
