Section 2.1 First Order Linear Differential Equations

1. Determine the order of the following equations. Are they linear or nonlinear?
(a) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+t^{3} y^{5}=0$
(b) $\sin \left(t^{3}\right) \frac{\mathrm{d}^{4} y}{\mathrm{~d} t^{4}}+\cos \left(t^{3}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+t y=t^{2} e^{t}$
(c) $y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} t}+t=0$

Definition: The order of a differential equation is the highest order of the derivatives in the equation.
Definition: A linear ordinary differential equation takes the form of

$$
a_{n}(t) \frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}+a_{n-1}(t) \frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}+\cdots+a_{0}(t) y=g(t)
$$

Comment: There are two classes of differential equations. Ordinary differential equations (ODE) contain only ordinary derivatives, while partial differential equations (PDE) contain partial derivatives.

General form of a first order linear differential equation:

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

2. Consider the equation $y^{\prime}+\frac{1}{2} y=2+t$.
(a) Is this a first order linear differential equation? If yes, $p(t)=$? $g(t)=$?
(b) Find $\mu(t)=\exp \int p(t) d t$.

Definition: $\mu(t)$ is an integrating factor.
Comment: You can simply drop the constant C from the integrating factor.
(c) Multiply both sides of the equation by $\mu(t)$.
(d) Rewrite the left-hand side of the equation as the derivative of some expression.
(e) Find the general solution in explicit form. Comment: Explicit form means y is isolated.

A systematical way to solve equation (1) is as follows.
Step 1: Multiply both sides of the equation by $\mu(t)=\exp \int p(t) d t$.
Step 2: Rewrite the left side as $\frac{d}{d t}(\mu y)$.
Step 3: Integrate both sides.
3. Justify the formula $\mu(t)=\exp \int p(t) d t$.
4. Find the general solution in explicit form for the equation $\frac{d y}{d t}=a y+b$, where a, b are constants. Discuss the behavior of y as $t \rightarrow \infty$.
5. Solve the initial value problem

$$
\begin{aligned}
t y^{\prime}+2 y & =4 t^{2} \\
y(1) & =2
\end{aligned}
$$

Comment: Always write the differential equation in the standard form (1) before calculating the integrating factor.

