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Abstract
We formulate a restricted version of the Tukey-Teichmüller Theo-

rem that we denote by (rTT). We then prove that (rTT) and (BPI)
are equivalent in ZF and that (rTT) applies rather naturally to several
equivalent forms of (BPI): Alexander Subbase Theorem, Stone Rep-
resentation Theorem, Model Existence and Compactness Theorems
for propositional and first-order logic. We also give two variations
of (rTT) that we denote by (rTT)+ and (rTT)++; each is equivalent
to (rTT) in ZF. The variation (rTT)++ applies rather naturally to
various Selection Lemmas due to Cowen, Engeler, and Rado.

1 Introduction

Let ZF denote Zermelo-Fraenkel set theory. It is well known that the axiom
of choice (AC) is independent of ZF. When we add AC to ZF we obtain the
most widely used axiom system for classical mathematics, namely

ZFC = ZF + AC.

It is also well known that there are many theorems of ZFC that are in fact
equivalent forms of AC. For example, we have the following short list (see
[12], [13], and [19] for much longer lists):

Theorem 1.1 (ZF) The following are equivalent:

(1) the axiom of choice (AC);
(2) the well-ordering principle;
(3) Zorn’s Lemma;
(4) Tychonoff Product Theorem;
(5) Tukey-Teichmüller Theorem (TT ).
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In this paper we are especially interested in (TT). Recall that a collection
A of subsets of a set X has finite character if for every A ⊆ X, A ∈ A if and
only if every finite subset of A is in A. Note that ∅ ∈ A (assuming that A
is non-empty). There are two versions of the Tukey-Teichmüller Theorem;
however, in ZF they are equivalent to each other and also to AC.

TT (weak form) Let X be a set and let A be a non-empty collection of
subsets of X with finite character. Then A has a maximal element (with
respect to ⊆).

TT (strong form) Let X be a set and let A be a non-empty collection of
subsets of X with finite character. Then for each A ∈ A, there exists B ∈ A
such that A ⊆ B and B is maximal.

The Tukey-Teichmüller Theorem seems tailor-made for certain applica-
tions. For example, it can be used to prove that every vector space has a
basis by simply noting that the property of being linearly independent has fi-
nite character. Another nice application is a proof of the Alexander Subbase
Theorem (see [14] or [7]).

The axiom of choice and its equivalent forms are non-constructive prin-
ciples; they assert the existence of a set without giving instructions on how
to construct the set. There are other such non-constructive principles that
are perhaps not so well known as those given above. Here is a short list (see
[12], form 14, for a much longer list; additional references are [2], [3], [13],
[18], and [20]).

Theorem 1.2 (ZF) The following are equivalent:

(1) every ideal in a Boolean algebra extends to a prime ideal (BPI);
(2) ever filter on a set extends to an ultrafilter (UT );
(3) Alexander Subbase Theorem;
(4) Stone Representation Theorem;
(5) Compactness Theorem for propositional logic;
(6) Model Existence Theorem for propositional logic.

The logical status of these ideas is not trivial. The easy part is:

ZF + AC ⇒ ZF + BPI ⇒ ZF.

The hard part states:

• AC cannot be proved from ZF + BPI (Halpern and Lévy [10]);

• BPI cannot be proved from ZF (S. Feferman [8]).

In section 2 we formulate a version of the Tukey-Teichmüller Theorem
(TT) that is equivalent to (BPI) rather than to (AC). We then use this new
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non-constructive axiom, denoted (rTT) (for restricted Tukey-Teichmüller),
to give direct proofs of the Alexander Subbase Theorem and the Stone Rep-
resentation Theorem. In section 3 we show directly that (rTT) and (BPI)
are equivalent in ZF. Finally, in section 4 we use (rTT) to derive various
theorems of logic that are known to be equivalent to (BPI).

2 Statement of (rTT)

To motivate the statement of (rTT), let us use (TT) to prove the Boolean
prime ideal theorem. Here are the required definitions. Let 〈B,∨,∧,′ , 0, 1〉
be a Boolean algebra and let J be a subset of B.

• J is an ideal of B if 0 ∈ J , 1 6∈ J , and the following hold for all a, b ∈ B:
(a) if a, b ∈ J , then a ∨ b ∈ J ; (b) if a ∈ J and b ∈ B, then a ∧ b ∈ J .

• J is a prime ideal if J is an ideal and satisfies: if a ∧ b ∈ J , then a ∈ J or
b ∈ J .

• J has the finite join property if a1 ∨ · · · ∨ an 6= 1 for all a1, · · · , an ∈ J .

Note the following: If J has the finite join property, and for all a ∈ B,
either a ∈ J or a′ ∈ J , then J is a prime ideal. The following lemma plays a
key role in our formulation of (rTT).

Lemma 2.1 (extension property) If J ⊆ B has the finite join property
and x ∈ B, then J ∪ {x} or J ∪ {x′} has the finite join property.

Proof. Suppose that neither set has the finite join property. Then there exist
a1, · · · , an, b1, · · · , bk ∈ J such that

a1 ∨ · · · ∨ an ∨ x = 1 and b1 ∨ · · · ∨ bk ∨ x′ = 1.

It follows that z ∨ x = 1 and z ∨ x′ = 1, where

z = a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bk.

But from z ∨ x = 1 and z ∨ x′ = 1 we obtain z = 1, a contradiction to the
assumption that J has the finite join property. ¤

Theorem 2.2 (Boolean Prime Ideal) Every ideal of a Boolean algebra is
contained in a prime ideal.

Proof (using (TT)). Let I be an ideal of a Boolean algebra B. Let

A = {J : J ⊆ B and J has the finite join property}.
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The collection A has finite character and I ∈ A; by (TT) there exists J ∈ A
such that I ⊆ J and J is maximal (with respect to ⊆). Let x ∈ B; by
the extension property (Lemma 2.1), J ∪ {x} or J ∪ {x′} has the finite join
property. By the maximality of J , x ∈ J or x′ ∈ J . It follows that J is the
required prime ideal. ¤

We now state the hypotheses of (rTT) and two conclusions (I) and (II).

(rTT) Let X be a set, let A be a non-empty collection of subsets of X, and
let ′ be a 1-ary operation on X. Assume that

(1) A has finite character;

(2) A has the extension property with respect to ′ (for all A ∈ A and all
x ∈ X, A ∪ {x} ∈ A or A ∪ {x′} ∈ A).

(I) There exists B ∈ A such that for all x ∈ X, x ∈ B or x′ ∈ B.

(II) For all A ∈ A, there exists B ∈ A such that A ⊆ B and for all x ∈ X,
x ∈ B or x′ ∈ B.

We have stated two versions of (rTT), the weak version (conclusion (I))
and the strong version (conclusion (II)). Actually, the two versions are equiv-
alent in ZF.

To derive the strong version from the weak, let A be a non- empty col-
lection of subsets of X such that A has finite character and the extension
property with respect to a 1-ary operation ′ on X. Given A ∈ A, let

B = {B : B ⊆ X and A ∪B ∈ A}.

The collection B satisfies all of the hypotheses of (rTT). It follows from (I)
that there exists B ∈ B such that for all x ∈ X, either x ∈ B or x′ ∈ B. It
is easy to check that A ∪B is the required element of A. ¤

Note that (TT) ⇒ (rTT). For, suppose that we have B ∈ A such that B
is maximal (with respect to ⊆). From the extension property it follows that
for all x ∈ X, either x ∈ B or x′ ∈ B. We emphasize that

(rTT) is an equivalent form of (BPI) that
follows easily from a well-known equivalent
form of the axiom of choice.

We now show that the Alexander Subbase Theorem and the Stone Rep-
resentation Theorem follow rather naturally from (rTT). In all applications
of (rTT), the theme is:

finite character + extension property (with respect to a 1-ary operation).
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In this paper the 1-ary operation will always be the complement operation
in a Boolean algebra or the negation operation in a formal language.

(rTT) ⇒ Alexander Subbase Theorem We will show that the proof in
[14] goes through with (TT) replaced with (rTT). The following terminology
is used. A collection W of subsets of a set X is finitely inadequate if no finite
subcollection of W covers X. (This is just the finite join property for the
Boolean algebra P (X).) The property of being finitely inadequate satisfies
the following conditions:

(1) finite character [W is finitely inadequate if and only if every finite subset
of W is finitely inadequate];

(2) extension property [if W is finitely inadequate and E ⊆ X, then either
W ∪ {E} or W ∪ {Ec} is finitely inadequate].

Theorem 2.3 (Alexander Subbase) Let X be a topological space and let
S be a subbase for X such that for every subcollection S0 of S that covers X,
there is a finite subcollection of S0 that covers X. Then X is compact.

Proof. Let W be an open cover of X. Suppose, by way of contradiction,
that no finite subcollection of W covers X; in other words, W is finitely
inadequate. Let

B = {B: B ⊆ W for some W ∈ W and B = S1 ∩ · · · ∩ Sn, where
S1, · · · , Sn ∈ S}.

The collection B covers X and is finitely inadequate (since W has these two
properties). By (rTT), there exists C ⊆ P (X) such that

(1) B ⊆ C;

(2) C is finitely inadequate;

(3) for all E ⊆ X, E ∈ C or Ec ∈ C.

For each B ∈ B, there exists SB ∈ C ∩ S such that B ⊆ SB. [Details:
B = S1 ∩ · · · ∩ Sn, where S1, · · · , Sn ∈ S; by (1), (2) and (3), Sk ∈ C for
some k ≤ n. The axiom of choice for finite sets (ACF) is used here; more on
this later.] We now have a subcollection S0 = {SB : B ∈ B} of S that covers
X. By hypothesis, there is a finite subcollection F of S0 that covers X. But
F ⊆ C and we have contradicted the fact that C is finitely inadequate. ¤

(rTT) ⇒ Stone Representation Theorem Next we use (rTT) to prove
the Stone Representation Theorem, the most important structural theorem
about Boolean algebras. It asserts that every Boolean algebra is isomorphic
to a field of sets. We will approach the construction from the following point
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of view: Given a structure 〈B,∧,′ , 0〉, where B has more than one element,
what axioms are required to show that B is isomorphic to a field of sets?
These axioms will automatically make B a Boolean algebra, where a ∨ b is
defined as (a′ ∧ b′)′ and 1 is defined as 0′. To begin with, we will want the
following:

(B1) ∧ is commutative, associative, and idempotent;
(B2) for all x ∈ B, x ∧ x′ = 0.

Moreover, in the process of proving the Stone Representation Theorem, we
will see that two additional properties are required, namely

(B3) if a ∧ x = 0 and a ∧ x′ = 0, then a = 0;
(B4) if a ∧ b′ = 0 and a′ ∧ b = 0, then a = b.

Two definitions are required; the first is the dual of the finite join property
that was defined in connection with (BPI). Let U ⊆ B.

• U has the finite meet property if a1 ∧ · · · ∧ an 6= 0 for all a1, · · · , an ∈ U ;
• U is an ultrafilter if U has the finite meet property and for all x ∈ B, x ∈ U
or x′ ∈ U .

The finite meet property has finite character, and axiom (B3) proves that it
also has the extension property with respect to the 1-ary operation ′ (see the
proof of Lemma 2.1). Hence (rTT) applies and we can assert: every subset
of B with the finite meet property is contained in an ultrafilter.

Theorem 2.4 (Stone Representation) Let 〈B,∧,′ , 0〉 be a structure that
satisfies (B1)− (B4). Then B is isomorphic to a field of sets, and hence B
is a Boolean algebra, where a ∨ b = (a′ ∧ b′)′ and 1 = 0′.

Proof. Let ULT (B) = {U : U is an ultrafilter on B}, and define Φ : B →
P (ULT (B)) by

Φ(a) = {U : U is an ultrafilter on B and a ∈ U}.
Then

(1) Φ(a ∧ b) = Φ(a) ∩ Φ(b);
(2) Φ(a′) = ULT (B)− Φ(a).

The proof is complete if we can prove that Φ is one-to-one. Let a 6= b. By
(B4), a ∧ b′ 6= 0 or a′ ∧ b 6= 0. Suppose that a ∧ b′ 6= 0. Then {a, b′} has the
finite meet property and so there is an ultrafilter U such that {a, b′} ⊆ U .
We now have a ∈ U and b 6∈ U ; hence Φ(a) 6= Φ(b) as required. ¤

We have given a non-constructive proof that (B1)-(B4) is a suitable set
of axioms for a Boolean algebra. Frink [9] has used the same method (with
Zorn’s Lemma) to give a similar list of axioms. In a subsequent paper we will
give a constructive proof that these axioms suffice and also give applications
of this axiom set.
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3 (rTT) and (BPI) are equivalent in ZF

It is convenient to work with the dual of the (BPI). The special case that we
need is called the Ultrafilter Theorem (UT) and can be stated in terms of the
following definitions. Let X be a non-empty set and let U be a non-empty
collection of subsets of X.

• U has the finite intersection property (FIP) if F1 ∩ · · · ∩ Fn 6= ∅ for every
finite subcollection {F1, · · · , Fn} of U ;

• U is an ultrafilter if U has the FIP and for all U ⊆ X, U ∈ U or U c ∈ U .

An ultrafilter U on X has the following property: if {Y1, · · · , Yn} is a pairwise
disjoint collection of subsets of X such that X = Y1 ∪ · · · ∪ Yn, then there is
a unique k ≤ n such that Yk ∈ U .

Theorem 3.1 (Ultrafilter) Let X be a non-empty set and let F be a non-
empty collection of subsets of X with the finite intersection property. Then
there is an ultrafilter U on X such that F ⊆ U .

Before proving the equivalence of (rTT) and (UT), we formulate two
variations of (rTT) that we denote by (rTT)+ and (rTT)++. The basic idea
in each case is to replace the 1-ary operation ′ on X with a collection Z =
{Zt : t ∈ T}, where each Zt is a finite subset of X.

(rTT)+ Let X be a set, let A be a non-empty collection of subsets of X that
has finite character, and let Z = {Zt : t ∈ T} be a collection of finite subsets
of X. Assume that

(+) for all A ∈ A and all t ∈ T , there exists z ∈ Zt such that A ∪ {z} ∈ A.

Then there exists B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T .

Note that (rTT) follows immediately from (rTT)+ by taking Z = {{x, x′} :
x ∈ X}. The following form of the axiom of choice for finite sets is an easy
consequence of (rTT)+: if {Zt : t ∈ T} is a pairwise disjoint collection of
finite and non-empty sets, then there is a set B that intersects each Zt in a
singleton.

The variation (rTT)+, like (rTT), has a weak version and a strong version
that are actually equivalent in ZF. The conclusion of the strong version states:
For all A ∈ A, there exists B ∈ A such that A ⊆ B and for all for all t ∈ T ,
B ∩ Zt 6= ∅.

We now state a generalization of (rTT)+.

(rTT)++ Let X be a set, let A be a non-empty collection of subsets of X
that has finite character, and let Z = {Zt : t ∈ T} be a collection of finite
subsets of X. Assume that
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(++) for each finite subset {t1, · · · , tn} of T , there is a set {z1, · · · , zn} ∈ A
such that zk ∈ Ztk for 1 ≤ k ≤ n.

Then there exists B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T .

Note that condition (++) follows from (+). For, let {t1, · · · , tn} be a finite
subset of T . Since the collection A is non-empty and has finite character,
∅ ∈ A. Apply (+) to ∅ and t1: there exists z1 ∈ Zt1 such that ∅ ∪ {z1} ∈
A; in other words, {z1} ∈ A. Continue this a total of n times to obtain
{z1, · · · , zn} ∈ A with zk ∈ Ztk for 1 ≤ k ≤ n as required.

Later we will give applications of (rTT)++. But first we prove the follow-
ing theorem.

Theorem 3.2 (ZF) The following are equivalent:

(1) (rTT )++;
(2) (rTT )+;
(3) the restricted Tukey-Teichmüller Theorem (rTT );
(4) Ultrafilter Theorem (UT ).

Proof. We have already seen that (rTT)++ ⇒ (rTT)+ and that (rTT)+ ⇒
(rTT). Moreover, (rTT) ⇒ (UT) is essentially Theorem 2.2. It remains to
prove that (UT) ⇒ (rTT)++. In this proof we will use the well known result
that the Ultrafilter Theorem implies the axiom of choice for finite sets (ACF);
at the end of this section we will sketch a proof of this implication. Let
A ⊆ P (X) be non-empty and have finite character and let Z = {Zt : t ∈ T}
be a collection of finite subsets of X that satisfies the condition (++). We
are required to show that there exists B ∈ A such that B ∩ Zt 6= ∅ for all
t ∈ T . Let

Y =
∏

t∈T Zt

and let g ∈ Y (by ACF). For each F ∈ [T ]<ω (i.e., for each finite subset F of
T ), let

HF = {f ∈ Y : {f(t) : t ∈ F} ∈ A}
and let

H = {HF : F ∈ [T ]<ω}.
The collection H satisfies the following two properties:

(a) HF 6= ∅ for all F ∈ [T ]<ω;

(b) HF∪G ⊆ HF ∩HG for all F, G ∈ [T ]<ω.
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Part (a) follows immediately from (++) and the existence of g ∈ Y ; part (b)
uses the fact that A has finite character. It follows from (a) and (b) that
the collection H has the finite intersection property. By (UT), there is an
ultrafilter U on Y such that HF ∈ U for all F ∈ [T ]<ω.

Claim For each t ∈ T , there is a unique zt ∈ Zt such that Yt ∈ U , where
Yt = {f : f ∈ Y and f(t) = zt}.
To see this, let t ∈ T , let Zt = {z1, · · · , zn}, and for 1 ≤ k ≤ n let

Yk = {f : f ∈ Y and f(t) = zk}.
The collection {Y1, · · · , Yn} is pairwise disjoint and Y1 ∪ · · · ∪ Yn = Y ; since
U is an ultrafilter on Y , there is a unique integer k(t), 1 ≤ k(t) ≤ n, such
that Yk(t) ∈ U . The required unique element of Zt is zk(t).

Now let

B = {zt : t ∈ T}.
Clearly B ∩ Zt 6= ∅ for all t ∈ T . To see that B ∈ A, it suffices by the finite
character of A to show that {zt1 , · · · , ztn} ∈ A. Let F = {t1, · · · , tn}, and for
1 ≤ k ≤ n let

Ytk = {f : f ∈ Y and f(tk) = ztk}.

By the Claim, Ytk ∈ U for 1 ≤ k ≤ n. Now HF is also in U , and so there is
some f ∈ Y such that

f ∈ HF ∩ Yt1 ∩ · · · ∩ Ytn .

Since f ∈ HF , {f(t1), · · · , f(tn)} ∈ A. But f(tk) = ztk for 1 ≤ k ≤ n and so
{zt1 , · · · , ztn} ∈ A as required. ¤

We now show that various Selection Lemmas due to Cowen, Engeler, and
Rado follow rather naturally from (rTT)++. The first result is listed as 14X,
p. 22 of [12] and can be stated as follows.

Theorem 3.3 (Cowen-Engeler) Let T and X be non-empty sets and let
E be a collection of functions from subsets of T into X such that

(1) E has finite character (that is, a function φ from a subset of T into X is
in E if and only if for every finite F ⊆ dom φ, φ|F is in E);

(2) for all F ∈ [T ]<ω, there is a function φ ∈ E whose domain is F ;

(3) for all t ∈ T , the set Xt = {φ(t) : φ ∈ E and t ∈ dom φ} is finite.

Then T is the domain of some φ ∈ E.
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To emphasize the close connection between (rTT)++ and the Cowen-Engeler
Theorem, we will give a direct proof that the two are equivalent in ZF.

Proof that (rTT)++ ⇒ Cowen-Engeler. Let E be a collection of functions
from subsets of T into X that satisfy (1)-(3) of the Cowen-Engeler Thorem.
For each t ∈ T let

Zt = {〈t, x〉 : x ∈ Xt}.
By (3), Zt is finite. To apply (rTT)++, it suffices to check (++). Let F =
{t1, · · · , tn} ⊆ T . By (2), there is a function φ ∈ E whose domain is F . We
now have

φ = {〈t1, φ(t1)〉, · · · , 〈tn, φ(tn)〉} ∈ E and 〈tk, φ(tk)〉 ∈ Ztk for 1 ≤ k ≤ n.

By (rTT)++, there exists φ ∈ E such that φ ∩ Zt 6= ∅ for all t ∈ T ; in other
words, the domain of φ is T as required. ¤
Proof that Cowen-Engeler ⇒ (rTT)++. Let A be a non-empty collection
of subsets of X with finite character and let {Zt : t ∈ T} be a collection of
finite subsets of X such that the condition (++) holds. We are required to
find B ∈ A such that B ∩ Zt 6= ∅ for all t ∈ T . Let

E = {φ : φ is a function with dom φ ⊆ T, φ(t) ∈ Zt for all t ∈ dom φ, and
for every finite F ⊆ dom φ, {φ(t) : t ∈ F} ∈ A}.

The collection E has the following properties:

(1) finite character;

(2) for all F ∈ [T ]<ω, there is φ ∈ E with dom φ = F (follows from (++)
and the finite character of A);

(3) for all t ∈ T , {φ(t) : φ ∈ E and t ∈ dom φ} ⊆ Zt.

By the Cowen-Engeler Theorem, there exists φ ∈ E such that dom φ = T .
Let

B = {φ(t) : t ∈ T}.
Clearly B∩Zt 6= ∅ for all t ∈ T . To show that B ∈ A, it suffices to show that
each finite subset of B is inA. Let {t1, · · · , tn} ⊆ T ; then {φ(t1), · · · , φ(tn)} ∈
A follows immediately from φ ∈ E . ¤

We now use (rTT)++ to give a generalization of the Consistency Theorem
as stated by Jech in [13]. In the original Consistency Theorem, the codomain
of each function is {0, 1}. To facilitate the proof, we will use the following
lemma on constructing sets of finite character.
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Lemma 3.4 Let T and X be non-empty sets and let E be a collection of
functions from finite subsets of T into X such that for all φ ∈ E and all F ⊆
dom φ, φ|F ∈ E . Let

A = {φ : φ is a function from a subset of T into X and for all finite F ⊆
dom φ, φ|F ∈ E}.

Then

(1) E ⊆ A;

(2) if φ ∈ A and dom φ is finite, then φ ∈ E ;

(3) A has finite character.

Theorem 3.5 (Consistency, generalized) Let {Xt : t ∈ T} be a collec-
tion of finite non-empty sets and let E be a collection of functions φ such that
dom φ is a finite subset of T and φ(t) ∈ Xt for all t ∈ dom φ (each φ is a
finite choice function). Assume that

(1) for each F ∈ [T ]<ω, there exists φ ∈ E such that dom φ = F ;
(2) if φ ∈ E and F ⊆ dom φ, then φ|F ∈ E .

Then there is a choice function Φ for {Xt : t ∈ T} such that for all F ∈ [T ]<ω,
Φ|F ∈ E .

Proof (using (rTT)++). Let

A = {φ : φ is a function with dom φ ⊆ T , φ(t) ∈ Xt for all t ∈ dom φ, and
for all finite F ⊆ dom φ, φ|F ∈ E}.

It suffices to find Φ ∈ A with domain T . By Lemma 3.4, E ⊆ A and A has
finite character (assumption (2) is used here). For each t ∈ T let

Zt = {〈t, x〉 : x ∈ Xt}.
To apply (rTT)++, it suffices to check (++). Let F = {t1, · · · , tn} ⊆ T . By
(1), there is φ ∈ E such that dom φ = F . We now have

φ = {〈t1, φ(t1)〉, · · · , 〈tn, φ(tn)〉} ∈ A with 〈tk, φ(tk)〉 ∈ Ztk for 1 ≤ k ≤ n.

By (rTT)++, there exists Φ ∈ A such that Φ∩Zt 6= ∅ for all t ∈ T ; in other
words, dom Φ = T as required. ¤

Rado’s Selection Theorem (see [17]) is a corollary of the above generalized
Consistency Theorem.
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Theorem 3.6 (Rado) Let {Xt : t ∈ T} be a collection of finite non-empty
sets. Assume that for each B ∈ [T ]<ω, there is a choice function φB for
{Xt : t ∈ B} (the domain of φB is B and φ(t) ∈ Xt for all t ∈ B). Then
there is a choice function Φ for {Xt : t ∈ T} such that for all F ∈ [T ]<ω,
there is a B ∈ [T ]<ω such that F ⊆ B and Φ|F = φB|F .

Proof. Let E = {φB|F : F ⊆ B and B ∈ [T ]<ω}. The collection E satisfies (1)
and (2) of the generalized Consistency Theorem. Let Φ be a choice function
for {Xt : t ∈ T} such that for all F ∈ [T ]<ω, Φ|F ∈ E . In other words,
Φ|F = φB|F , where F ⊆ B and B ∈ [T ]<ω as required. ¤

For the sake of completeness, we now sketch a proof that the Ultrafil-
ter Theorem implies the axiom of choice for finite sets; the proof is just a
simplified version of (UT) ⇒ (CT) (see [13]).

Proof that (UT) ⇒ (ACF). Let {Zt : t ∈ T} be a collection of non-empty
finite sets. We are required to prove the existence of a function Φ : T →⋃

t∈T Zt such that Φ(t) ∈ Zt for all t ∈ T . A partial choice function is a
function φ : S → ⋃

t∈T Zt, where S ⊆ T and φ(t) ∈ Zt for all t ∈ S. Note
that for every F ∈ [T ]<ω, there is a partial choice function whose domain is
F (provable in ZF). Let E be the collection of all partial choice functions.
For each F ∈ [T ]<ω let

EF = {φ : φ ∈ E and F ⊆ dom φ}.
Note that EF 6= ∅, and it is easy to check that for F,G ∈ [T ]<ω, EF∪G ⊆
EF ∩ EG. From this it follows that the collection {EF : F ∈ [T ]<ω} has the
finite intersection property. By (UT), there exists U ⊆ P (E) such that

(1) EF ∈ U for all F ∈ [T ]<ω;
(2) U has the finite intersection property;
(3) if E1 ∪ · · · ∪ En ∈ U , then Ek ∈ U for some k ≤ n.

Let t ∈ T and let Zt = {z1, · · · , zn}. Then E{t} = E1 ∪ · · · ∪ En, where for
1 ≤ k ≤ n,

Ek = {φ : φ ∈ E{t} and φ(t) = zk}.

By (3), there is a unique integer k(t), 1 ≤ k(t) ≤ n, such that Ek(t) ∈ U .
Finally, define Φ : T → ⋃

t∈T Zt by Φ(t) = zk(t). ¤
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4 Theorems of logic from (rTT)

We begin with a summary of basic ideas of propositional logic. Let FOR
be the set of all formulas of propositional logic (use the connectives ¬ and
∨). A truth assignment is a function φ : FOR → {T, F} such that for all
formulas A and B:

(1) φ(A) 6= φ(¬A);
(2) φ(A ∨B) = T if and only if φ(A) = T or φ(B) = T .

Now let Γ ⊆ FOR.

• Γ is satisfiable if there is at least one truth assignment φ such that φ(A) = T
for every A ∈ Γ.

• Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

• Γ is consistent if there is no formula A such that both Γ ` A and Γ ` ¬A.

With this terminology, the Compactness Theorem states that every finitely
satisfiable set is satisfiable, and the Model Existence Theorem states that
every consistent set is satisfiable. Both finite satisfiability and consistency
satisfy all of the hypotheses of (rTT). In other words:

(FS1) Γ is finitely satisfiable if and only if every finite subset of Γ is finitely
satisfiable;

(FS2) if Γ is finitely satisfiable and A is any formula, then Γ∪{A} or Γ∪{¬A}
is finitely satisfiable;

(C1) Γ is consistent if and only if every finite subset of Γ is consistent;

(C2) if Γ is consistent and A is any formula, then Γ ∪ {A} or Γ ∪ {¬A} is
consistent.

The proof of (C2) is perhaps the most difficult to verify and usually
requires the Deduction Theorem; the precise details depend on the choice of
the axioms and the rules of inference. Instead, let us verify (FS2).

Proof of (FS2). Let Γ be finitely satisfiable, but suppose that neither Γ ∪
{A} nor Γ∪{¬A} is finitely satisfiable. Then there exist formulas A1, · · · , An,
B1, · · · , Bk in Γ such that

(1) {A1, · · · , An, A} is not satisfiable;

(2) {B1, · · · , Bk,¬A} is not satisfiable.

On the other hand, there is a truth assignment φ that satisfies

{A1, · · · , An, B1, · · · , Bk};

13



clearly φ satisfies {A1, · · · , An, A} or {B1, · · · , Bk,¬A}, a contradiction of (1)
or (2). ¤

We now prove the Model Existence Theorem.

Theorem 4.1 (Model Existence) If Γ is consistent, then Γ is satisfiable.

Proof. By (rTT), there is a set ∆ of formulas such that

(1) Γ ⊆ ∆;
(2) ∆ is consistent;
(3) for every formula A, either A ∈ ∆ or ¬A ∈ ∆.

Define φ : FOR → {T, F} by φ(A) = T ⇔ A ∈ ∆. Clearly φ satisfies
Γ, and it is straightforward to check these two properties: φ(A) 6= φ(¬A);
φ(A ∨B) = T if and only if φ(A) = T or φ(B) = T . ¤

It is a consequence of the Soundness Theorem (if Γ ` A, then Γ |= A)
that finite satisfiability implies consistency; hence the Compactness Theorem
follows from the Model Existence Theorem (in ZF). Alternatively, both the-
orems can be obtained from the following general theorem about properties
of formulas.

Theorem 4.2 (ZF + rTT) Let Q be a property of formulas of proposi-
tional logic such that

(Q1) Q has finite character [Γ has property Q if and only if every finite subset
of Γ has property Q];

(Q2) Q has the extension property with respect to ¬ [if Γ has property Q and
A is any formula, then Γ ∪ {A} or Γ ∪ {¬A} has property Q];

(Q3) for any formula A, the set {A,¬A} does NOT have property Q;

(Q4) for any formulas A and B, the following sets do NOT have property Q:
{A ∨B,¬A,¬B}, {A,¬(A ∨B)} , {B,¬(A ∨B)}.
Then every set of formulas that has property Q is satisfiable.

Proof. Similar to the proof of the Model Existence Theorem. Use (Q1) and
(Q3) to prove φ(A) 6= φ(¬A); use (Q1) and (Q4) to prove φ(A ∨ B) = T if
and only if φ(A) = T or φ(B) = T . ¤

It is clear from the proof of the Model Existence Theorem that Linden-
baum’s Theorem is a consequence of (rTT). In other words, we have:

Theorem 4.3 (Lindenbaum) Let Γ be a consistent set of formulas. Then
Γ ⊆ ∆, where ∆ is consistent and for every formula A, either A ∈ ∆ or
¬A ∈ ∆.
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We observe from the proof of the Model Existence Theorem that Lin-
denbaum’s Theorem actually implies the Model Existence Theorem (in ZF).
Finally, it is well known that the Compactness Theorem implies (BPI); see,
for example [13]. So we can summarize the situation with respect to propo-
sitional logic as follows.

Theorem 4.4 (ZF) The following are equivalent.

(1) Boolean Prime Ideal Theorem;
(2) restricted Tukey-Teichmüller Theorem;
(3) Lindenbaum’s Theorem;
(4) Model Existence Theorem;
(5) Compactness Theorem.

We briefly comment on the situation with respect to first-order logic. Let
L be a first-order language and let SENT be the set of all sentences of L.
Let Γ ⊆ SENT be consistent, and suppose that we want to prove that Γ has
a model. By a well-known construction due to Henkin, we may assume that
the language L and the set Γ satisfy the following: if A is any formula of L
with exactly one free variable x, then there is a constant symbol c of L such
that the sentence ∃xA → Ax[c] is in Γ. For details, see p. 46 of [21].

Note that the following holds in first-order logic: if Γ is consistent and
A is a sentence, then Γ ∪ {A} or Γ ∪ {¬A} is consistent. This means that
(rTT) applies and we have Lindenbaum’s Theorem: there exists ∆ ⊆ SENT
such that Γ ⊆ ∆, ∆ is consistent, and for every sentence A of L, A ∈ ∆ or
¬A ∈ ∆. Since ∆ is also a Henkin theory, we can now assert that the
canonical structure is a model of ∆. Again see [21] for details.

In summary, we can add Lindenbaum’s Theorem, the Model Existence
Theorem, and the Compactness Theorem of first-order logic to the list of
equivalent forms of the Boolean Prime Ideal Theorem.
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