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Math 501
Project #1

Due: Tuesday, November 5, 2013

The goal of this project is to show that SL2(Z) has the following pre-
sentation:

(1) SL2(Z) ∼= 〈s, u : s2 = u3, s4 = u6 = 1〉.

You can find background material on free groups and presentations on
pages 215–220 of Dummit and Foote.

Group project. This is a group1 project. Your group can have any
positive number of elements. You are welcome to seek help from us.

You are going to establish this presentation by studying the action of
SL2(Z) on the set of equivalence classes of positively framed lattices in
C. There are lots of words here, so let’s understand them one by one.
You know what a lattice in C is. Two complex numbers ω1, ω2 comprise
a framing of a lattice Λ if

Λ = Zω1 ⊕ Zω2.

Note that the framing determines the lattice. We’ll denote this framed
lattice by [ω1, ω2]. The framing is positive if Im(ω2/ω1) > 0. This is the
condition that the angle θ from ω1 to ω2 satisfies 0 < θ < π. If [ω1, ω2]
is not positive, then [ω1,−ω2] and [ω2, ω1] are both positive framings
of the lattice.

We consider two lattices Λ and Λ′ to be equivalent if you can obtain
one from the other by a rotation and a dilatation. That is, there
is a non-zero complex number u such that Λ′ = uΛ. Similarly, two
framed lattices are equivalent if one can be obtained from the other by
a rotation and dilation:

[uω1, uω2] ∼ [ω1, ω2].

The first task is to understand the set of equivalence classes of positively
framed lattices in C and the action of SL2(Z) on it.

(i) Show that every equivalence class of positively framed lattices
contains a unique member of the form [1, τ ] where Im(τ) > 0.

1A bad pun.



This implies that one can identify the set of equivalence classes
of positively framed lattices with the upper half plane

h := {τ ∈ C : Im(τ) > 0}.
(ii) Define (
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)
=
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)
Show that (

a b
c d

)
: [ω1, ω2] 7→ [ω′

1, ω
′
2]

is an action of SL2(Z) on the set of equivalence classes of posi-
tively framed lattices in C. Show that the corresponding action
on h is (

a b
c d

)
: τ 7→ aτ + b

cτ + d
.

(iii) Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
and U = ST.

Show that S2 = U3 = −I. Deduce that there is a homomor-
phism

ϕ : 〈s, u : s2 = u3, s4 = u6 = 1〉 → SL2(Z)

with S = ϕ(s) and U = ϕ(u).
(iv) Let ρ = eiπ/3. Compute the stabilizers of i ∈ h and of ρ2.
(v) Let

F = {τ ∈ C : |τ | ≥ 1, |Re(τ)| ≤ 1/2}.
Show that τ ∈ F if and only if 1 is a shortest vector in Z⊕Zτ
and τ is a shortest vector in Z⊕Zτ that is not a multiple of 1.

(vi) Show that

F o := F −
(
{τ : Re(τ) = −1/2} ∪ {τ : |τ | = 1 and Re(τ) < 0}

)
is a fundamental domain (aka, a fundamental region) for the
action of SL2(Z) on h. (One way to do this is to prove that a
lattice Λ in C is generated by its shortest vector and a shortest
vector that is not a multiple of the first.)

(vii) (The LLL algorithm.) Show that the following algorithm,
which begins with any positive basis of a lattice, produces a
positive basis of the lattice where the first basis vector is a
shortest vector and the second is a shortest vector that is not
a multiple of the first. Call such a basis minimal. The input of
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each step of the algorithm is a positive basis ω1, ω2 of a lattice,
the output is the pair of vectors ω′

1, ω
′
2, where

• if ω2 is shorter than ω1, then ω′
1 = ω2 and ω′

2 = −ω1;
• if ω1 is shorter than ω2 and if ω2 ± ω1 is shorter than ω2,

then ω′
1 = ω1 and ω′

2 = ω2 ± ω1;
• else STOP.

Show that the algorithm terminates and that it produces a
minimal basis.

(viii) Show that if τ ∈ h, then there is an element g of the subgroup
〈S, T 〉 of SL2(Z) such that gτ ∈ F o. Deduce that S and U
generate SL2(Z).

Figure 1. The fundamental domain an its translates

It remains to prove that the only relations between S and U are those
stated above. For this, we consider the action of SL2(Z) on a graph.

(ix) Note that the boundary of F has 3 edges of which only one is
compact. (Viz., the arc of |τ | = 1 from ρ to ρ2.) Write this
as the union of two “half edges”: the arc from ρ2 to i, and the
arc from i to ρ. Call these A and B. Note that S interchanges
A and B.

(x) Let Γ be the graph in h consisting of all translates of A and
B. Show that SL2(Z) acts transitively on the edges of Γ and
that the stabilizer of each edge is ±I.

(xi) Show that there are two orbits of vertices, namely the orbit of
i and the orbit of ρ. Show that each vertex in the orbit of i
has degree 2 and each vertex in the orbit of ρ has degree 3.
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(xii) Show that the stabilizer of each vertex lies in the normal sub-
group of SL2(Z) generated by S2 and U3.

Because ±I fixes everything, it is best to ignore it for the time being.
To this end, set G = SL2(Z)/〈±I〉. Note that G acts simply transitively
on the edges of Γ and that G is generated by the images S and U of S
and U in G. The next step is to prove that

(2) G ∼= 〈S, U : S
2

= U
3

= 1〉.

(xiii) Each word w = g1g2 . . . gm in S and U corresponds to the edge
path2

A, g1(A), g1g2(A), . . . , g1g2 . . . gm(A).

Note that the path corresponding to the word w in S and U
that represents the identity is a loop that starts and ends with
A.

(xiv) It is a fact (which can be proved using hyperbolic geometry)
that Γ is a tree. That is, every pair of its vertices is joined by a
unique reduced edge path.3 Use this to prove the presentation
(2) of G. (Hint available upon request.)

(xv) Deduce the presentation (1) of SL2(Z).

Cultural Remarks:

The action of SL2(Z) is very rich and has connections to many branches
of mathematics. For example:

(a) The upper half plane is a model of the hyperbolic plane (a
geometry with constant curvature −1. The metric (i.e., line
element) is

ds2 =
dx2 + dy2

y2

where τ = x+ iy. It is not hard to show that this line element
is preserved by the action of SL2(R) on h. Geodesics in h are
lines perpendicular to the real axis and semi-circles centered
on the real axis.

(b) The quotient of h by SL2(Z) is the space that parametrizes
all lattices in C, and is also the space that parametrizes all
“elliptic curves”.

2An edge path is a sequence of edges in which two consecutive edges share a
common vertex.

3An edge path is reduced if no edge occurs more than once.
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(c) Modular forms are very important in both analytic and alge-
braic number theory. They are “analytic functions” f : h→ C
that satisfy certain conditions, the main one being that there
is an m ≥ 0 such that

f
(
(aτ + b)/(cτ + d)

)
= (cτ + d)mf(τ)

for all

(
a b
c d

)
in SL2(Z).

5


