MATH 261 ALGEBRAIC TOPOLOGY I OPTIONAL PROBLEM SET 4

Due: optional.

- 1. The goal of this problem is to show that $GL_n(\mathbb{R})$ has two connected components which are distinguished by the sign of the determinant.
 - (i) Briefly explain why O(n) is a deformation retraction of $GL_n(\mathbb{R})$. (No need to give a complete proof. Deduce that the inclusion $O(n) \hookrightarrow GL_n(\mathbb{R})$ induces a bijection on connected components.
 - (ii) Show that, when n > 1, SO(n) acts transitively on S^{n-1} and that the stabilizer of $e_n \in S^{n-1}$ is SO(n-1).
 - (iii) Show that the mapping $SO(n)/SO(n-1) \to S^{n-1}$ that takes $A \cdot SO(n-1)$ to Ae_n is a homeomorphism.
 - (iv) Show that if $n \geq 2$, then SO(n) is connected if and only if SO(n-1) is connected. Deduce that SO(n) is connected for all $n \geq 1$ and that O(n) has two connected components.
 - (v) Show that $GL_n(\mathbb{R})$ has two connected components:

$${A \in GL_n(\mathbb{R}) : \det A > 0}$$
 and ${A \in GL_n(\mathbb{R}) : \det A < 0}$.

2. Suppose that V is a real vector space of dimension d, where d > 0. Two ordered bases (v_1, \ldots, v_d) and (w_1, \ldots, w_d) of V determine an element A of $GL_d(\mathbb{R})$ via:

$$(v_1,\ldots,v_d)=(w_1,\ldots,w_d)A.$$

Define two ordered bases to be equivalent if the matrix A that relates them has positive determinant. An *orientation* of V is an equivalence class of ordered bases of V. Denote the equivalence class of the ordered basis (v_1, \ldots, v_d) by $[v_1, \ldots, v_d]$.

- (i) Show that each V has exactly two orientations.
- (ii) Show that if σ is a permutation of $\{1,\ldots,d\}$, then

$$[v_{\sigma(1)}, \dots, v_{\sigma(d)}] = \operatorname{sgn}(\sigma)[v_1, \dots, v_d].$$

(The orientation opposite to $[v_1, \ldots, v_d]$ is denoted by $-[v_1, \ldots, v_d]$.)

5. (Orientations of simplices) Suppose that V is a finite dimensional vector space and that v_0, \ldots, v_n are affine independent elements of V. Denote the simplex $\langle v_0, \ldots, v_n \rangle$ they span by Δ . Show that the vector

space $T\Delta$ of vectors tangent to Δ is

$$T\Delta = \{\sum_{j=0}^{n} a_j v_j : a_j \in \mathbb{R}, \sum_{j=0}^{n} a_j = 0\}.$$

By definition, an orientation of the simplex Δ is an orientation of the vector space $T\Delta$. Each ordering of the vertices of Δ determines an orientation of Δ as follows: the orientation determined by the vertex ordering $v_0 < v_1 < \cdots < v_n$ is defined to be

$$[v_1-v_0,v_2-v_0,\ldots,v_n-v_0].$$

Denote it by $\langle v_0, \dots, v_n \rangle$. Show that

(i) if $1 \leq j \leq n$, then

$$[v_0 - v_j, v_1 - v_j, \dots, v_{j-1} - v_j, v_{j+1} - v_j, \dots, v_n - v_j]$$

$$= (-1)^j [v_1 - v_0, \dots, v_n - v_0].$$

(ii) if σ is a permutation of $\{0, 1, \dots, n\}$, then $\langle v_{\sigma(0)}, v_{\sigma(1)}, \dots, v_{\sigma(n)} \rangle = \operatorname{sgn}(\sigma) \langle v_0, \dots, v_n \rangle$.

That is, each ordering of the vertices of a simplex orient the simplex; two orderings determine the same orientation if and only if they differ by an even permutation. This should help explain why we care about and need ordered simplicial complexes.

- 3. The goal of this problem is to show that the orientation induced on the jth face Δ_j of $\langle v_0, \ldots, v_n \rangle$ is $(-1)^j \langle v_0, \ldots, \widehat{v_j}, \ldots, v_n \rangle$. We will use the notation of the previous problem.
 - (i) Show that the vector

$$w_j := -v_j + \frac{1}{n+1} \sum_{j=0}^{n} v_j \in T\Delta$$

is an outward normal to the jth face of Δ .²

(ii) The standard convention for orienting a boundaries ("outward normal first") says that a basis u_1, \ldots, u_{n-1} of the tangent space $T\Delta_j$ of the boundary is positively oriented when

$$w_j, u_1, \ldots, u_{n-1}$$

is a positively oriented basis of $T\Delta$. (Nothing to prove here!)

¹I admit that this notation is mildly ambiguous. But we will see that it is a convenient abuse of notation. More accurately, when we write $\langle v_0, \ldots, v_n \rangle$ we will mean the oriented simplex spanned by the ordered set of vectors v_0, v_1, \ldots, v_n .

²Here, take v_0, v_1, \ldots, v_n to be an orthonormal basis of $\mathbb{R}^{\{v_0, \ldots, v_n\}}$.

- (iii) Show that the orientation $\langle v_0, \ldots, v_n \rangle$ of Δ induces the orientation $\langle v_1, \ldots, v_n \rangle$ on the 0th face Δ_0 . (iv) Use action of the symmetric group of $\{0, 1, \ldots, n\}$ and the
- (iv) Use action of the symmetric group of $\{0, 1, ..., n\}$ and the results of the previous problem (or otherwise) to deduce that the the orientation induced on Δ_j by $\langle v_0, ..., v_n \rangle$ is

$$(-1)^j \langle v_0, \dots, \widehat{v_j}, \dots, v_n \rangle.$$