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Notes on Simplicial Complexes

Definition: A simplicial complex K is a set of finite, non-empty sub-
sets of a set V that satisfies the following properties:

(i) if v ∈ V , then {v} ∈ K;
(ii) if σ ∈ K and τ is a non-empty subset of σ, then τ ∈ K.

Elements of V are called the vertices of K. If {v0, . . . , vn} ∈ K, we say
that the vertices vj span a simplex of K.

Set
Kn = {σ ∈ K : #σ = n+ 1}.

Elements of Kn are called (abstract) n-simplices. The subsets of an
abstract simplex σ are called the faces of σ.

If K is a simplicial complex and n ∈ N, then

skn K :=
∪
m≤n

Km

is a simplicial complex, which is called the n-skeleton ofK. A simplicial
complex K is called an n-complex if Km is empty when m > n, or
equivalently, K = skn K.

An ordered simplicial complex is a simplicial complex K together with
a partial order on the set V of vertices of K that induces a total order
on each σ ∈ K.

Example: The abstract n-simplex ∆[n] consists of all non-empty ele-
ments of the set [n] := {0, 1, 2, . . . , n}. Its boundary ∂∆[n] consists of
all non-empty proper subsets of [n]. Both are ordered simplicial com-
plexes as the elements of the vertex set [n] are totally ordered. Note
that ∂∆[n] = skn−1∆[n].

Example: Every partially ordered set (P,<) gives rise to a simplicial
complex ∆(P ), called the order complex of P . The set of n-simplices of
∆(P ) is the set of all totally ordered (n+1)-element subsets of P . For
example, ∆[n] is the order complex of {0, 1, . . . , n} with its standard
order.

Example: Suppose that V is a vector space over a field F and that
H1, . . . , Hn is a finite set of affine hyperplanes. (That is, subsets defined
by L(x) = c, where L : V → F is linear and c ∈ F .) The set P of
all finite intersections Hj1 ∩ · · · ∩ Hjk (k ≥ 0) is partially ordered by
inclusion.



Exercise: What is the order complex associated to three lines in R2,
that are not concurrent and are pairwise non-parallel?

A Non-Trivial Example of a Simplicial Complex (optional)

Suppose that S is a (smooth) compact oriented surface of genus g
(possibly with non-empty boundary). A simple closed curve in S is
an imbedded submanifold of S that is diffeomorphic to the circle. Two
simple closed curves C0 and C1 are isotopic if there is a smooth mapping

f : S1 × [0, 1] → S

such that

(i) for each t ∈ [0, 1], ft : S
1 → S is an imbedding, where ft(x) :=

f(x, t), and
(ii) when t = 0, 1, the image of ft is Ct.

A simple closed curve is trivial if it bounds a disk in S or is isotopic to
a boundary component.

The curve complex of S is the simplicial complex C(S) whose vertices
are isotopy classes of non-trivial simple closed curves. The non-trivial
simple closed curves C0, . . . , Cn span an n-simplex of C(S) if the Cj

are disjoint and lie in distinct isotopy classes.

We will see later in the course that if S has genus g and r boundary
components and if 2g − 2 + r > 0, then every simplex of C(S) has
dimension ≤ 3g − 3 + r.

Exercise: Show that if S has genus 1 and r = 0, 1, then C(S) has vertex
set

C(S)0 = Q ∪ {∞} = P1(Q)

and no simplices of positive dimension. Hint: Show that the simple
closed curves in S1×S1 correspond (up to translation) to 1-dimensional
subspaces of R2 with rational slope.

A theorem of Harer states (among other things) that if 2g − 2 > 0,
then |C(S)| is connected, and if 2g − 2 > 1, it is simply connected.

Subcomplexes: A subcomplex L of a simplicial complex K is a sim-
plicial complex whose set of vertices VL is a subset of the set VK of the
vertices of K. For each n ≥ 0, its set Ln of n-simplices is a subset of
Kn, the set of n-simplices of K.

Example: The boundary ∂∆[n] of the standard n-simplex is a subcom-
plex of ∆[n].

2



Example: The n-skeleton skn K of a simplicial complex K is a subcom-
plex of K.

Example: Each simplex σ of K can be regarded as a subcomplex with
vertex set σ and simplices the set of all subsets τ of σ. The boundary
∂σ of σ is the subcomplex with the same vertex set, and simplices the
proper subsets of σ.

Geometric Realization: To each simplicial complex K, one can as-
sociate a topological space |K|, which is called its geometric realization.

For each σ ∈ K, let Rσ be the real vector space with basis the elements
of σ. Elements of Rσ are written

(tv)v∈σ =
∑

v∈σ tvv

where each tv ∈ R. The geometric simplex corresponding to σ ∈ K is
defined to be

|σ| := {
∑

v∈σ tvv ∈ Rσ : tv ≥ 0 and
∑

v∈σ tv = 1}.

The coefficients (tv)v∈V are called the barycentric coordinates of |σ|.
When σ = {v0, . . . , vn} we will sometimes denote |σ| by ⟨v0, . . . , vn⟩.
When τ ⊆ σ ∈ K, define dστ : |τ | ↪→ |σ| to be the natural inclusion that
takes

∑
v∈τ tvv ∈ |τ | to

∑
v∈τ tvv ∈ |σ|.

If σ = {v0, v1, . . . , vn}, then the function

∆n → |σ|, (t0, . . . , tn) 7→
∑n

j=0 tjvj ∈ Rσ

from the standard n-simplex to |σ| is a linear homeomorphism that
takes vertices to vertices, edges to edges, etc.

The geometric realization |K| of the simplicial complex K is defined to
be the quotient

|K| =
( ⨿

σ∈K

|σ|
)
/ ∼,

where ∼ is the equivalence relation generated by the relation(
x ∈ |τ |

)
∼

(
dστ (x) ∈ |σ|

)
,

whenever τ ⊆ σ and σ ∈ K.

It is not difficult to show that the actual equivalence relation is

(1)
(
x ∈ |σ|

)
∼

(
y ∈ |τ |

)
if and only if σ ∩ τ ̸= ∅ and there exists z ∈ |σ ∩ τ | such that

x = dσσ∩τ (z) and y = dτσ∩τ (z).
3



Reflexivity and symmetry are clear; the proof of transitivity requires a
little work.1

The geometric realization of the abstract n-simplex ∆[n] is the standard
n-simplex ∆n.

The interior int |σ| of the geometric simplex |σ| is defined by

int |σ| = {
∑

v∈σ tvv ∈ Rσ : tv > 0 and
∑

v∈σ tv = 1}.
Note that if σ is a 0-simplex, then int |σ| = |σ| and that (as sets)

(2) |σ| =
⨿
τ⊆σ

int |τ | and |∂σ| =
⨿
τ⊂σ

int |τ |

The important properties of the geometric realization are:

(i) As a set (but not as a topological space)

|K| =
⨿
σ∈K

int |σ|.

This follows directly from (1), which implies quite directly that
a point in the interior of one simplex cannot be identified with
a point in the interior of another. The fact that every point
of |K| lies in the interior of some simplex follows from (2) and
the surjectivity of the quotient map

⨿
σ |σ| → |K|.

(ii) For each σ ∈ K, the composite q ◦ jσ:

|σ| jσ //
⨿

σ∈K
q // |K|

is injective and is the inclusion of a subspace. (So we will view
each geometric simplex |σ| as a subspace of |K|.) Injectivity
follows directly from (i) and (2). That jσ is a subspace inclusion
is proved Appendix B.

(iii) A subset of |K| is open (resp. closed) if and only if its inter-
section with each geometric simplex |σ| of K is open (resp.
closed) in |σ|. This follows from the fact that

⨿
|σ| → |K|

is a quotient mapping and the fact that each jσ is a subspace
inclusion.

(iv) If L is a subcomplex of K, then there is a natural continuous
mapping |L| → |K| which is injective and is the inclusion of a
subspace. This follows from the first three properties (i), (ii)
and (iii).

1You have to show that if x ∈ |σ|, y ∈ |τ | and z ∈ |ρ|, and if x ∼ y and y ∼ z,
then σ∩τ ∩ρ is non-empty and there exists w ∈ |σ∩τ ∩ρ| such that dσσ∩τ∩ρ(w) = x,

dτσ∩τ∩ρ(w) = y, and dρσ∩τ∩ρ(w) = z.
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(v) A closed subset C of |K| is compact if and only if it lies in the
union of a finite number of geometric simplices:

C ⊆
n∪

j=1

|σj|.

Alternatively, C is compact if and only C∩ int |σ| is non-empty
for only finitely many σ ∈ K. These two statements are easily
seen to be equivalent. The second statement is proved in the
Appendix C.

(vi) Every simplicial complex is locally contractible. That is, each
point of |K| has a base of contractible neighbourhoods. This
is proved in Appendix A. In fact, we will prove that |K| is
locally conical.

Exercise: Suppose that K is a simplicial complex with a vertex vo such
that if σ ∈ K, then σ ∪ {v0} ∈ K. Let

L = {σ ∈ K : vo /∈ σ}.

This is a sub-complex of K. Show that |K| is the cone C(|L|) over |L|
with cone point vo ∈ |K|. That is, show that the mapping

|L| × [0, 1] → |K|

defined by (x, t) 7→ tx+ (1− t)vo induces a homeomorphism

C(|L|) := (|L| × [0, 1])/(|L| × 0)
≃−→ |K|

Example: If P is a partially ordered set with an element xo such that
xo ≤ x for each x ∈ P , then the order complex of P is contractible.
More precisely, it is the cone over the order complex of the partially
ordered set P − {xo}.
Triangulation:

A triangulation of a topological space X is simplicial complex K and
a homeomorphism ϕ : |K| → X.

Example: Since ∆n is homeomorphic to the n-ball Bn, the boundary
∂∆n is a triangulation of Sn−1. This triangulation can be made explicit
by considering Sn−1 to be the sphere in the affine hyperplane t0 +
t1 + · · · + tn = 1 of radius

√
n/(n+ 1) centered at the barycenter

(e0 + · · · + en)/(n + 1) of ∆n. This is the unique (n − 1)-sphere in
Rn+1 that contains each vertex of ∆n. The triangulation of this Sn−1

is obtained by radially projecting ∂∆n onto the sphere from the center
of the sphere. □
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Two important results:

(i) (S. Cairns (1934)) Every smooth manifold admits a smooth
triangulation. (That is, the inclusion of each |σ| into the man-
ifold is a smooth imbedding.) If N is a closed submanifold of
a smooth manifold M , it is possible to triangulate M so that
N is a subcomplex. Note that not every topological manifold
is triangulable.

(ii) (S. Lojasiewicz (1964), H. Hironaka (1975)) Every real semi-
algebraic set (i.e., a set defined by a finite number of real poly-
nomial equations and inequalities) admits a real semi-algebraic
triangulation. Even stronger, if X is a real semi-algebraic set
and X1, . . . , Xn is a finite collection of real algebraic subsets of
X, each closed in X, then there is a triangulation of X such
that each Xj is a subcomplex. Since real and complex alge-
braic varieties are real algebraic sets, it follows that every real
and complex algebraic variety admits a semi-algebraic triangu-
lation and that closed subvarieties can be realized as subcom-
plexes. Lojasiewicz’s result is stronger in that he proves that
every real semi-analytic set is triangulable.2

Simplicial Maps: Suppose that K and L are simplicial complexes
with vertex sets VK and VL, respectively. A simplicial map f : K → L
is a function f : VK → VL with the property that if σ ∈ K, then
f(σ) ∈ L. (Here f(σ) is the image of the subset σ of VK under f .)
Note that #f(σ) ≤ #σ.

A simplicial mapping f : K → L induces a map |f | : |K| → |L| of
geometric realizations. It is induced by the mapping⨿

σ∈K

|σ| →
⨿
τ∈L

|τ | → |L|

where the restriction of the first mapping to |σ| is the unique affine
linear map

fσ : |σ| → |f(σ)|
that takes the vertex v of σ to the vertex f(v) of |f(σ)|. This is given
by the formula:

fσ
(∑

v∈σtvv
)
=

∑
v∈σtvf(v) ∈ |f(σ)|.

2Hironaka’s paper — Triangulations of algebraic sets, Algebraic geometry, Proc.
Sympos. Pure Math., 29 (1975) — is quite accessible and gives a more direct ap-
proach in the semi-algebraic case than Lojasiewicz’s paper.

6



This is easily seen to respect the equivalence relation that defines |K|,
and therefore induces a continuous mapping |f | : |K| → |L|.
Subdivision:

Often, for technical reasons, it will be necessary to subdivide a simpli-
cial complex — that is, divide each of its simplices into smaller pieces.
One standard way (but not the only way) to do this is by barycentric
subdivision.

The barycenter of the geometric simplex ⟨v0, . . . , vn⟩ in the real vector
space V is its “center of mass”:

1

n+ 1

n∑
j=0

vj.

Figure 1 show the barycenter of a 2-simplex. We shall denote the

barycenter

Figure 1. Barycenter of a 2-simplex

barycenter of a geometric simplex |σ| by σ̂.

The barycentric subdivision sdK of a simplicial complex K is the (ab-
stract) simplicial complex whose vertices consist of all simplices of K
(ordered by inclusion) and whose n-simplices consist of all chains

σ0 ⊂ σ1 ⊂ · · · ⊂ σn

where each σj ∈ K and σj−1 is a proper face of σj.

Inclusion of simplices defines a partial order on the vertices of sdK
with the property that the vertices of each simplex of sdK are totally
ordered. Thus sdK is an ordered simplicial complex.

Figure 2 shows the barycentric subdivision of a 2-simplex whose ver-
tex set is {0, 1, 2}. Here, the barycenter of the simplex ⟨j0, . . . , jk⟩ is
denoted j0j1 . . . jk. The edge j ⊂ jk of the barycentric subdivision
is denoted by [j, jk] and the 2-simplex j ⊂ jk ⊂ jkℓ of the barycen-
tric subdivision by is denoted by [j, jk, jkℓ]. The orientations of the
edges are indicated with arrows. Note that if σ is a permutation of
{0, 1, 2}, then the orientation of the 2-simplex [σ(0), σ(01), σ(012)] is
sgn(σ) times the orientation of the 2-simplex ⟨0, 1, 2⟩.
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Figure 2. Barycentric subdivision of a 2-simplex

If σ is the standard n-simplex ⟨0, 1, . . . , n⟩, then the n-simplices of sd σ
are

[σ(0), σ(01), σ(012), . . . , σ(012 . . . n)],

where σ is a permutation of {0, 1, . . . , n}. Note that these are in 1-1
correspondence with the orderings of the vertices of σ. There are thus
(n + 1)! n-simplices in sd σ. The vertices of [0, 01, 012, . . . , 012 . . . n]
have barycentric coordinates

(1, 0, . . . , 0), (1, 1, 0, . . . , 0)/2, . . . , (

k︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)/k, . . . , (1, 1, . . . , 1)/(n+ 1).

The affine span of these points in |σ| is exactly the n-simplex

{(t0, t1, . . . , tn) ∈ |σ| : t0 ≥ t1 ≥ t2 ≥ · · · ≥ tn}.
By applying σ ∈ Sn+1 to this, we see that the points

σ(0), σ(01), . . . , σ(012 . . . n)

span the simplex

{(t0, t1, . . . , tn) ∈ |σ| : tσ(0) ≥ tσ(1) ≥ tσ(2) ≥ · · · ≥ tσ(n)}.
From this it follows that |σ| is the union of the geometric simplices of
sd σ. These intersect along lower dimensional simplices of sdσ.

For an n-simplex σ, define the continuous mapping

ϕσ : | sdσ| → |σ|
to be the unique affine linear mapping that takes the vertex τ of sd(σ)
to its barycenter τ̂ ∈ |σ|. This is a homeomorphism.
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If σ ∈ K, then sd σ is a subcomplex of sdK. Denote the induced map
on realizations by pσ : | sd σ| ↪→ | sdK|. It is a subspace inclusion.
There is a unique continuous mapping ϕ : | sdK| → |K| such that the
diagram

| sdσ| ϕσ //

pσ

��

|σ|
jσ
��

| sdK| ϕ // |K|
commutes. It is a homeomorphism.

The Star Covering:

Simplicial complexes have a natural, combinatorially defined, open cov-
ering. It is a useful technical tool.

Suppose that K is a simplicial complex and that σ ∈ K.

Define
st(σ) :=

∪
τ⊇σ

int |τ |.

This is open in |K|. To see this, note that |τ | ∩ st(σ) is non empty if
and only if τ ⊇ σ. (This is because the int |τ | are disjoint in |K|.) It
follows that |τ | ∩ st(σ) is open in |τ | for all τ ∈ K.

Figure 3 illustrates this: v and w are adjacent vertices, st(v) is the
interior of the left-hand shaded hexagon and st(w) is the interior of the
right-hand shaded hexagon. Their intersection, st⟨v, w⟩, is the dark
shaded area.

wv

Figure 3. st⟨v, w⟩ = st(v) ∩ st(w)

Since a simplex τ contains σ if and only if it contains each vertex of σ,
it follows that

st(σ) =
∩
v∈σ

st(v).
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The star covering of |K| is the open covering

{st(v) : v is a vertex of K}.

Simplicial Approximation:

Continuous mappings between geometric realizations of simplicial com-
plexes are homotopic (after subdivision) to simplicial maps. This is a
powerful technical result. More precisely, suppose that K1 and K2 are
simplicial complexes and that L is a (possibly empty) subcomplex of
K1. Suppose that ϕL : L → K2 is a simplicial map.

Theorem 1. If K1 is finite and if f : |K1| → |K2| is a continuous
mapping whose restriction to |L| is |ϕ|, then there is a positive integer
m and a simplicial map ϕ : sdmK1 → K2 whose restriction to L is
sdm ϕL such that f is homotopic to |ϕ| rel |L|.

Sketch of proof when L is empty. Since |K1| is compact, the open cov-
ering {f−1 st(w) : w is a vertex of K2} has a Lebesgue number3 δ > 0.
Subdivide K1 until the diameter of the star st(v) of each vertex v of
sdmK1, is < δ.4 It follows that for each vertex v of sdmK1, f(st(σ)) is
contained in st(w) for some vertex w of K2. For each v choose such a w
— call it ϕ(v). This defines a simplicial map ϕ : sdmK1 → K2. Indeed,
if v0, . . . , vn span a simplex of sdmK1, then ∩j st(vj) is non-empty.
Since

f−1
( n∩

j=0

st(ϕ(vj))
)
⊇

n∩
j=0

st(vj) ̸= ∅

so that ∩j st(ϕ(vj)) is non-empty and ϕ(v0), . . . , ϕ(vn) span a simplex
of K2. Observe that if σ is a simplex of sdm K1 and x ∈ |σ|, then f(x)
lies in st(ϕ(σ)). This allows us to define a homotopy from f to ϕ by
F (x, t) = tf(x) + (1− t)ϕ(x). □

This argument is easily modified to include the case when L is non-
empty.

The assumption that K1 be finite can be dropped if we consider sub-
divisions more general than barycentric subdivisions. (See Spanier, for
example.)

3Every open covering U of a compact space X has a Lebesgue number δ > 0.
That is a positive number such that every subset of X of diameter < δ is contained
in some U ∈ U .

4This is possible. If K is a simplicial complex of dimension d, then the diameter
(with respect to the original metric on |K|) of the star cover of | sdm K| is bounded
by 2(d/(d+ 1))m/2, which goes to 0 as m → ∞.
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Example: If n > m > 0, then every continuous mapping f : (Sm, e0) →
(Sn, e0) is homotopic to a constant mapping rel e0. This follows from
the Simplicial Approximation Theorem above as follows. Triangu-
late Sm and Sn so that e0 is a vertex of each. (For example, Sr is
homeomorphic to ∂∆r+1.) By the theorem, there is a k > 0 such
that f is homotopic rel e0 to the realization of a simplicial mapping
ϕ : sdk ∂∆[m+1] → ∂∆[n+1]. But such a mapping is not surjective as
m < n. Since Sn minus a point is homeomorphic to Rn, it follows that
f is nullhomotopic. This is a non-trivial result. It says, for example,
that πm(S

n, e0) = 0 when m < n.

An Application:

The topology of every complex algebraic variety (not necessarily smooth,
not necessarily compact) is finite. More precisely, every complex alge-
braic variety has the homotopy type of the geometric realization of a
finite simplicial complex. In particular, the fundamental group of every
complex algebraic variety is finitely presented and all of its homology
(and cohomology) groups are finitely generated.

To see this, we use the fact that every complex algebraic variety has
a triangulation. An algebraic variety Z is said to be quasi-projective if
Z = X−Y , whereX is a projective variety and Y is a closed subvariety.
If Y is non-empty, Z is not compact, so it is not clear that Z has the
homotopy type of a finite simplicial complex. However, as previously
remarked, there is a simplicial complex K (necessarily finite as X is
compact), a subcomplex L, and a triangulation

ϕ : (|K|, |L|) → (X,Y ).

Thus Z is homeomorphic to |K|−|L|. That this is homotopy equivalent
to a finite complex follows from the following exercise.

Exercise: Suppose that K is a simplicial complex and that L is a
subcomplex. We may assume that no simplex of K has more that one
face that is a simplex of L. (If necessary, replace (K,L) by (sdK, sdL).)
Set

U =
∪

{int |σ| : |σ| ∩ |L| is non-empty}.

Show that

(i) |L| a deformation retraction of U ;
(ii) |K| − U is a deformation retraction of |K| − |L|.

Deduce that if K is a finite simplicial complex, then |K| − |L| has the
homotopy type of a finite simplicial complex.
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Appendix A. Simplicial Complexes are Locally Conical

Suppose that K is a simplicial complex and that σ ∈ K. Note that
|σ| has a natural metric induced from the euclidean metric via the
inclusion |σ| → Rσ:

distσ
(
(tv)v∈σ, (sv∈σ)v

)
=

(∑
v∈σ(tv − sv)

2
)1/2

.

Note that if τ ⊂ σ, the inclusion dστ : |τ | → |σ| is an isometry (i.e.,
distance preserving).

For r > 0 and x ∈ |σ|, set

Bσ(x, r) = {y ∈ |σ| : distσ(x, y) < r}

and

Sσ(x, r) = {y ∈ |σ| : distσ(x, y) = r}.

Suppose that x ∈ |K|. Then there is a unique σ ∈ K such that
x ∈ int |σ|. If dim σ > 0, choose ϵ > 0 such that Bσ(x, ϵ) ⊂ int |σ|. If σ
is a vertex, take ϵ <

√
2/2. Define

N(x, ϵ) =
∪
τ⊇σ

Bτ (x, ϵ).

Since N(x, ϵ) ∩ |ρ| ̸= ∅ implies that ρ ⊇ σ, and since (by the choice of
ϵ), N(x, ϵ) ∩ |τ | = Bτ (x, ϵ) is open in |τ | when τ ⊇ σ, N(x, ϵ) is open
in |K|.
The union

∂N(x, ϵ) :=
∪
τ⊇σ

Sτ (x, ϵ)

is closed in |K|. The mapping(
∂N(x, ϵ)× [0, 1[

)
/
(
∂N(x, ϵ)× 0

)
, (y, t) 7→ (1− t)x+ ty

induces a homeomorphism cone(∂N(x, ϵ)) → N(x, ϵ).

It follows that each point x ∈ |K| has a base {N(x, r) : r < ϵ} of
conical (and therefore contractible) neighbourhoods.

Appendix B. jσ : |σ| ↪→ |K| is a subspace inclusion

Suppose that K is a simplicial complex, that σ ∈ K, and that U is
an open subset of |σ|. We have to construct an open subset V of |K|
whose intersection with |σ| is U .
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Here is one construction of V — there is another, which uses cones over
barycenters. For each x ∈ U , there is ϵ(x) > 0 such that

Bσ

(
x, ϵ(x)

)
⊆ U.

Define

V =
∪
x∈U

N
(
x, ϵ(x)

)
.

This is a union of open subsets of |K|, and therefore open in |K|.
Moreover,

V ∩ |σ| =
∪
x∈U

Bσ

(
x, ϵ(x)

)
= U

as required.

Appendix C. Characterization of Compact Subsets of |K|

Suppose that C is a closed subset of |K|. Consider the following 3
statements:

(i) C ∩ int |σ| is non-empty for only finitely many σ ∈ K;
(ii) there is a finite subcomplex L of K such that C ⊆ |L|;
(iii) C is compact.

We will prove these three statements are equivalent. The first implies
the second. Just take

L = {τ ∈ K : τ ⊆ σ and C ∩ int |σ| ̸= ∅}.

The second statement implies the third as |L|, being the quotient of
the compact space ⨿τ∈L|τ |, is compact.

To complete the proof, we show that the third implies the first. Suppose
that C is compact. Let

S = {σ ∈ K : C ∩ int |σ| ≠ ∅}.

If S is finite, then we are done. If not, choose for each σ ∈ S, choose a
point xσ ∈ C ∩ int |σ|. set T := {xσ : σ ∈ S}.
Since S is infinite, the compactness of C implies that S has a point of
accumulation xo ∈ C, say. This lies in int |σo| for some σo ∈ K. By
replacing xσo by xo if necessary, we may assume that xo ∈ S. There is a
sequence xσn in T−{xo} that converges to xo. Since dist(xo, |∂σo|) > 0,
we may assume that σo is a face of each σn. For convenience, set
xn = xσn .
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We show that there is a continuous function f : |K| → R such that

f(xo) = 1 and f(xn) = 0 when n > 0.

The existence of such a function implies that xo is not a limit point of
the xσ. This is a contradiction, so S must be finite.

To construct f , we need only construct a family of functions fσ : |σ| →
R such that

(i) fσ vanishes on {xn} ∩ |σ|;
(ii) fσo(xo) = 1;
(iii) if τ ⊂ σ, then fσ||τ | = fτ .

Set d = dim σo. Start by defining f to be identically 1 on | sdd K|. We
construct fσ when σ ∈ Kn and n > d by induction on n. Suppose that
n > d and that fτ has already been defined for all lower dimensional
simplices. Choose a point zo ∈ int |τ |. Choose this to be xn if τ = σn

and any point otherwise. Observe that

C(|∂τ |) → |τ |, (x, t) 7→ tx+ (1− t)zo

is a homeomorphism from the closed cone over |∂τ | to |τ |. Define fτ
by

fτ (x, t) = tf∂τ (x).

This agrees with f on the boundary of |τ | and takes the value 0 at zo,
as required.

Remark: A straightforward elaboration of this argument can be used to
show that |K| is a normal topological space. (See Spanier for details.)
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