MATH 612 PROBLEM SET 2

Due: Tuesday Februarty 28, 2023.

1. Denote the *n*-torus $(S^1)^n$ by T_n . Compute the action of the automorphism

$$\sigma: T_n \to T_n, \quad \sigma: x \mapsto -x$$

on $H_{\bullet}(T_n; R)$ and $H^{\bullet}(T_n; R)$ for all coefficient rings R.

- 2. Suppose that $\pi: Y \to X$ is a covering map of finite degree d. Fix a base ring R.
 - (i) Show that each singular simplex $\sigma: \Delta^n \to X$ has d lifts $\sigma_j: \Delta^n \to Y, j=1,\ldots,d$. (That is, $\pi \circ \sigma_j = \sigma$, each j.)
 - (ii) Define an R-module map $\pi^*: C_{\bullet}(X) \to C_{\bullet}(Y)$ by

$$\pi^*(\sigma) = \sigma_1 + \dots + \sigma_d = \sum_{\substack{\tau: \Delta^n \to Y_\tau \\ \pi \circ \tau = \sigma}} \tau$$

Show that π^* is a chain map and that $\pi_* \circ \pi^*$ is multiplication by d.

- (iii) Deduce that for all R-modules M, there are maps
- $\pi^*: H_{\bullet}(X; M) \to H_{\bullet}(Y; M)$ and $\pi_*: H^{\bullet}(Y; M) \to H^{\bullet}(X; M)$ such that the composites

$$H_{\bullet}(X;M) \xrightarrow{\pi^*} H_{\bullet}(Y;M) \xrightarrow{\pi_*} H_{\bullet}(X;M)$$

$$H^{\bullet}(X; M) \xrightarrow{\pi^*} H^{\bullet}(Y; M) \xrightarrow{\pi_*} H^{\bullet}(X; M)$$

are multiplication by d. Deduce that if $H^j(Y; M) = 0$ (resp. $H_j(Y; M) = 0$), then d annihilates $H^j(X; M)$ (resp. $H_j(X; M)$).

- (iv) Deduce that if $\pi: S^n \to X$ is a d-fold covering map, then $H_j(X; \mathbb{Z})$ is annhilated by d when 0 < j < n.
- (v) Regard S^{2m-1} as the unit sphere in \mathbb{C}^n . Show that the group $\boldsymbol{\mu}_d$ of dth roots of unity acts fixed point freely on S^{2m-1} by multiplication. Deduce that $H_j(S^{2m-1}/\boldsymbol{\mu}_d;\mathbb{Z})$ is annhilated by d when 0 < j < 2m 1. (We'll see that these groups are cyclic.)
- 3. Assume now that the covering in the previous problem is Galois with Galois group G. (This is finite of order d.) Suppose that $d \in \mathbb{R}^{\times}$.

(i) Show that if V is an R[G]-module, then there is a unique Gsubmodule V' of V such that

$$V = V^G \oplus V'$$

where $V^G=\{v\in V:gv=v\text{ all }g\in G\}$. Hint: Take $V'=\{v\in V:\sum_{g\in G}gv=0\}$. (ii) Show that the singular chain complex of Y decomposes

$$C_{\bullet}(Y) = C_{\bullet}(Y)^G \oplus C_{\bullet}(Y)'$$

(Here, coefficients R are understood.)

- (iii) Show that the restriction of π_* to $C_{\bullet}(Y)^G$ is an isomorphism with inverse $d^{-1}\pi^*$.
- (iv) Deduce that for all R-modules M,

 $\pi^*: H^{\bullet}(X; M) \to H^{\bullet}(Y; M)^G$ and $\pi_*: H_{\bullet}(Y; M)^G \to H_{\bullet}(X; M)$ are isomorphisms.