Math 611

Worksheet 1
One goal of this worksheet is to show that the braid group B_{3} is isomorphic (naturally) to the fundamental group of the complement of the trefoil knot in S^{3} and to use this isomorphism to derive the standard presentation of B_{3}. A second goal is to construct a homomorphism $B_{3} \rightarrow \mathrm{SL}_{2}(\mathbb{Z})$.

1. A knot is a smooth embedding of the circle S^{1} in S^{3}. Suppose that m and n are relatively prime integers. Regard S^{3} as the unit sphere in \mathbb{C}^{2}. Let K be the $\operatorname{knot} S^{1} \rightarrow S^{3}$ by $w \mapsto\left(c_{1} w^{n}, c_{2} w^{m}\right)$, where c_{1}, c_{2} are positive real numbers satisfying $c_{1}^{2}+c_{2}^{2}=1$ and $c_{1}^{m}=c_{2}^{n}$. This is a torus knot of type $(n, m) .{ }^{1}$
(i) Use van Kampen's Theorem to compute a presentation of $\pi_{1}\left(S^{3}-\right.$ K, x_{o}). (Hint: use results from Problem Set 2. You will need to choose your base point to lie on $T\left(c_{1}^{2}\right)-K$. Your generators should be the "spines" of the two solid tori. That is, apart from a brief excursion to and from the base point, they can be chosen to lie on the coordinate axes.
(ii) Compute $\pi_{1}\left(\mathbb{C}^{2}-\left\{(x, y): x^{m}=y^{n}\right\}, *\right)$.
2. As in class, let

$$
Y_{n}=\mathbb{C}^{n}-\bigcup_{j<k} \Delta_{j, k},
$$

where $\Delta_{j, k}$ is the hyperplane $\lambda_{j}=\lambda_{k}$. Let $X_{n}=\Sigma_{n} \backslash Y_{n}$, where the symmetric group Σ_{n} acts on Y_{n} by permuting the coordinates. As in class, this is regarded as the space of monic polynomials of degree n with distinct roots. Denote the discriminant of the polynomial

$$
T^{n}+a_{1} T^{n-1}+\cdots+a_{n-1} T+a_{n}
$$

by $D\left(a_{1}, \ldots, a_{n}\right)$. The map $X_{n} \rightarrow \mathbb{C}^{n}-D^{-1}(0)$ defined by

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto\left(-\sigma_{1}(\lambda), \sigma_{2}(\lambda), \ldots,(-1)^{n} \sigma_{n}(\lambda)\right)
$$

Observe that $X_{n}=\mathbb{C}^{n}-D^{-1}(0)$. Set

$$
Y_{n}^{o}=Y^{n} \cap\left\{\lambda \in \mathbb{C}^{n}: \lambda_{1}+\cdots+\lambda_{n}=0\right\} .
$$

and

$$
X_{n}^{o}=\Sigma_{n} \backslash Y_{n}^{o}=X_{n} \cap\left\{T^{n}+a_{1} T^{n-1}+\cdots+a_{n-1} T+a_{n}: a_{1}=0\right\} .
$$

[^0](i) Show that the map $\mathbb{C} \times Y_{n}^{o} \rightarrow Y_{n}$ defined by
$$
\left(\bar{\lambda},\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right) \mapsto\left(\lambda_{1}+\bar{\lambda}, \ldots, \lambda_{n}+\bar{\lambda}\right)
$$
is a homeomorphism. ${ }^{2}$
(ii) Deduce that X_{n} is homeomorphic to $\mathbb{C} \times X_{n}^{o}$ and that $B_{n}=$ $\pi_{1}\left(X_{n}^{o}, *\right)$.
(iii) The discriminant of the cubic $T^{3}-a T-b$ is $4 a^{3}-27 b^{2}$. Deduce that
$$
X_{3}^{o}=\mathbb{C}^{2}-\left\{(a, b): 4 a^{3}=27 b^{2}\right\}
$$
and that B_{3} is isomorphic to the fundamental group of the complement of the trefoil knot.
(iv) What braids correspond to letting (a, b) move about a unit circle in the a-axis? In the b-axis? What base points are you using? How do you join them up?
3. Abstract group theory (with soul): the goal of this problem is to use the presentation of the complement of the trefoil knot to derive the standard presentation of B_{3}. Let
$$
G_{1}=\left\langle u, s: u^{3}=s^{2}\right\rangle \text { and } G_{2}=\left\langle\sigma_{1}, \sigma_{2}: \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$
(i) Show that the homomorphism $\langle u, s\rangle \rightarrow G_{2}$ defined by
$$
u \mapsto \sigma_{2} \sigma_{1} \text { and } s \mapsto \sigma_{2} \sigma_{1} \sigma_{2}
$$
induces a homomorphism $G_{1} \rightarrow G_{2}$.
(ii) Show that the homomorphism $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \rightarrow G_{1}$ defined by
$$
\sigma_{1} \mapsto s^{-1} u^{2} \text { and } \sigma_{2} \mapsto u^{-1} s
$$
induces a homomorphism $G_{2} \rightarrow G_{1}$.
(iii) Show that these homomorphisms are inverses and hence isomorphisms.
(iv) Show that $u^{3}=s^{2}$ is central in G_{1}, so that the corresponding element $\left(\sigma_{2} \sigma_{1}\right)^{3}$ is central in B_{3}. Which braid is this?
4. The goal of this problem is to show that these groups map to $\mathrm{SL}_{2}(\mathbb{Z})$ and to give a hint as to why B_{3} is isomorphic to
$$
\widetilde{\mathrm{SL}_{2}(\mathbb{Z})}:=\text { inverse image of } \mathrm{SL}_{2}(\mathbb{Z}) \text { in } \widetilde{\mathrm{SL}_{2}(\mathbb{R})}
$$
which is a central extension
$$
0 \rightarrow \mathbb{Z} \rightarrow \widetilde{\mathrm{SL}_{2}(\mathbb{Z})} \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

[^1]Consider the following elements of $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \text { and } U=S T=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
$$

(i) Show that S has order $4, U$ has order 6 and that $S^{2}=U^{3}=-I$.
(ii) Show that there is a homomorphism $\varphi: G_{1} \rightarrow \mathrm{SL}_{2}(\mathbb{Z})$ that takes u to U and s to S. Show that it takes the central element of the previous problem to $-I$.
(iii) Deduce that there is a homomorphism $B_{3} \rightarrow \mathrm{SL}_{2}(\mathbb{Z})$.

It is true that

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S, U, Z: S^{2}=U^{3}=Z, Z^{2}=1\right\rangle
$$

and that

$$
\widetilde{\mathrm{SL}_{2}(\mathbb{Z})}=\left\langle S, U: S^{2}=U^{3}\right\rangle,
$$

so that B_{3} is isomorphic to $\widetilde{\mathrm{SL}_{2}(\mathbb{Z})}$. You can find a proof of the first statement in the handout on $\mathrm{SL}_{2}(\mathbb{Z})$ on the class web page. The only proof of the second statement that I can think of at the moment, although elementary, requires some knowledge of the theory of elliptic curves. ${ }^{3}$

[^2]
[^0]: ${ }^{1}$ The trefoil knot is the torus knot of type $(2,3)$ or $(3,2)$.

[^1]: ${ }^{2}$ It is a diffeomorphism, biholomorphism, ...

[^2]: ${ }^{3}$ An elliptic curve is a compact Riemann surface isomorphic to the quotient \mathbb{C} / Λ of \mathbb{C} by a lattice. Equivalently, it cubic curve in $\mathbb{C P}^{2}$ with equation of the form $y^{2}=x^{3}-a x-b$.

