Math 611

Algebraic Topology I
 Spheres as Quotients

The goal of this note is to sketch an efficient proof that the space obtained by identifying the boundary of the n-ball to a point is an n-sphere:

$$
B^{n} / S^{n-1} \approx S^{n} .
$$

We have already seen that B^{n} is the cone over its boundary S^{n-1} via the map

$$
\left(S^{n-1} \times[0,1]\right) / S^{n-1} \times\{0\} \rightarrow B^{n}
$$

induced by $(x, t) \rightarrow t x$. This means that B^{n} / S^{n-1} is the quotient of $S^{n-1} \times[0,1]$ obtained by identifying $S^{n-1} \times\{0\}$ and $S^{n-1} \times\{1\}$ to points. By rescaling the interval, we see that B^{n} / S^{n-1} is the space obtained from $S^{n-1} \times[-1,1]$ by identifying $S^{n-1} \times\{-1\}$ and $S^{n-1} \times\{1\}$ to points. To complete the proof, we have to show that this is homeomorphic to S^{n}.

To this end, view S^{n} as the unit sphere $t^{2}+\|x\|^{2}=1$ in $\mathbb{R} \times \mathbb{R}^{n}$ with coordinates (t, x). Define

$$
S^{n-1} \times[-1,1] \rightarrow S^{n}
$$

by $(x, t) \mapsto\left(t, \sqrt{1-t^{2}} x\right)$. This collapses $S^{n} \times\{ \pm 1\}$ to the poles $(\pm 1,0)$ and induces a continuous bijection

$$
B^{n} / S^{n-1} \approx\left(S^{n-1} \times[-1,1]\right) / \sim \rightarrow S^{n}
$$

where $(t, x) \sim\left(t^{\prime}, x^{\prime}\right)$ if and only if $t=t^{\prime}= \pm 1$. It is therefore a homeomorphism.

