
November 4, 2022

Math 611
Quaternions Worksheet

1. The quaternions H is the four dimensional real vector space spanned by
the linearly independent elements 1, i, j and k:

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

Define

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Extend this to an R-bilinear function

H×H → H.

Show that, with this multiplication, H is an associative ring. Here and
elsewhere, it may be helpful to use the complex representation

H = {z + wj : z, w ∈ C}.

Find a formula for the product of two quaternions written in this form.

2. Define the conjugate q of the quaternion q by

a+ bi+ cj + dk = a− bi− cj − dk.

Show that q1q2 = q2q1. Define the norm ∥q∥ of q ∈ H by

∥a+ bi+ cj + dk∥ =
√

a2 + b2 + c2 + d2.

Check that ∥q∥2 = qq. Deduce that ∥q1q2∥ = ∥q1∥∥q2∥ and that each non-
zero quaternion is a unit. (I.e., has a multiplicative inverse.) Give a formula
for the inverse. Denote the group of units in H by H×.

3. Regard H as a C vector space by multiplication on the left. Show that
for each q ∈ H the map

Φ(q) : z + wj 7→ (z + wj)q

is C-linear so that Φ(q) ∈ EndC(H). Show that the map

Φ : H → EndC(H), q 7→ Φ(q)

is injective and preserves addition and multiplication. Deduce that H is an
R-algebra.

Identify H with C2 by identifying (z, w) ∈ C2 with z + wj. This identifies
EndC(H) with with M2(C). With this convention, Φ is an algebra homo-
morphism H → M2(C) which induces an injective group homomorphism
Φ : H× → GL2(C).



4. Identify the set of unit quaternions (i.e., Quaternions of unit length) with
S3:

S3 = {q ∈ H : ∥q∥ = 1}.
Show that quaternion multiplication gives S3 the structure of a group and
that the homomorphism Φ above induces a group isomorphism S3 → SU(2).
Our goal is to construct a homomorphism S3 → SO(3) whose kernel is ±I.

5. The real part Re(q) of a quaternion q is defined by

Re(a+ bi+ cj + dk) = a.

Purely imaginary quaternions ImH are those with trivial real part. Think
of ImH as being the equatorial plane of S3 and 1 as being the north pole,
−1 as the south pole. Note that it makes sense to talk about the latitude of
a point q on S3 — namely the angle between 1 and q. To help you compute
the latitude θ of an element q of S3, note that that cos θ = Re(q). Also,
show that if we define

(x, y) = Re(xy) = −Re(xy)

for x, y ∈ ImH, then ( , ) is a positive definite inner product on ImH and
that i, j, k is an orthonormal basis of ImH.

6. Show that if q ∈ S3 and x ∈ ImH, then qxq−1 ∈ ImH.1 Define a
homomorphism A : S3 → GL(ImH) by

A(q) : x 7→ qxq−1.

Show that each A(q) preserves the inner product, so that we have a homo-
morphism

A : S3 → O(ImH) ∼= O(3).

Show that the kernel of A is ±I.

7. We want to understand A and show that it has image SO(3), so that we
have a short exact sequence

1 → {±I} → S3 → SO(3) → 1.

To this end, we define, for each q ∈ H,

eq =

∞∑
n=0

qn

n!
.

Show that this series converges absolutely for each q. Note that exp(q1+q2)
does not always equal exp q1 exp q2; a sufficient condition for equality is that
q1 and q2 commute. Show that

∥eq∥2 = eqeq = e2Re(q).

1The following formula may help. For x, y ∈ ImH, we have xy = −(x, y)+x×y, where
× denotes the cross product of vectors in R3, which we identify with ImH in the natural
way.
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Deduce that if q ∈ ImH, then eq ∈ S3 so that the exponential mapping

exp : ImH → S3 q 7→ eq.

is well defined. Show that if q ∈ ImH and q ̸= 0, then

eq = cos ∥q∥+ q

∥q∥
sin ∥q∥.

Deduce that eq has latitude ∥q∥ when q ∈ ImH and that exp : ImH → S3

is surjective.

8. Show that if q ∈ ImH, then A(eq) is the rotation about the line with axis
q by an angle of twice the latitude of eq — that is, by 2∥q∥. Deduce that
the image of S3 under A is SO(3). (Hint: Consider the action of ey ∈ S3 on
x ∈ H when x is a multiple of y, and then when x and y are perpendicular.)
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