Math 611
Quaternions Worksheet

1. The quaternions \mathbb{H} is the four dimensional real vector space spanned by the linearly independent elements $1, i, j$ and k :

$$
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\} .
$$

Define

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j .
$$

Extend this to an \mathbb{R}-bilinear function

$$
\mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H}
$$

Show that, with this multiplication, \mathbb{H} is an associative ring. Here and elsewhere, it may be helpful to use the complex representation

$$
\mathbb{H}=\{z+w j: z, w \in \mathbb{C}\} .
$$

Find a formula for the product of two quaternions written in this form.
2. Define the conjugate \bar{q} of the quaternion q by

$$
\overline{a+b i+c j+d k}=a-b i-c j-d k .
$$

Show that $\overline{q_{1} q_{2}}=\bar{q}_{2} \bar{q}_{1}$. Define the norm $\|q\|$ of $q \in \mathbb{H}$ by

$$
\|a+b i+c j+d k\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} .
$$

Check that $\|q\|^{2}=q \bar{q}$. Deduce that $\left\|q_{1} q_{2}\right\|=\left\|q_{1}\right\|\left\|q_{2}\right\|$ and that each nonzero quaternion is a unit. (I.e., has a multiplicative inverse.) Give a formula for the inverse. Denote the group of units in \mathbb{H} by \mathbb{H}^{\times}.
3. Regard \mathbb{H} as a \mathbb{C} vector space by multiplication on the left. Show that for each $q \in \mathbb{H}$ the map

$$
\Phi(q): z+w j \mapsto(z+w j) \bar{q}
$$

is \mathbb{C}-linear so that $\Phi(q) \in \operatorname{End}_{\mathbb{C}}(\mathbb{H})$. Show that the map

$$
\Phi: \mathbb{H} \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{H}), \quad q \mapsto \Phi(q)
$$

is injective and preserves addition and multiplication. Deduce that \mathbb{H} is an \mathbb{R}-algebra.

Identify \mathbb{H} with \mathbb{C}^{2} by identifying $(z, w) \in \mathbb{C}^{2}$ with $z+w j$. This identifies $\operatorname{End}_{\mathbb{C}}(\mathbb{H})$ with with $\mathbb{M}_{2}(\mathbb{C})$. With this convention, Φ is an algebra homomorphism $\mathbb{H} \rightarrow \mathbb{M}_{2}(\mathbb{C})$ which induces an injective group homomorphism $\Phi: \mathbb{H}^{\times} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$.
4. Identify the set of unit quaternions (i.e., Quaternions of unit length) with S^{3} :

$$
S^{3}=\{q \in \mathbb{H}:\|q\|=1\} .
$$

Show that quaternion multiplication gives S^{3} the structure of a group and that the homomorphism Φ above induces a group isomorphism $S^{3} \rightarrow \mathrm{SU}(2)$. Our goal is to construct a homomorphism $S^{3} \rightarrow \mathrm{SO}(3)$ whose kernel is $\pm I$.
5. The real part $\operatorname{Re}(q)$ of a quaternion q is defined by

$$
\operatorname{Re}(a+b i+c j+d k)=a .
$$

Purely imaginary quaternions $\operatorname{Im} \mathbb{H}$ are those with trivial real part. Think of $\operatorname{Im} \mathbb{H}$ as being the equatorial plane of S^{3} and 1 as being the north pole, -1 as the south pole. Note that it makes sense to talk about the latitude of a point q on S^{3} - namely the angle between 1 and q. To help you compute the latitude θ of an element q of S^{3}, note that that $\cos \theta=\operatorname{Re}(q)$. Also, show that if we define

$$
(x, y)=\operatorname{Re}(x \bar{y})=-\operatorname{Re}(x y)
$$

for $x, y \in \operatorname{Im} \mathbb{H}$, then $(, \quad$) is a positive definite inner product on $\operatorname{Im} \mathbb{H}$ and that i, j, k is an orthonormal basis of $\operatorname{Im} \mathbb{H}$.
6. Show that if $q \in S^{3}$ and $x \in \operatorname{Im} \mathbb{H}$, then $q x q^{-1} \in \operatorname{Im} \mathbb{H} .{ }^{1}$ Define a homomorphism $A: S^{3} \rightarrow \mathrm{GL}(\operatorname{Im} \mathbb{H})$ by

$$
A(q): x \mapsto q x q^{-1} .
$$

Show that each $A(q)$ preserves the inner product, so that we have a homomorphism

$$
A: S^{3} \rightarrow \mathrm{O}(\operatorname{Im} \mathbb{H}) \cong \mathrm{O}(3)
$$

Show that the kernel of A is $\pm I$.
7. We want to understand A and show that it has image $\mathrm{SO}(3)$, so that we have a short exact sequence

$$
1 \rightarrow\{ \pm I\} \rightarrow S^{3} \rightarrow \mathrm{SO}(3) \rightarrow 1
$$

To this end, we define, for each $q \in \mathbb{H}$,

$$
e^{q}=\sum_{n=0}^{\infty} \frac{q^{n}}{n!} .
$$

Show that this series converges absolutely for each q. Note that $\exp \left(q_{1}+q_{2}\right)$ does not always equal $\exp q_{1} \exp q_{2}$; a sufficient condition for equality is that q_{1} and q_{2} commute. Show that

$$
\left\|e^{q}\right\|^{2}=e^{q} e^{\bar{q}}=e^{2 \operatorname{Re}(q)}
$$

[^0]Deduce that if $q \in \operatorname{Im} \mathbb{H}$, then $e^{q} \in S^{3}$ so that the exponential mapping

$$
\exp : \operatorname{Im} \mathbb{H} \rightarrow S^{3} \quad q \mapsto e^{q}
$$

is well defined. Show that if $q \in \operatorname{Im} \mathbb{H}$ and $q \neq 0$, then

$$
e^{q}=\cos \|q\|+\frac{q}{\|q\|} \sin \|q\|
$$

Deduce that e^{q} has latitude $\|q\|$ when $q \in \operatorname{Im} \mathbb{H}$ and that $\exp : \operatorname{Im} \mathbb{H} \rightarrow S^{3}$ is surjective.
8. Show that if $q \in \operatorname{Im} \mathbb{H}$, then $A\left(e^{q}\right)$ is the rotation about the line with axis q by an angle of twice the latitude of e^{q} - that is, by $2\|q\|$. Deduce that the image of S^{3} under A is $\mathrm{SO}(3)$. (Hint: Consider the action of $e^{y} \in S^{3}$ on $x \in \mathbb{H}$ when x is a multiple of y, and then when x and y are perpendicular.)

[^0]: ${ }^{1}$ The following formula may help. For $x, y \in \operatorname{Im} \mathbb{H}$, we have $x y=-(x, y)+x \times y$, where \times denotes the cross product of vectors in \mathbb{R}^{3}, which we identify with $\operatorname{Im} \mathbb{H}$ in the natural way.

