November 4, 2022

Math 611 Quaternions Worksheet

1. The quaternions \mathbb{H} is the four dimensional real vector space spanned by the linearly independent elements 1, i, j and k:

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}.$$

Define

$$i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j.$$

Extend this to an \mathbb{R} -bilinear function

$$\mathbb{H}\times\mathbb{H}\to\mathbb{H}.$$

Show that, with this multiplication, \mathbb{H} is an associative ring. Here and elsewhere, it may be helpful to use the complex representation

$$\mathbb{H} = \{ z + wj : z, w \in \mathbb{C} \}.$$

Find a formula for the product of two quaternions written in this form.

2. Define the *conjugate* \overline{q} of the quaternion q by

$$\overline{a+bi+cj+dk} = a-bi-cj-dk.$$

Show that $\overline{q_1q_2} = \overline{q}_2\overline{q}_1$. Define the norm ||q|| of $q \in \mathbb{H}$ by

$$||a+bi+cj+dk|| = \sqrt{a^2+b^2+c^2+d^2}.$$

Check that $||q||^2 = q\bar{q}$. Deduce that $||q_1q_2|| = ||q_1|| ||q_2||$ and that each nonzero quaternion is a unit. (I.e., has a multiplicative inverse.) Give a formula for the inverse. Denote the group of units in \mathbb{H} by \mathbb{H}^{\times} .

3. Regard \mathbb{H} as a \mathbb{C} vector space by multiplication on the left. Show that for each $q \in \mathbb{H}$ the map

$$\Phi(q): z + wj \mapsto (z + wj)\overline{q}$$

is \mathbb{C} -linear so that $\Phi(q) \in \operatorname{End}_{\mathbb{C}}(\mathbb{H})$. Show that the map

$$\Phi: \mathbb{H} \to \operatorname{End}_{\mathbb{C}}(\mathbb{H}), \quad q \mapsto \Phi(q)$$

is injective and preserves addition and multiplication. Deduce that $\mathbb H$ is an $\mathbb R\text{-algebra}.$

Identify \mathbb{H} with \mathbb{C}^2 by identifying $(z, w) \in \mathbb{C}^2$ with z + wj. This identifies $\operatorname{End}_{\mathbb{C}}(\mathbb{H})$ with with $\mathbb{M}_2(\mathbb{C})$. With this convention, Φ is an algebra homomorphism $\mathbb{H} \to \mathbb{M}_2(\mathbb{C})$ which induces an injective group homomorphism $\Phi : \mathbb{H}^{\times} \to \operatorname{GL}_2(\mathbb{C})$.

4. Identify the set of unit quaternions (i.e., Quaternions of unit length) with S^3 :

$$S^3 = \{ q \in \mathbb{H} : \|q\| = 1 \}.$$

Show that quaternion multiplication gives S^3 the structure of a group and that the homomorphism Φ above induces a group isomorphism $S^3 \to SU(2)$. Our goal is to construct a homomorphism $S^3 \to SO(3)$ whose kernel is $\pm I$.

5. The real part $\operatorname{Re}(q)$ of a quaternion q is defined by

$$\operatorname{Re}(a+bi+cj+dk) = a.$$

Purely imaginary quaternions Im \mathbb{H} are those with trivial real part. Think of Im \mathbb{H} as being the equatorial plane of S^3 and 1 as being the north pole, -1 as the south pole. Note that it makes sense to talk about the *latitude* of a point q on S^3 — namely the angle between 1 and q. To help you compute the latitude θ of an element q of S^3 , note that that $\cos \theta = \operatorname{Re}(q)$. Also, show that if we define

$$(x,y) = \operatorname{Re}(x\overline{y}) = -\operatorname{Re}(xy)$$

for $x, y \in \text{Im }\mathbb{H}$, then $(\ , \)$ is a positive definite inner product on $\text{Im }\mathbb{H}$ and that i, j, k is an orthonormal basis of $\text{Im }\mathbb{H}$.

6. Show that if $q \in S^3$ and $x \in \operatorname{Im} \mathbb{H}$, then $qxq^{-1} \in \operatorname{Im} \mathbb{H}$.¹ Define a homomorphism $A: S^3 \to \operatorname{GL}(\operatorname{Im} \mathbb{H})$ by

$$A(q): x \mapsto qxq^{-1}.$$

Show that each A(q) preserves the inner product, so that we have a homomorphism

$$A: S^3 \to \mathcal{O}(\operatorname{Im} \mathbb{H}) \cong \mathcal{O}(3).$$

Show that the kernel of A is $\pm I$.

7. We want to understand A and show that it has image SO(3), so that we have a short exact sequence

$$1 \to \{\pm I\} \to S^3 \to \mathrm{SO}(3) \to 1.$$

To this end, we define, for each $q \in \mathbb{H}$,

$$e^q = \sum_{n=0}^{\infty} \frac{q^n}{n!}.$$

Show that this series converges absolutely for each q. Note that $\exp(q_1 + q_2)$ does not always equal $\exp q_1 \exp q_2$; a sufficient condition for equality is that q_1 and q_2 commute. Show that

$$||e^{q}||^{2} = e^{q}e^{\overline{q}} = e^{2\operatorname{Re}(q)}.$$

¹The following formula may help. For $x, y \in \text{Im } \mathbb{H}$, we have $xy = -(x, y) + x \times y$, where \times denotes the cross product of vectors in \mathbb{R}^3 , which we identify with $\text{Im } \mathbb{H}$ in the natural way.

Deduce that if $q \in \operatorname{Im} \mathbb{H}$, then $e^q \in S^3$ so that the exponential mapping

$$\exp:\operatorname{Im}\mathbb{H}\to S^3\quad q\mapsto e^q$$

is well defined. Show that if $q \in \operatorname{Im} \mathbb{H}$ and $q \neq 0$, then

$$e^{q} = \cos \|q\| + \frac{q}{\|q\|} \sin \|q\|$$

Deduce that e^q has latitude ||q|| when $q \in \text{Im} \mathbb{H}$ and that $\exp: \text{Im} \mathbb{H} \to S^3$ is surjective.

8. Show that if $q \in \text{Im }\mathbb{H}$, then $A(e^q)$ is the rotation about the line with axis q by an angle of twice the latitude of e^q — that is, by 2||q||. Deduce that the image of S^3 under A is SO(3). (Hint: Consider the action of $e^y \in S^3$ on $x \in \mathbb{H}$ when x is a multiple of y, and then when x and y are perpendicular.)