Math 611
Problem Set 6
Due: 5 pm, Saturday December 17, 2022

1. Suppose that if $X$ is a topological space that is the union $X=A \cup B$ of two open subsets. Suppose that $R$ is a PID and that $A, B, A \cup B$ and $A \cap B$ are homotopy equivalent to finite complexes. Show that

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

Hint: Use Mayer-Vietoris and the fact that the Euler characteristic of an exact sequence is zero.
2. Suppose that $S$ is a compact oriented surface of genus $g$ and that $P=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite subset of $S$. Set $S^{\prime}=S-P$. This is commonly referred to as a surface of type $(g, n)$. Compute the Euler characteristic $\chi\left(S^{\prime}\right)$ of $S^{\prime}$. For which $(g, n)$ is $\chi\left(S^{\prime}\right)<0$ ?
Kultcha: the importance of this computation is that $S^{\prime \prime}$ has a complete metric of constant curvature -1 if and only if $\chi\left(S^{\prime}\right)<0$. Such surfaces are said to be hyperbolic.
3. A pair of pants is a compact orientable surface $P$ of genus 0 with 3 boundary components. Alternatively, it is a "disk with two holes".


Figure 1. A pair of pants
Compute $\chi(P)$.
The interior $P^{o}:=P-\partial P$ is referred to an open pair of pants.
4. A pants decomposition of a compact orientable surface $X$ of genus $g$ is a collection of disjoint simple closed curves $C_{1}, \ldots, C_{N}$ in $X$ such that

$$
X-\bigcup_{j=1}^{N} C_{j}
$$

is a disjoint union of open pairs of pants. Show that a closed, connected surface has a pants decomposition if and only if its genus is $>1$ and that, in this case, $N=3 g-3$.
5. Suppose that $X$ is a topological space (Hausdorff, as always) and that $\phi: X \rightarrow X$ is a homeomorphism. The mapping torus $W$ of $\phi$ is defined to be

$$
(X \times[0,1]) /\{(x, 1) \sim(\phi(x), 0): x \in X\} .
$$

Note that the projection $X \times[0,1] \rightarrow[0,1]$ induces a projection $p:$ $W \rightarrow S^{1}$.
(i) Show that the action

$$
n:(x, t) \mapsto\left(\phi^{-n}(x), t+n\right) \quad n \in \mathbb{Z}
$$

of $\mathbb{Z}$ on $X \times \mathbb{R}$ is properly discontinuous and fixed point free. ${ }^{1}$
(ii) Show that the $W$ is homeomorphic to the quotient of $X \times \mathbb{R}$ by this $\mathbb{Z}$-action and that the projection $X \times \mathbb{R} \rightarrow \mathbb{R}$ induces the projection $p$. (For simplicity, you may assume that $X$ is compact.)
(iii) Show that if $X$ is path connected, there is a natural short exact sequence

$$
1 \rightarrow \pi_{1}(X, x) \rightarrow \pi_{1}(W, x) \xrightarrow{p_{*}} \pi_{1}\left(S^{1}, p(x)\right) \rightarrow 1
$$

where $(X, x)$ is regarded as the fiber $p^{-1}(1)$ of $p$ over $1 \in S^{1}$. (Hint: use a result about fundamental groups of quotients by properly discontinuous and free group actions.)
6. View the torus $T$ as $\mathbb{R}^{2} / \mathbb{Z}^{2}$. By covering space theory, we can identify $\pi_{1}(T, 0)$ with $\mathbb{Z}^{2}$. Since $\pi_{1}(T, 0)=H_{1}(T ; \mathbb{Z})$, we can identify Aut $H_{1}(T ; \mathbb{Z})$ with $\mathrm{GL}_{2}(\mathbb{Z})$.
(i) Show that the linear action of $\mathrm{GL}_{2}(\mathbb{Z})$ on $\mathbb{R}^{2}$ induces a homomorphism

$$
\rho: \mathrm{GL}_{2}(\mathbb{Z}) \rightarrow \operatorname{Aut}(T)
$$

such that $\rho(\phi)_{*}=\phi$ in Aut $H_{1}(T ; \mathbb{Z})$.
(ii) Fix a prime number $p$. Compute the homology $H_{\bullet}(W ; R)$ of the mapping torus $W$ of

$$
\phi=\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right) .
$$

[^0]Here you should compute the answer for $R=\mathbb{Z}$ and $R=\mathbb{Z} / q \mathbb{Z}$ for each prime number $q$. (Hint: Use Mayer-Vietoris.) You may assume that $\phi$ induces the identity on $H_{2}(T)$, but you will receive more credit is you prove this.


[^0]:    ${ }^{1}$ Recall that a group action is fixed point free (or simply free) if $g x=x$ implies that $g=1$, where $g \in G$ and $x \in X$.

