Due: Thursday, October 20, 2022

1. Suppose that $p: Y \rightarrow X$ is a covering map and that Δ is a contracible subset of X. Show that any two distinct lifts of Δ to Y are disjoint.
2. A solid torus is a topological space that is homeomorphic to $S^{1} \times B^{2}$. Consider S^{3} to be the unit sphere in \mathbb{C}^{2} :

$$
S^{3}=\left\{(x, y) \in \mathbb{C}^{2}:|x|^{2}+|y|^{2}=1\right\} .
$$

Fix a real number a satisfying $0<a<1$. Let

$$
\begin{gathered}
T(a)=\left\{(x, y) \in S^{3}:|x|^{2}=a\right\} \\
U_{1}(a)=\left\{(x, y) \in S^{3}:|x|^{2} \leq a\right\} \text { and } U_{2}(a)=\left\{(x, y) \in S^{3}:|x|^{2} \geq a\right\} .
\end{gathered}
$$

Show that $T(a)$ is a 2-torus and that $U_{1}(a)$ and $U_{2}(a)$ are solid tori that intersect in $T(a)$. Deduce that S^{3} is homeomorphic to

$$
U_{1}(a) \cup_{T(a)} U_{2}(a):=\left(U_{1}(a) \amalg U_{2}(a)\right) / \sim
$$

where the equivalence relation \sim identifies $x \in U_{1}(a)$ with $y \in U_{2}(a)$ if and only if $x=y \in T(a)$.
3. As above, view S^{3} as the unit sphere in \mathbb{C}^{2}. Let

$$
L_{1}=\left\{(x, y) \in S^{3}: x=0\right\} \text { and } L_{2}=\left\{(x, y) \in S^{3}: y=0\right\} .
$$

Show that L_{1} and L_{2} are disjoint imbedded circles in S^{3}. Show that $T(a)$ is a deformation retract of $S^{3}-\left(L_{1} \cup L_{2}\right)$. Use this to show that $\pi_{1}\left(S^{3}-\left(L_{1} \cup L_{2}\right), x_{o}\right)$ is isomorphic to \mathbb{Z}^{2}.
4. Suppose that m and n are positive integers. Denote the affine curve $x^{m}=y^{n}$ in \mathbb{C}^{2} by C. Set $L=C \cap S^{3}$. For $\lambda \in \mathbb{C}$, define

$$
\lambda \cdot(x, y)=\left(\lambda^{n} x, \lambda^{m} y\right)
$$

(i) Show that the function $f: \mathbb{R}_{\geq 0} \times S^{3} \rightarrow \mathbb{C}^{2}$ defined by $f(t, \xi)=$ $t \cdot \xi$ induces a homeomorphism

$$
\left(\operatorname{cone}\left(S^{3}\right), \text { cone } L, 0\right) \rightarrow\left(\mathbb{C}^{2}, C, 0\right)
$$

and a homeomorphism

$$
\mathbb{R}_{>0} \times\left(S^{3}-L\right) \rightarrow \mathbb{C}^{2}-C .
$$

(ii) Show that L is imbedded in S^{3} as

$$
\left\{(\theta, \phi) \in S^{1} \times S^{1}: m \theta \equiv n \phi \quad \bmod 2 \pi\right\}
$$

where $S^{1} \times S^{1}$ denotes the torus

$$
\left\{(x, y) \in S^{3}:|x|^{2}=a \text { and }|y|^{2}=1-a\right\}
$$

for some suitable a satisfying $0<a<1$. (We say that L is a torus link of type (m, n).)
(iii) Show that the number of connected components of L is the greatest common divisor of m and n.
(iv) Suppose that $x \in S^{3}-L$. Show that the inclusion $j: S^{3}-L \hookrightarrow$ $\mathbb{C}^{2}-C$ induces an isomorphism

$$
j_{*}: \pi_{1}\left(S^{3}-L, x\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2}-C, x\right)
$$

