Math 611

Algebraic Topology I

Problem Set 1
Due: Tuesday, September 13, 2022

1. Show that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
2. Suppose that the group Γ acts continuously on the topological space X. Show that the quotient mapping $X \rightarrow \Gamma \backslash X$ from X to the orbit space is an open mapping when $\Gamma \backslash X$ is given the quotient topology. Give an example of a quotient mapping that is not open. (Hint: view the circle as a quotient of the interval.)
3. Show that the composite

$$
S^{n} \hookrightarrow \mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{R} \mathbb{P}^{n}
$$

of the inclusion with the canonical quotient mapping induces a homeomorphism $S^{n} / \sim_{S} \rightarrow \mathbb{R} \mathbb{P}^{n}$, where $x \sim_{S} y$ if and only if $x= \pm y$. Deduce that $\mathbb{R P}^{n}$ is compact. Define $f: B^{n} \rightarrow S^{n}$ by

$$
f(x)=\left(\sqrt{1-\|x\|^{2}}, x\right) \in \mathbb{R} \times \mathbb{R}^{n}=\mathbb{R}^{n+1}
$$

Define an equivalence relation \sim_{B} on B^{n} by $x \sim_{B} y$ if and only if $\|x\|=\|y\|=1$ and $x= \pm y$. Show that the inclusion $B^{n} \rightarrow S^{n}$ induces homeomorphisms

$$
B^{n} / \sim_{B} \rightarrow S^{n} / \sim_{S} \rightarrow \mathbb{R P}^{n}
$$

Hint: the easiest way to construct the inverse is to first construct a map $\mathbb{R}^{n+1}-\{0\} \rightarrow S^{n}$.
4. The circle S^{1} acts continuously on the unit sphere

$$
S^{2 n+1}=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}:\left|z_{0}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1\right\}
$$

in \mathbb{C}^{n+1} by left multiplication:

$$
\lambda \cdot\left(z_{0}, \ldots, z_{n}\right)=\left(\lambda z_{0}, \ldots, \lambda z_{n}\right), \quad \lambda \in S^{1}
$$

Prove that $\mathbb{C P}^{n}$ is homeomorphic to the quotient space $S^{2 n+1} / S^{1}$.
5. Suppose that $\left\{\left(X_{\alpha}, x_{\alpha}\right): \alpha \in A\right\}$ is a set of pointed spaces indexed by the set A (typically finite). The wedge of the (X_{α}, x_{α}) is defined to be

$$
\bigvee_{\alpha \in A} X_{\alpha}:=\left(\coprod_{\alpha \in A} X_{\alpha}\right) / \sim
$$

endowed with the quotient topology, where the equivalence relation identifies all x_{α} to a single point. The wedge of n copies of $\left(S^{1}, 1\right)$ is called a bouquet of n circles.
There is a natural inclusion

$$
j: \bigvee_{\alpha \in A} X_{\alpha} \hookrightarrow \prod_{\alpha \in A} X_{\alpha}
$$

For $y \in X_{\alpha}$ define $j(y)=\left(y_{\beta}\right)$ to be

$$
y_{\beta}= \begin{cases}y & \text { if } \beta=\alpha \\ x_{\beta} & \text { if } \beta \neq \alpha\end{cases}
$$

Show that j is the inclusion of a subspace when A is finite. (That is, the wedge of the X_{α} has the subspace topology induced from the product via j.)
6. Show that $\left(S^{1}\right)^{2} /\left(S^{1} \vee S^{1}\right)$ is homeomorphic to S^{2}.
7. Suppose that K is a compact Hausdorff space. Show that if $f: X \rightarrow$ Y is a quotient mapping, then $f \times \operatorname{id}_{K}: X \times K \rightarrow Y \times K$ is also a quotient mapping.
8. Suppose that $x \in S^{1} \times S^{1}$ is a point that does not lie in the image $S^{1} \vee S^{1} \hookrightarrow S^{1} \times S^{1}$. Show that $S^{1} \vee S^{1}$ is a deformation retraction of $\left(S^{1} \times S^{1}\right)-\{x\}$. Hint: a good way to do this is to consider $S^{1} \times S^{1}$ to be a quotient of the square I^{2}, which can be viewed as a cone over its boundary ∂I^{2} with vertex x.

