1 Terminology and Theory

A first-order, \(n\)-dimensional system is a union of \(n\) first-order differential equations in \(n\) unknowns

\[
\begin{align*}
x'_1 &= f_1(t, x_1, x_2, \ldots, x_n) \\
x'_2 &= f_2(t, x_1, x_2, \ldots, x_n) \\
\vdots \\
x'_n &= f_n(t, x_1, x_2, \ldots, x_n)
\end{align*}
\]

Using vector notation it can be conveniently represented as

\[
x' = f(t, x), \quad \text{where} \quad x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad f(t, x) = \begin{pmatrix} f_1(t, x) \\ f_2(t, x) \\ \vdots \\ f_n(t, x) \end{pmatrix}.
\]

It is said to be linear if it has the form

\[
x'(t) = \mathbf{A}(t)x(t) + \mathbf{b}(t),
\]

where \(\mathbf{A}(t) = (a_{ij}(t))\) is an \(n \times n\) matrix, \(\mathbf{b}(t) = (b_1(t), b_2(t), \ldots, b_n(t))^T\) is an \(n \times 1\) vector. The linear system is said to be homogeneous if \(\mathbf{b}(t) = \mathbf{0}\) for all \(t\).

The following theorem states that linear systems always have a solution. When an initial condition is specified, the solution is unique.

Theorem 1.1. Suppose \(a_{ij}(t), b_i(t)\) are all continuous on an interval \(I = (\alpha, \beta)\). Then for any \(t_0 \in I\) and \(\mathbf{x}_0 \in \mathbb{R}^n\), the initial value problem

\[
x'(t) = \mathbf{A}(t)x(t) + \mathbf{b}(t), \quad x(t_0) = \mathbf{x}_0
\]

has a unique solution defined for all \(t \in I\).

Homogeneous linear systems \(x'(t) = \mathbf{A}(t)x(t)\) enjoy the following properties:

- Any linear combination of solutions is also a solution.
- Any subset of solutions must be either always linearly independent or always linearly dependent.
- If the system has dimension \(n\), then any \(n\) linearly independent solutions span the general solution.
2 Solving Systems of ODEs

We focus on the following \(n \)-dimensional linear, homogeneous system

\[
\mathbf{x}'(t) = A \mathbf{x}(t),
\]

where \(A \) is an \(n \times n \) matrix with constant entries.

The following theorem indicates that solving the system is closely related to finding eigenvalues and eigenvectors of the matrix \(A \).

Theorem 2.1. Suppose that \(\lambda \) is an eigenvalue of the matrix \(A \), and \(\mathbf{v} \) is an associated eigenvector. Then \(\mathbf{x}(t) = e^{\lambda t} \mathbf{v} \) is a solution to the system \(\mathbf{x}' = A \mathbf{x} \).

2.1 Planar systems (\(n = 2 \))

Consider \(\mathbf{x}' = A \mathbf{x}, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). The characteristic polynomial is

\[
p(\lambda) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - T\lambda + D, \quad \text{with} \quad T = a + d, \ D = ad - bc.
\]

There are three cases about the roots of \(p(\lambda) = 0 \).

1. **Two distinct real roots** \(\lambda_1 \neq \lambda_2 \): Let \(\mathbf{v}_1, \mathbf{v}_2 \) be associated eigenvectors. The general solution is

\[
\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2.
\]

2. **Two complex roots** \(\lambda_{1,2} = \alpha \pm i\beta \): Let \(\mathbf{v}_1 \) be an eigenvector associated to \(\lambda_1 = \alpha + i\beta \). The general solution is

\[
\mathbf{x}(t) = c_1 \text{Re} \left(e^{\lambda_1 t} \mathbf{v}_1 \right) + c_2 \text{Im} \left(e^{\lambda_1 t} \mathbf{v}_1 \right).
\]

3. **One repeated real root** \(\lambda_1 = \lambda_2 \): The algebraic multiplicity of \(\lambda_1 \) is \(m_1 = 2 \), and there are two possible values of the geometric multiplicity \(d_1 \).

 - **\(d_1 = 2 \)** (The easy case): \(A = \lambda_1 \mathbf{I} \). The general solution is

 \[
 \mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_1 t} \mathbf{v}_2 = e^{\lambda_1 t} (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2),
 \]

 where \(\mathbf{v}_1, \mathbf{v}_2 \) is any basis for \(\mathbb{R}^2 \).

 - **\(d_1 = 1 \)** (The interesting case): The general solution is

 \[
 \mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_1 t} (t \mathbf{v}_1 + \mathbf{v}_2),
 \]

 where \(\mathbf{v}_1, \mathbf{v}_2 \) satisfy

 \[
 (A - \lambda_1 \mathbf{I}) \mathbf{v}_1 = 0,
 (A - \lambda_1 \mathbf{I}) \mathbf{v}_2 = \mathbf{v}_1,
 \]

Finally, the above techniques also apply to 3-dimensional systems except the case of a single eigenvalue \(\lambda \) with \(m = 3, d = 1 \), which happens for example when \(A = \begin{pmatrix} \lambda & 1 \\ 1 & \lambda \\ \lambda & 1 \end{pmatrix} \). To solve the corresponding system, one may use the matrix exponential (see next page).
2.2 The matrix exponential

Let A be an $n \times n$ matrix. Then for any $v \in \mathbb{R}^n$, the function $x(t) = e^{tA}v$ is a solution to

$$x' = Ax.$$

Therefore, the general solution is

$$x(t) = C_1e^{tA}v_1 + \cdots + C_ne^{tA}v_n$$

in which v_1, \ldots, v_n is any basis for \mathbb{R}^n.

Recall that the exponential of a square matrix M is defined to be

$$e^M = \sum_{k=0}^{\infty} \frac{1}{k!} M^k = I + M + \frac{1}{2}M^2 + \frac{1}{6}M^3 + \cdots.$$

The matrix exponential has the following properties.

- $e^O = I$.
- If M is a nilpotent matrix of degree ℓ, that is, $M^\ell = O$, then $e^M = I + M + \frac{1}{2}M^2 + \cdots + \frac{1}{(\ell-1)!}M^{\ell-1}$.
- If $M = \text{diag}(r_1, \ldots, r_n)$ is a diagonal matrix, then $e^M = \text{diag}(e^{r_1}, \ldots, e^{r_n})$. This implies that $e^{tI} = e^{tI}$.
- $e^{A+B} = e^A e^B$ if A and B commute, i.e., $AB = BA$. This implies that, for any square matrix M, the exponential e^M is an invertible matrix whose inverse is e^{-M}.
- If $A^\ell v = 0$ for some $\ell \geq 1$, then

$$e^{tA}v = v + tAv + \cdots + \frac{t^{\ell-1}}{(\ell-1)!} A^{\ell-1}v.$$

In particular, if $\ell = 1$, then $e^{tA}v = v$; if $\ell = 2$, then $e^{tA}v = v + tAv$.

We use a basis of \mathbb{R}^n consisting of eigenvectors and generalized eigenvectors of A. That is, each eigenvalue λ should contribute m basis vectors, where m is its algebraic multiplicity, in the following order:

$$(A - \lambda I)v = 0 \quad (\text{eigenvectors})$$

$$(A - \lambda I)^2 v = 0 \quad (\text{generalized eigenvectors})$$

(\text{until } m \text{ linearly independent vectors have been found})

This basis facilitates the computing of $e^{tA}v$, due to the following result.

Proposition 2.2. If $(A - \lambda I)^\ell v = 0$ for some $\ell \geq 1$, then

$$e^{tA}v = e^{\lambda t}e^{t(A-\lambda I)}v = e^{\lambda t} \left(v + t(A - \lambda I)v + \cdots + \frac{t^{\ell-1}}{(\ell-1)!} (A - \lambda I)^{\ell-1}v \right).$$

In particular, if $\ell = 1$, then $e^{tA}v = e^{\lambda t}v$; if $\ell = 2$, $e^{tA}v = e^{\lambda t}(v + t(A - \lambda I)v)$.
