Review Material for Sections 1.1-2.5

Math 104 Linear Algebra with Applications

February 12, 2012

1 Vectors

For this part, one should be able to

- Calculate vector addition/subtraction, scalar multiplication, length, dot product and angle between vectors, projection of one vector onto another, and understand their geometric meanings
- Know (and prove!) the important identities and inequalities
- Use vector method to prove results in plane geometry
- Find parametric equations for lines and planes given
 - (for lines) a point and a direction, or two points
 - (for planes) a point and two directions, or three points
- Understand what hyperplanes are and find their point-normal equations
- Find intersections of lines, planes and hyperplanes
- Check whether a vector lies in the span of several other vectors: $\mathbf{v} \in \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ iff $[\mathbf{v}_1 \ldots \mathbf{v}_k] \mathbf{x} = \mathbf{v}$ has a solution

2 Matrix Algebra and Linear Transformations

For matrices one should know how to compute

- Row Echelon Form (REF) or reduced REF, and identify pivots
- Rank (by counting the number of pivots in the REF of the matrix)
- Standard matrix operations such as addition/subtraction, scalar multiplication, matrix multiplication, and transpose
- A sequence of elementary matrices, or their product, so that $\mathbf{E} \mathbf{A} = \mathbf{E}_k \cdots \mathbf{E}_1 \mathbf{A}$ is in (reduced) REF (for any given \mathbf{A}). Note that there are three types of elementary matrices $\mathbf{E}_{ij}, \mathbf{E}_i(c), \mathbf{E}_{ij}(c)$.

Two fast ways of finding the product \mathbf{E}:

- $[\mathbf{A}] \mathbf{I} \rightarrow [\mathbf{U}]\mathbf{E}$ via elementary row operations
- $[\mathbf{A}] \mathbf{b} \rightarrow [\mathbf{U}]\mathbf{E}\mathbf{b}$ via elementary row operations
• Inverse/right inverse/left inverse

 - When \(A \) is square and nonsingular: we can find the inverse by performing elementary row operations \([A|I] \to [I|A^{-1}] \)

 - When \(A \in \mathcal{M}_{m\times n} \) is rectangular and \(\text{rank} A = m \): we may use \([A|I_m] \to [(I_m,X)|E] \) to find right inverse

 - When \(A \in \mathcal{M}_{m\times n} \) is rectangular and \(\text{rank} A = n \): we may use \([A|I_m] \to [(I_n,O)|E] \) to find left inverse

• The LU decomposition \(A_{m\times n} = L_{m\times m}U_{m\times n} \), in which \(L \) is lower-triangular with diagonal entries all equal to 1, and \(U \) is in (reduced) REF. Note that such a decomposition is not always possible.

Recall that there is a one-to-one correspondence between matrices \(A \in \mathcal{M}_{m\times n} \) and linear transformations \(T : \mathbb{R}^n \to \mathbb{R}^m \) in the following way:

\[
T = \mu_A \quad \text{for} \quad A = [T(e_1), T(e_2), \ldots, T(e_n)].
\]

There are three important linear transformations in \(\mathbb{R}^2 \):

- Projection (onto line \(\ell \)): \(P_\ell(x) = \frac{x \cdot a}{\|a\|^2} a = \frac{1}{\|a\|^2} a a^T x \)

- Reflection (about line \(\ell \)): \(R_\ell(x) = 2P_\ell(x) - x = \left(\frac{2}{\|a\|^2} a a^T - I \right) x \)

- Rotation (by angle \(\theta \)): \(\mu_{A_\theta}(x) = A_\theta x \), in which \(A_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \)

3 Systems of Linear Equations

Given a system of \(m \) linear equations in \(n \) unknowns

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

or written in short

\[
Ax = b,
\]

one can solve it in any of the following ways:

- Apply Gaussian elimination (by using elementary equation operations)
- Perform elementary row operations on the augmented matrix \([A|b]\)
- When \(A \) is square and nonsingular, use the inverse \(x = A^{-1}b \)

Note that \(Ax = b \) can only have zero, or one, or infinitely many solutions. We have the following existence and uniqueness results.

- \(Ax = b \) (for a particular \(b \)) has at least one solution iff \(\text{rank} A = \text{rank}[A|b] \) (interpreted as no contradicting row in \([A|b]\)).
• \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has at least one solution for any \(\mathbf{b} \) iff \(\text{rank} \mathbf{A} = m \) (each row in the REF of \(\mathbf{A} \) contains a pivot, and thus one can use backward substitution to solve the system regardless of what \(\mathbf{b} \) is).

• \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has at most one solution for any \(\mathbf{b} \) iff \(\text{rank} \mathbf{A} = n \) (each column contains a pivot, and thus there is no free variable). This is also equivalent to saying that the homogeneous system \(\mathbf{A} \mathbf{x} = \mathbf{0} \) has only the zero solution.

• \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has a unique solution for any \(\mathbf{b} \) if \(\mathbf{A} \) is square and nonsingular.

The core of understanding the above is to analyze the REF of the augmented matrix \([\mathbf{A}|\mathbf{b}]\) (when \(\mathbf{b} \) is given) or coefficient matrix \(\mathbf{A} \) (when \(\mathbf{b} \) is arbitrary) and see if the REF contains or may contain a contradicting row, if there is a free variable, and whether one can use back-substitution to solve for each pivot variable.

Practice Problems

1. Given

\[
\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 1 & -2 \\ -3 & 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ -5 & 4 & -1 & -3 \\ 1 & -3 & 1 & 2 \end{pmatrix}.
\]

compute the following quantity (if it exists):

(a) \(\mathbf{B}^T \)

(b) \(\mathbf{B}^T \mathbf{A} \)

(c) \(\text{REF}(\mathbf{A}) \)

(d) \(\text{RREF}(\mathbf{B}) \)

(e) A left inverse for \(\mathbf{A} \)

(f) A right inverse for \(\mathbf{B} \)

(g) The LU decomposition for \(\mathbf{A} \)

2. Solve the following systems of linear equations

(a)

\[
x_1 + 2x_2 - x_3 + 2x_4 = 13 \\
2x_1 + 4x_2 - x_3 + 6x_4 = 19 \\
11x_1 + 22x_2 - 7x_3 + 30x_4 = 115
\]

(b)

\[
1x + 2y + 1z = -8 \\
-2y - 4z = 4 \\
2x + 4y = -12
\]

(c)

\[
2x + y = 5 \\
x - 3y = -1 \\
4x + 2y = 7
\]
3. Find the span of the column vectors of the following matrix
\[
A = \begin{pmatrix}
1 & -2 & 1 & -4 \\
2 & -1 & 8 & 1 \\
3 & -5 & 5 & -9
\end{pmatrix}.
\]

4. Write the matrix \(A \) below as a product of elementary matrices.
\[
A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix}.
\]
(Hint: Use elementary matrices to multiply \(A \) from the left to obtain the RREF, and then solve for \(A \).)

5. Determine whether the angle between the following two vectors is acute, right, or obtuse.
\[
u = \begin{pmatrix} 3 \\ -4 \\ 2 \\ 0 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 0 \\ 3 \\ -5 \end{pmatrix}.
\]

6. Find a parametric equation for the plane in \(\mathbb{R}^3 \) that contains two points (1, 2, 0), (2, 1, 3) and is parallel to the line described parametrically by
\[
x(t) = (3 - 4t, 2 + 3t, t - 2).
\]
What is the distance from the origin to the plane?

7. Let \(\mathcal{P} \) be the plane in \(\mathbb{R}^3 \) that contains the following points
\[
p = (0, 3, 2), \quad q = (3, 3, 1), \quad r = (2, 5, 0).
\]
 (a) Write down parametric equations for \(\mathcal{P} \).
 (b) Find the point-normal equation for \(\mathcal{P} \).

8. Determine the linear transformation \(T(x) \) that consists in first reflecting \(x \in \mathbb{R}^2 \) across the line \(x_1 = 0 \) and then projecting onto the line \(x_1 = x_2 \).

9. Suppose \(A \) is an \(m \times n \) matrix with rank 1. Prove that there are nonzero vectors \(u \in \mathbb{R}^m \) and \(v \in \mathbb{R}^n \) such that \(A = uv^T \). (Hint: Consider the REF \(EA = U \). Can you find vectors \(u_1 \) and \(v_1 \) such that \(U = u_1v_1^T \)?)

10. Suppose \(A \in \mathcal{M}_{m \times m} \) and \(B \in \mathcal{M}_{n \times n} \) are both invertible. Show that the following two \((m+n)\times(m+n)\) matrices are also invertible:
\[
\begin{pmatrix} A & O \\ O & B \end{pmatrix}, \quad \begin{pmatrix} A & C \\ O & B \end{pmatrix}
\]
(in the second matrix \(C \) is any \(m \times n \) matrix). To solve this problem, you need the result from homework problem 2.1.9 (block multiplication) on page 90. Then, for each of the two \((m+n)\times(m+n)\) matrices, guess the form of the inverse and then verify your guess is indeed the inverse.
Answers to the practice problems

1. (a) \(B^T = \begin{pmatrix} 0 & -5 & 1 \\ -1 & 4 & -3 \\ 1 & -1 & 1 \\ 0 & -3 & 2 \end{pmatrix} \)
 (b) \(B^T A = \begin{pmatrix} -8 & 12 \\ 8 & -16 \\ 1 & 6 \\ -9 & 10 \end{pmatrix} \)
 (c) \(\begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix} \)
 (d) \(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)
 (e) \(\begin{pmatrix} 0 \\ -\frac{1}{4} \\ -\frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} \)
 (f) \(\frac{1}{7} \begin{pmatrix} 1 \\ -2 \\ -3 \\ 4 \\ -1 \\ -5 \\ 11 \\ -1 \\ -5 \end{pmatrix} \)
 (g) \(\mathbf{L} = \begin{pmatrix} 1 \\ 0 \\ \frac{1}{2} \end{pmatrix}, \mathbf{U} = \begin{pmatrix} 5 \\ 0 \\ \frac{1}{2} \end{pmatrix} \)

2. (a) \(x_1 = 6 - 2x_2 - 4x_4, x_3 = -7 - 2x_4, \) and \(x_2, x_4 \) are free variables.
 (b) \(x = -10, y = 2, z = -2 \)
 (c) No solution

3. First observe that the problem is equivalent to finding all vectors \(\mathbf{b} = (b_1, b_2, b_3)^T \) so that \(A \mathbf{x} = \mathbf{b} \) is consistent. We form the augmented matrix

\[
\begin{pmatrix}
1 & -2 & 1 & -4 & | & b_1 \\
2 & -1 & 8 & 1 & | & b_2 \\
3 & -5 & 5 & -9 & | & b_3 \\
\end{pmatrix}
\]

and then apply elementary row operations to obtain

\[
\begin{pmatrix}
1 & -2 & 1 & -4 & | & b_1 \\
0 & 1 & 2 & 3 & | & b_3 - 3b_1 \\
0 & 0 & 0 & 0 & | & 7b_1 + b_2 - 3b_3 \\
\end{pmatrix}.
\]

In order for the equation to have a solution, we must have \(7b_1 + b_2 - 3b_3 = 0 \).

The span of the column vectors thus is a plane in \(\mathbb{R}^3 \), with normal \((7, 1, -3) \) and passing through the origin.

4. The elementary row operations performed below

\[
\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 \\ 0 & -4 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

correspond to left multiplication by elementary matrices

\[
\mathbf{E}_{21}(-3) \cdot \mathbf{E}_2(-\frac{1}{4}) \cdot \mathbf{E}_{12}(-2) \cdot \mathbf{A} = \mathbf{I}.
\]

Solving for \(\mathbf{A} \) we obtain

\[
\mathbf{A} = \left(\mathbf{E}_{21}(-3) \cdot \mathbf{E}_2(-\frac{1}{4}) \cdot \mathbf{E}_{12}(-2) \right)^{-1} = (\mathbf{E}_{12}(-2))^{-1} \cdot \left(\mathbf{E}_2(-\frac{1}{4}) \right)^{-1} \cdot (\mathbf{E}_{21}(-3))^{-1} = \mathbf{E}_{12}(2) \cdot \mathbf{E}_2(-4) \cdot \mathbf{E}_{21}(3).
\]
5. Since \(u \cdot v = 9 > 0 \), the angle between them is acute.

6. The direction of the line \((-4, 3, 1)\) is also a direction in the plane. Another direction in the plane is obtained by \((2, 1, 3) - (1, 2, 0) = (1, -1, 3)\). Thus, the parametric equation for the plane is

\[
x = (1, 2, 0) + s(1, -1, 3) + t(-4, 3, 1) = (1 + s - 4t, 2 - s + 3t, 3s + t),
\]

where \(s, t\) are parameters.

To find the distance from a point to the plane, we need to find a normal vector. One approach is to eliminate \(s, t\) in the parametric representation

\[
x_1 = 1 + s - 4t;
\]

\[
x_2 = 2 - s + 3t;
\]

\[
x_3 = 3s + t
\]

by solving the first two equations together for \(s, t\) and then plugging their formulas into the third equation. This yields a point-normal equation:

\[
10x_1 + 13x_2 + x_3 = 36.
\]

Thus, the distance is \(\frac{36}{\sqrt{10^2 + 13^2 + 1^2}} = \frac{36}{\sqrt{270}}\).

7. (a) \(x = (0, 3, 2) + s(3, 0, -1) + t(2, 2, -2) = (3s + 2t, 3 + 2t, 2s - 2t)\)

(b) One possibility is to use the method employed in the last problem.

Here, we adopt a different approach by solving the following system of linear equations to find a normal vector \(n\):

\[
\begin{pmatrix}
3 & 0 & -1 \\
2 & 2 & -2 \\
\end{pmatrix}
\begin{pmatrix}
n_1 \\
n_2 \\
n_3 \\
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
\end{pmatrix}.
\]

Then \(n_1 = \frac{1}{3}n_3, n_2 = \frac{2}{3}n_3\) (\(n_3\) is a free variable). By setting \(n_3 = 3\) (or any other number), we find a normal vector \(n = (1, 2, 3)\). Thus, the point normal equation is \(x_1 + 2(x_2 - 3) + 3(x_3 - 2) = 0\).

8. \(T(x) = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
-1 & 0 \\
0 & 1 \\
\end{pmatrix}
x = \begin{pmatrix}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\end{pmatrix}
x\)

9. \textbf{Proof.} There exists an invertible matrix \(E\) such that \(EA = U\) is in REF. Since \(\text{rank } A = 1\), only the first row of \(U\) is nonzero, i.e., \(U_2 = \cdots = U_m = 0\). Consequently, \(U = e_1U_1\), and thus \(A = E^{-1}U = (E^{-1}e_1) U_1\). Letting \(u = E^{-1}e_1\) and \(v = U_1^T\) completes the proof.

10. Verify directly that \(\begin{pmatrix}
A^{-1} & O \\
O & B^{-1} \\
\end{pmatrix}, \begin{pmatrix}
A^{-1} & -A^{-1}CB^{-1} \\
O & B^{-1} \\
\end{pmatrix}\) are their inverses.