Reading assignments

- by Thursday 4 February: §2.3, 2.4, 2.5 in [Eis95]
- by Tuesday 9 February: §3.1, 3.2, 3.3, 3.8 in [Eis95]
- by Thursday 11 February: the rest of Chapter 3 in [Eis95]
- by Tuesday 16 February: §4.1, 4.2, 4.3, 4.4 in [Eis95]

Exercises

An exercise whose label is of the form C.n refers to the n^{th} exercise in [Eis95, Chapter C].

2.4 (a)
(b)
(c)

2.11

2.13

2.17 (a)
(b)
(c)
(d)

2.19 (a)
(b)

2.21 (a)
(b)

3.3

3.5 (a)
(b)
Additional exercises.

1. Every irreducible monomial ideal is of the form $m^b = \langle x_i^{b_i} \mid b_i \geq 1 \rangle$ for some vector $b \in \mathbb{N}^n$, and these ideals are partially ordered by inclusion (see Exercise 3.6).

(a) Given a monomial ideal I, show that there are only finitely many irreducible monomial ideals that are minimal among those containing I.

(b) Prove that the intersection of these minimal irreducible monomial ideals equals I.

(c) Conclude that I possesses a unique irredundant expression as an intersection of irreducible monomial ideals.

References