Math 602 Homework #2, Spring 2016

Instructor: Ezra Miller

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: 15 February 2016

READING ASSIGNMENTS

- by Thursday 4 February: §2.3, 2.4, 2.5 in [Eis95]
- by Tuesday 9 February: §3.1, 3.2, 3.3, 3.8 in [Eis95]
- by Thursday 11 February: the rest of Chapter 3 in [Eis95]
- by Tuesday 16 February: §4.1, 4.2, 4.3, 4.4 in [Eis95]

EXERCISES

An exercise whose label is of the form C.n refers to the n^{th} exercise in [Eis95, Chapter C].

- 2.4(a)
 - (b)
 - (c)
- 2.11
- 2.13
- 2.17(a)
 - (b)
 - (c)
 - (d)
- 2.19(a)
 - (b)
- 2.21(a)
 - (b)
- 3.3
- 3.5(a)
 - (b)

(c)

3.6

3.12

Additional exercises.

- 1. Every irreducible monomial ideal is of the form $\mathfrak{m}^{\mathbf{b}} = \langle x_i^{b_i} \mid b_i \geq 1 \rangle$ for some vector $\mathbf{b} \in \mathbb{N}^n$, and these ideals are partially ordered by inclusion (see Exercise 3.6).
 - (a) Given a monomial ideal I, show that there are only finitely many irreducible monomial ideals that are minimal among those containing I.
 - (b) Prove that the intersection of these minimal irreducible monomial ideals equals I.
 - (c) Conclude that I possesses a unique irredundant expression as an intersection of irreducible monomial ideals.

References

[Eis95] David Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics Vol. 150, Springer-Verlag, New York, 1995.