Math 273 Homework \#2, Fall 2010
 Instructor: Ezra Miller

Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
Due: Tuesday 28 September 2010
Reading assignments in [Vakil]

- by Tuesday 21 September: Chapter 4; all but $\S 4.5-\S 4.6$ should be review
- by Thursday 23 September: $\S 5.1-\S 5.4$; note that $\S 5.2$ should be review
- by Tuesday 28 September: $\S 5.5$, Chapter 6 (should be mostly review)
- by Thursday 30 September: Chapter $12, \S 13.1-\S 13.3$; this plus Chapter 6 is a lot of material, but most of it is review (skip any item mentioning morphisms of schemes)

Exercises: In [Vakil], exercises have labels C.S.N, for "Chapter C, Section S, Exercise N", where $C, S \in \mathbb{Z}_{+}$and $N \in A, \ldots, Z$. It is not expected that everyone will complete all of the assigned exercises, but those marked "[required]" are essential.
3.5.H
3.6.C
3.6.G [required]
(a)
(b)
3.7.D [required]
4.2.M [required]
4.4.C (a)
(b)
(c)
4.4.G [required]
4.6.F
4.6.H (a)
(b)
4.6.M
4.6.O [required]
4.6.S
4.7.E
5.1.A
5.3.F [required]
14.1.A
14.1.C [required]
14.1.E [required]

Additional exercise.

1. Fix a coherent sheaf \mathcal{F} on a scheme $\left(X, \mathcal{O}_{X}\right)$. Prove that the set of points $\mathfrak{p} \in X$ where $\mathcal{F}(\mathfrak{p})$ has dimension at least r is closed in X, for each $r \geq 0$. Hint: what condition on an $m \times n$ matrix with entries in a field guarantees that it has rank at most $n-r$? [You need only what we did in class concerning coherent sheaves for this.]

References

[Vakil] Ravi Vakil, Foundations of algebraic geometry, notes dated August 26, 2010.

