Abstract. Let K be a quadratic number field, and let $\zeta_K(s)$ denote the Dedekind zeta-function attached to K. Using the mixed second moments of derivatives of $\zeta_K(\frac{1}{2}+it)$, we prove the existence of gaps between consecutive zeros of $\zeta_K(s)$ on the critical line which are at least $\sqrt{6} = 2.44949 \ldots$ times the average spacing.

Let K be a number field and \mathcal{O}_K its ring of integers. The Dedekind zeta-function attached to K is defined by

$$\zeta_K(s) = \sum_{a \subset \mathcal{O}_K} \frac{1}{N(a)^s} = \prod_{p \subset \mathcal{O}_K} \left(1 - \frac{1}{N(p)^s}\right)^{-1}, \quad \Re(s) > 1,$$

where a and p run over the nonzero ideals and prime ideals of \mathcal{O}_K, respectively. Let K be a quadratic field with discriminant d, and let χ_d be the Kronecker symbol of d. Then the Dedekind zeta-function factors as

$$\zeta_K(s) = \zeta(s)L(s,\chi_d),$$

where $\zeta(s)$ is the Riemann zeta-function and $L(s,\chi_d)$ is the Dirichlet L-function associated to χ_d.

This note studies the vertical distribution of the zeros of $\zeta_K(s)$ in the critical strip, which we denote by $\rho_K = \beta + i\gamma$. It has been shown that for an imaginary quadratic number field K, the vertical distribution of the nontrivial zeros of $\zeta_K(s)$ is related to the existence or non-existence of Landau-Siegel zeros and hence the size of the class number of K. This correspondence is described in the work of Conrey and Iwaniec [10]; see also Montgomery and Weinberger [22]. This circle of ideas is often referred to as the Deuring-Heilbronn phenomenon. For a very nice overview of the Deuring-Heilbronn phenomenon and its implications, see Stopple’s survey article [27].

For a real or imaginary quadratic number field of discriminant d, it is known [19, Theorem 5.31] that for $T \geq 2$, we have

$$N_K(T) := \sum_{0 < \gamma \leq T} 1 = \frac{T}{\pi} \log \frac{\sqrt{|d|}T}{(2\pi e)^2} + O\left(\log(\sqrt{|d|}T)\right).$$

Consider the sequence $0 < \gamma_1 \leq \gamma_2 \leq \ldots$ of consecutive ordinates of the nontrivial zeros of $\zeta_K(s)$, and note that the average size of $\gamma_{n+1} - \gamma_n$ is $\pi/\log(\sqrt{|d|}\gamma_n)$. Normalizing, let

$$\mu_K := \liminf_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\pi/\log(\sqrt{|d|}\gamma_n)}$$

and

$$\lambda_K := \limsup_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\pi/\log(\sqrt{|d|}\gamma_n)}.$$

By definition we have $\mu_K \leq 1 \leq \lambda_K$, however it is conjectured that $\mu_K = 0$ and $\lambda_K = \infty$. In other words, we expect that there are arbitrarily small and large normalized gaps between consecutive nontrivial zeros

The author is supported by a GAANN fellowship.
of Dedekind zeta-functions of quadratic number fields. While we expect $\mu_K = 0$, this is not due to the presumption of coincident nontrivial zeros of $\zeta(s)$ and $L(s, \chi_d)$. On the contrary, we expect that the zeros of $\zeta_K(s)$ are simple. Conrey, Ghosh, and Gonek [7] have shown that the number of simple zeros of $\zeta_K(s)$ with $0 < \gamma \leq T$ exceeds $T^{6/11}$ for sufficiently large T. In [8], the same authors show, assuming the generalized Riemann hypothesis for Dirichlet L-functions, that a positive proportion of the zeros of $\zeta_K(s)$ are simple. In general, it is conjectured that any two distinct primitive L-functions should have no shared zero.

That $\mu_K < 1 < \lambda_K$ is an open question, and in particular there do not seem to be any quantitative results concerning the sizes of μ_K or λ_K. This is in contrast to the distribution of the zeros of the Riemann zeta-function, where there is an abundance of results, both unconditional and assuming various unproved hypotheses. See, for instance, [1], [2], [3], [4], [5], [6], [9], [11], [12], [13], [14], [20], [21], [24], [26], and [29].

The object of this note is to provide a nontrivial lower bound for λ_K. Towards this goal, we prove the following unconditional theorem.

Theorem 1. Let $T \geq 2$ and $\varepsilon > 0$. Let K be a quadratic number field of discriminant d with $|d| \leq T^{5-\varepsilon}$. There exists a subinterval of $[T, 2T]$ having length at least

$$\sqrt{6} \cdot \frac{\pi}{\log \sqrt{|d|} \cdot T} \left(1 + O(d^\varepsilon \log^{-1} T)\right)$$

for which the function $t \mapsto \zeta_K(1/2 + it)$ is free of zeros.

Theorem 1 does not, *a fortiori*, state anything about the quantity λ_K. However, if we assume the generalized Riemann hypothesis for $\zeta_K(s)$, then Theorem 1 immediately implies the following inequality for λ_K.

Corollary 2. Assume the generalized Riemann hypothesis for $\zeta_K(s)$. Then $\lambda_K \geq \sqrt{6}$. In particular, there are infinitely many normalized gaps between consecutive zeros of $\zeta_K(s)$ which are greater than $\sqrt{6} - \varepsilon$ times the average spacing for any $\varepsilon > 0$.

The constant $\sqrt{6}$ in Corollary 2 is larger than one might expect since the same method of proof applied to the Riemann zeta-function only exhibits gaps between nontrivial zeros of $\zeta(s)$ of size $\sqrt{3}$ times the average spacing. (See [13].) Moreover, in contrast to Theorem 1 and its corollary, establishing a nontrivial upper bound on μ_K seems to be more difficult due to the connection to the Deuring-Heilbronn phenomenon and the class number problem for imaginary quadratic fields mentioned above.

We prove Theorem 1 by combining the mixed second moments of derivatives of $\zeta_K(s)$ and an argument of R. R. Hall [13]. In 1926, Ingham [18] proved that for $s = 1/2 + it$ and $|\alpha|, |\beta| < 1/2$, we have

$$\int_0^T \zeta(s + \alpha)\zeta(1-s + \beta) dt = \int_0^T \left(\zeta(1+\alpha+\beta) + \left(\frac{t}{2\pi}\right)^{-\alpha-\beta} \zeta(1-\alpha-\beta)\right) \left(1 + O(t^{-1/2})\right) dt.$$

This ‘shifted’ moment reveals a beautiful underlying structure which allows one to deduce lower order terms and moments of derivatives of $\zeta(s)$ via differentiation and Cauchy’s integral formula. For instance, Ingham’s theorem can be used to show that, for fixed $\mu, \nu \in \mathbb{N}$,

$$\int_0^T \zeta^{(\mu)}(1/2 + it)\zeta^{(\nu)}(1/2 - it) dt = \frac{(-1)^{\mu+\nu}}{\mu+\nu+1} T (\log T)^{\mu+\nu+1} + O(T (\log T)^{\mu+\nu}),$$

where $\zeta^{(\mu)}(s)$ denotes the μth derivative of $\zeta(s)$. We make use of a similar shifted moment result for a Dedekind zeta-function of a quadratic number field due to Heap [16] to obtain the mixed second moments of derivatives of $\zeta_K(s)$ on the critical line. In particular, the proof of Theorem 1 requires asymptotic estimates
of the mixed second moments of \(\zeta_K(\frac{1}{2}+it) \) and \(\zeta'_K(\frac{1}{2}+it) \) with a uniform error. We obtain these by way of the following theorem.

Theorem 3. Let \(K \) be the quadratic number field with discriminant \(d \). Let \(T \geq 2 \), and \(\mu, \nu \) be non-negative integers. We have

\[
\int_T^{2T} \zeta_K^{(\mu)}(\frac{1}{2}+it)\zeta_K^{(\nu)}(\frac{1}{2}+it)\,dt = \frac{(\mu+\nu)(\mu+\nu+1)}{(\mu+\nu+2)(\mu+\nu+1)}2C_dT(\log T)^{\mu+\nu+2} + O(\mu!\nu!d^\epsilon C_dT(\log T)^{\mu+\nu+1}),
\]

where the constant

\[
C_d := \frac{6}{\pi^2} \prod_{p|d} \left(1 + \frac{1}{p} \right)^{-1} L^2(1, \chi_d).
\]

Special cases of Theorem 3 are known by the work of Motohashi [23] and Weinstein [28], however we require the more general case to prove Theorem 1. We deduce Theorem 3 from the following recent result of Heap [16].

Theorem 4. (Heap) Let \(K \) be the quadratic number field with discriminant \(d \). Let \(s = 1/2+it \) and \(\alpha, \beta \in \mathbb{C} \) such that \(|\alpha|, |\beta| \ll 1/\log(\sqrt{d}T) \). Then we have

\[
\int_T^{2T} \zeta_K(s+\alpha)\zeta_K(1-s+\beta)\,dt
= \int_T^{2T} \left\{ \prod_p \left(1 - \frac{1}{p^{1+\alpha+\beta}} \right) \prod_{p|d} \left(1 + \frac{1}{p^{1+\alpha+\beta}} \right)^{-1} \zeta_K^2(1+\alpha+\beta)
\right.
\]
\[
+ \left(\frac{t}{2\pi} \right)^{-\alpha-\beta} \frac{6}{\pi^2} \prod_{p|d} \left(1 - \frac{1}{p^2} \right)^{-1} \prod_{p|d} \left(1 - \frac{1}{p^{1+\alpha+\beta}} \right) L^2(1, \chi_d)\zeta(1+\alpha+\beta)\zeta(1-\alpha-\beta)
\]
\[
+ \frac{1}{d^{\alpha+\beta}} \left(\frac{t}{2\pi} \right)^{-\alpha-\beta} \frac{6}{\pi^2} \prod_{p|d} \left(1 - \frac{1}{p^2} \right)^{-1} \prod_{p|d} \left(1 - \frac{1}{p^{1-\alpha-\beta}} \right) L^2(1, \chi_d)\zeta(1+\alpha+\beta)\zeta(1-\alpha-\beta)
\]
\[
+ \frac{1}{d^{\alpha+\beta}} \left(\frac{t}{2\pi} \right)^{-2\alpha-2\beta} \prod_p \left(1 - \frac{1}{p^{2-2\alpha-2\beta}} \right) \prod_{p|d} \left(1 + \frac{1}{p^{1-\alpha-\beta}} \right)^{-1} \zeta_K^2(1-\alpha-\beta)
\}
\]

\[(3) \]

where the constant \(C_d \) is defined in (2).

Proof. This is a consequence of [16, Theorem 1], letting \(h = k = 1 \). □

Prior to the work of Heap [16], the author independently derived Theorem 4 using a method of Ramachandran [25]. Using different techniques, Heap computes the second moment of a Dedekind zeta-function of a quadratic field times an arbitrary Dirichlet polynomial of length \(T^{1/11-\epsilon} \).

Proof of Theorem 3. Let \(\epsilon > 0 \) be an arbitrary constant, \(s = 1/2+it \), and \(T \geq 2 \) be fixed. We first simplify the integral on the right-hand side of (3) by considering each factor of each term of the integrand. Since \(\alpha+\beta \ll 1/\log(\sqrt{d}T) \), it follows that \(d^{-\alpha-\beta} = 1 + O((\alpha+\beta)d^\epsilon) \). The Euler products on the right-hand side of (3) can be simplified as

\[
\prod_p \left(1 - \frac{1}{p^{2\alpha+\beta}} \right) = \prod_p \left(1 - \frac{1}{p^2} \right) \left(1 + O((\alpha+\beta)d^\epsilon) \right) = \frac{6}{\pi^2} \left(1 + O((\alpha+\beta)d^\epsilon) \right),
\]

3
\[
\prod_{p|d} \left(1 + \frac{1}{p^{1+\alpha+\beta}}\right)^{-1} = \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} \left(1 + O((\alpha+\beta)d^r)\right),
\]
and
\[
\prod_{p|d} \left(1 - \frac{1}{p^{1+\alpha+\beta}}\right) = \prod_{p|d} \left(1 - \frac{1}{p}\right) \left(1 + O((\alpha+\beta)d^r)\right).
\]

The factorization given in (1) implies that
\[
\zeta_K (1 \pm (\alpha+\beta)) = L(1, \chi_d)\zeta (1 \pm (\alpha+\beta)) \left(1 + O((\alpha+\beta)d^r)\right).
\]

Furthermore, since \(t \in [T, 2T] \), we have that \((t/2\pi)^{-\alpha-\beta} = T^{-\alpha-\beta}(1 + O(1/\log T))\). Using these estimates, we find that
\[
\int_T^{2T} \zeta_K(s+\alpha)\zeta_K(1-s+\beta) \, dt = \int_T^{2T} \left\{ \frac{6}{\pi^2} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} L^2(1, \chi_d)\zeta^2(1+\alpha+\beta) \right\} \, dt
\]
\[
+ 2 \int_T^{2T} \left\{ \frac{6}{\pi^2} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} L^2(1, \chi_d)\zeta(1+\alpha+\beta)\zeta(1-\alpha-\beta)T^{-\alpha-\beta} \right\} \, dt
\]
\[
+ \int_T^{2T} \left\{ \frac{6}{\pi^2} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} L^2(1, \chi_d)\zeta^2(1-\alpha-\beta)T^{-2\alpha-2\beta} \right\} \, dt
\]
\[
+ O(d^r C_d T \log T)
\]
\[
:= I_1 + 2I_2 + I_3 + O(d^r C_d T \log T),
\]
say. Since \(\zeta(1-s) = 1/s + O(1) \), we can express the three integrals as
\[
I_1 = (\alpha+\beta)^{-2} C_d T + O(d^r C_d T \log T), \quad I_2 = - (\alpha+\beta)^{-2} C_d T^{-\alpha-\beta+1} + O(d^r C_d T \log T),
\]
and
\[
I_3 = (\alpha+\beta)^{-2} C_d T^{-2\alpha-2\beta+1} + O(d^r C_d T \log T).
\]

Finally, noting that
\[
T^{-\delta(\alpha+\beta)} = \sum_{n=0}^\infty \frac{(-1)^n \delta^n (\alpha+\beta)^n (\log T)^n}{n!},
\]
we simplify \(I_1 + 2I_2 + I_3 \) to conclude that
\[
\int_T^{2T} \zeta_K(s+\alpha)\zeta_K(1-s+\beta) \, dt = F(\alpha+\beta; T) + O(d^r C_d T \log T),
\]
where
\[
F(\alpha+\beta; T) := 2C_d T \sum_{n=0}^\infty \frac{(-1)^n (\alpha+\beta)^n (\log T)^{n+2}}{(n+2)!} \left(2^{n+1} - 1\right).
\]

We now follow an argument of Ingham [18] to complete the proof. Let
\[
R(\alpha, \beta; T) := \int_T^{2T} \zeta_K(s+\alpha)\zeta_K(1-s+\beta) \, dt - F(\alpha+\beta; T).
\]
Then \(R(\alpha, \beta; T) \) is an analytic function of two complex variables \(\alpha \) and \(\beta \) when \(\Re(\alpha), \Re(\beta) < 1/2, \) and
\[
R(\alpha, \beta; T) = O(d^r C_d T \log T)
\]
holds by Theorem 4. Differentiating (5), it follows that

\begin{equation}
\int_T^{2T} \zeta_K^{(\mu)}(s) \zeta_K^{(\nu)}(1-s) \, dt = \frac{\partial^{\mu+\nu} F(\alpha+\beta; T)}{\partial \alpha^\mu \partial \beta^\nu} + R_{\mu,\nu}(\alpha, \beta; T),
\end{equation}

where \(\mu \) and \(\nu \) are fixed nonnegative integers and

\[R_{\mu,\nu}(\alpha, \beta; T) := \frac{\partial^{\mu+\nu} R(\alpha, \beta; T)}{\partial \alpha^\mu \partial \beta^\nu}. \]

Let \(\mathcal{C} = \{ w \in \mathbb{C}; |w - \alpha| = 1/\log T \} \). By the Cauchy integral formula and (6), we have

\[\frac{\partial^\mu}{\partial \alpha^\mu} R(\alpha, \beta; T) = \frac{\mu!}{2\pi i} \int_{\mathcal{C}} \frac{R(w, \beta; T)}{(w - \alpha)^{\mu+1}} \, dw = O(\mu!d^\mu C_d \log T)^{\mu+1}. \]

Appealing to the Cauchy integral formula once more, we deduce that

\[R_{\mu,\nu}(\alpha, \beta; T) := \frac{\partial^{\mu+\nu}}{\partial \alpha^\mu \partial \beta^\nu} R(\alpha, \beta; T) = O(\mu!\nu!d^{\mu+\nu} C_d (\log T)^{\mu+\nu+1}). \]

Thus (7), with \(\alpha = \beta = 0 \), gives

\begin{equation}
\int_0^T \zeta_K^{(\mu)}(\frac{1+i}{2}) \zeta_K^{(\nu)}(\frac{1-i}{2}) \, dt = \left[\frac{\partial^{\mu+\nu} F(\alpha+\beta; T)}{\partial \alpha^\mu \partial \beta^\nu} \right]_{\alpha=0, \beta=0} + O(\mu!\nu!d^{\mu+\nu} C_d (\log T)^{\mu+\nu+1}),
\end{equation}

and it remains only to calculate the first term on the right-hand side. By differentiating (4) with respect to \(\alpha \) and \(\beta \) and simplifying, we determine that

\begin{equation}
\left[\frac{\partial^{\mu+\nu} F(\alpha+\beta; T)}{\partial \alpha^\mu \partial \beta^\nu} \right]_{\alpha=0, \beta=0} = \frac{(-1)^{\mu+\nu}(2^{\mu+\nu+1}-1)}{(\mu+\nu+2)(\mu+\nu+1)} 2C_d (\log T)^{\mu+\nu+2}. \end{equation}

Theorem 3 now follows upon inserting (9) into (8).

We now demonstrate how to obtain the lower bound in Theorem 1. The proof is a variation of a method of R. R. Hall [13] using some ideas of Bredberg [1]. We begin by defining the function

\begin{equation}
f(t) := e^{ivt \log T} \zeta_K(\frac{1+i}{2} + it),
\end{equation}

where \(v \) is a real constant that will be chosen later. By Stirling’s formula, \(f(t) \) mimics the analogue of the Hardy Z-function for \(\zeta_K(s) \). Fix \(K \), and let \(\gamma \) denote an ordinate of a zero of \(\zeta_K(s) \) on the critical line \(\Re(s) = 1/2 \). Note that \(f(t) \) has the same zeros as \(\zeta_K(\frac{1+i}{2} + it) \), that is, \(f(t) = 0 \) if and only if \(t = \gamma \). Let \(\{ \gamma_1, \gamma_2, \ldots, \gamma_N \} \) denote the set of distinct zeros of \(f(t) \) in the interval \([T, 2T]\) arranged in non-decreasing order and ignoring multiplicity. Furthermore, let

\[\kappa_T = \max \{ \gamma_{n+1} - \gamma_n : T+1 \leq \gamma_n \leq 2T-1 \}, \]

and note that \(\lambda_K \geq \limsup \kappa_T \). Without loss of generality, we may assume that

\begin{equation}
\gamma_1 - T \ll 1 \quad \text{and} \quad 2T - \gamma_N \ll 1,
\end{equation}

as otherwise there exist zeros \(\gamma_0 \leq \gamma_1 \) and \(\gamma_{N+1} \geq \gamma_N \) such that \(\gamma_0 - \gamma_1 \) and \(\gamma_{N+1} - \gamma_N \) are \(\gg 1 \), and

Theorem 1 holds for this reason. In order to obtain a lower bound on \(\kappa_T \), we require the following lemma.
Lemma 5. Let \(y : [a,b] \to \mathbb{C} \) be a continuously differentiable function and suppose that \(y(a) = y(b) = 0 \). Then
\[
\int_a^b |y(x)|^2 \, dx \leq \left(\frac{b-a}{\pi} \right)^2 \int_a^b |y'(x)|^2 \, dx.
\]

Proof. This is a variation of a well-known inequality of Wirtinger [15, Theorem 256] due to Bredberg [1, Corollary 1].

With this setup, we now prove Theorem 1.

Proof of Theorem 1. Let \(\varepsilon > 0 \) be a small positive constant which may vary from line to line, and let \(f(t) \) be the function defined in (10). By the definition of \(\kappa_T \), for each pair of consecutive zeros of \(f(t) \) in the interval \([T, 2T] \), we have
\[
\int_{\gamma_n}^{\gamma_{n+1}} |f(t)|^2 \, dt \leq \frac{\kappa_T^2}{\pi^2} \int_{\gamma_n}^{\gamma_{n+1}} |f'(t)|^2 \, dt.
\]

Summing both sides of the equation in (12) over \(n \) for \(n = 1, 2, \ldots, N - 1 \), it follows that
\[
\int_{\gamma_1}^{\gamma_N} |f(t)|^2 \, dt \leq \frac{\kappa_T^2}{\pi^2} \int_{\gamma_1}^{\gamma_N} |f'(t)|^2 \, dt.
\]

By Weyl’s bound for the zeta-function, \(\zeta(\frac{1}{2}+it) \ll t^{\frac{1}{2}+\varepsilon} \), and the subconvexity bound \(L(\frac{1}{2}+it, \chi_d) \ll |td|^{\frac{1}{4}+\varepsilon} \) due to Heath-Brown [17], we see that \(|f(t)| \ll t^{\frac{1}{12}+\varepsilon}d^{\frac{1}{2}+\varepsilon} \) for \(T \leq t \leq 2T \) and \(\varepsilon > 0 \). Therefore, by the assumption in (11), we have
\[
\int_T^{2T} |f(t)|^2 \, dt \leq \frac{\kappa_T^2}{\pi^2} \int_T^{2T} |f'(t)|^2 \, dt + O(d^{\frac{3}{2}+\varepsilon}T^{\frac{17}{3}+\varepsilon}).
\]

Note that \(|f(t)|^2 = |\zeta_K(\frac{1}{2}+it)|^2 \) and
\[
|f'(t)|^2 = |\zeta'_{\kappa}(\frac{1}{2}+it)|^2 + v^2 \log^2 T|\zeta_{\kappa}(\frac{1}{2}+it)|^2 + 2v \log T \cdot \Re \left(\zeta'_{\kappa}(\frac{1}{2}+it)\zeta_{\kappa}(\frac{1}{2}+it) \right).
\]

Theorem 3 implies that
\[
\int_T^{2T} |\zeta_{\kappa}(\frac{1}{2}+it)|^2 \, dt = C_\delta T \log^2 T + O(d^{\varepsilon}C_\delta T \log T),
\]

\[
\int_T^{2T} \zeta'_{\kappa}(\frac{1}{2}+it)\zeta_{\kappa}(\frac{1}{2}+it) \, dt = -C_\delta T \log^3 T + O(d^{\varepsilon}C_\delta T \log^2 T),
\]

and
\[
\int_T^{2T} |\zeta'_{\kappa}(\frac{1}{2}+it)|^2 \, dt = \frac{7}{6} C_\delta T \log^4 T + O(d^{\varepsilon}C_\delta T \log^3 T),
\]

where \(C_\delta \) is the constant in (2). By combining the estimates in (13) – (17), we find that
\[
\frac{\kappa_T^2}{\pi^2} \geq \frac{6}{6v^2 - 12v + 7 \log^2 T} \left(1 + O(d^{\varepsilon} \log^{-1} T) \right),
\]

uniformly for \(|d| \leq T^{\frac{1}{2}-\varepsilon} \). The choice of \(v = 1 \) minimizes \(6v^2 - 12v + 7 \), the minimum value being 1. We conclude that
\[
\kappa_T \geq \frac{\sqrt{6\pi}}{\log(\sqrt{|d|}T)} \left(1 + O(d^{\varepsilon} \log^{-1} T) \right).
\]

This completes the proof of Theorem 1. \(\square\)
Acknowledgements. The author would like to thank her adviser, Micah B. Milinovich, for suggesting the problem and offering guidance and support. She would also like to thank Winston Heap for his encouragement and the referee for a number of helpful comments.

References

Department of Mathematics, University of Mississippi, University, MS 38677 USA

E-mail address: clbutter@olemiss.edu