
INTRODUCTION

This book gives a treatment of exterior differential systems. It will include both
the general theory and various applications.

An exterior differential system is a system of equations on a manifold defined by
equating to zero a number of exterior differential forms. When all the forms are
linear, it is called a pfaffian system. Our object is to study its integral manifolds,
i.e., submanifolds satisfying all the equations of the system. A fundamental fact is
that every equation implies the one obtained by exterior differentiation, so that the
complete set of equations associated to an exterior differential system constitutes a
differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-
free and computations typically have an algebraic character; however, even when
coordinates are used in intermediate steps, the use of exterior algebra helps to
efficiently guide the computations, and as a consequence the treatment adapts well
to geometrical and physical problems.

A system of partial differential equations, with any number of independent and
dependent variables and involving partial derivatives of any order, can be writ-
ten as an exterior differential system. In this case we are interested in integral
manifolds on which certain coordinates remain independent. The corresponding
notion in exterior differential systems is the independence condition: certain pfaf-
fian forms remain linearly independent. Partial differential equations and exterior
differential systems with an independence condition are essentially the same object.
The latter, however, possess some advantages among which are the facts that the
forms themselves often have a geometrical meaning, and that the symmetries of the
exterior differential system are larger than those generated simply by changes of
independent and dependent variables. Another advantage is that the coordinate-
free treatment naturally leads to the intrinsic features of many systems of partial
differential equations.

It was Pfaff who pioneered the study of exterior differential systems by his formu-
lation of the Pfaff problem in Pfaff [1814-15]. The exterior derivative of a pfaffian
form, called the bilinear covariant, was introduced by Frobenius in 1877 and effi-
ciently used by Darboux in Darboux [1882]. In his book Cartan [1922], Élie Cartan
introduced exterior differential forms of higher degree and their exterior derivatives.
In 1904–08 he was led to the notion of a pfaffian system in involution through his
work in generalizing the Maurer–Cartan forms in Lie groups to infinite Lie pseu-
dogroups. The geometrical concepts introduced in this study apply to general
exterior differential systems, as recognized by Goursat. An authoritative account
was given in Kähler [1934], culminating in an existence theorem now known as the
Cartan–Kähler theorem.

1



2 Introduction

On the side of partial differential equations the basic existence theorem is of
course the Cauchy–Kowalewski theorem. More general existence theorems were
given by Riquier [1910]. The use of differential operators in studying differential
geometry has been traditional and has an extensive literature.

Among our fundamental concepts are prolongation and involutivity. Intuitively
the former is the classical way of adjoining the partial derivatives themselves as new
variables, and taking as new equations those obtained by differentiating the old set,
while the latter is the property that further prolongations will not give essentially
new integrability conditions. Their precise definitions are more subtle, and will be
given in Chapters VI and IV respectively. A linear pfaffian system in involution is
a “well-behaved” system.

This concept entered in correspondence between Cartan and Einstein [1979] on
relativity. While Élie Cartan proved that the Einstein field equations in general
relativity based on distant parallelism form an involutive system, Einstein was at
first suspicious of the notion. Later he understood it and expressed his satisfaction
and appreciation.

Cartan expressed the involutivity condition in terms of certain integers, known
as Cartan’s test. In modern language this is a homological condition. In fact, Serre
proved in 1963 that involutivity is equivalent to the vanishing of certain cohomology
groups (see Guillemin–Sternberg [1964]). This makes it possible to use the powerful
tool of commutative algebra. At the very beginning one notices the similarity
between polynomials and differential operators. It turns out that this relationship
goes much deeper, and the theory involves a mixture of both commutative and
exterior algebra.

A fundamental problem is whether a given differential system will, after a finite
number of prolongations lead to an involutive system. Cartan attempted to answer
this question, but it was Kuranishi [1957] who finally proved the Cartan–Kuranishi
prolongation theorem. The main tool is homology theory. A slightly weaker version
of the theorem will be proved in this book.

We should however emphasize that differential systems not in involution are just
as important. In fact, they are probably richer in content. For example, non-
generic conditions on a manifold such as isometric embedding in low codimension
or the presence of additional geometric structures frequently are expressed by a
non-involutive system. The last half of Cartan [1946] and Partie II of his “Œuvres
Complètes” (Cartan [1953]) are full of “examples”, many of which are topics in
their own right. An objective of this book is to call attention to these beautiful
results, which have so far been largely ignored.

As the results are coordinate-free, the theory applies well to global problems
and to non-linear problems. A guiding problem in the theory is the equivalence
problem:

Given two sets of linear differential forms θi, θ∗j in the coordinates xk, x∗l

respectively, 1 ≤ i, j, k, l ≤ n, both linearly independent, and given a Lie group
G ⊂ GL(n, R). To find the conditions that there are functions

x∗i = x∗i(x1, . . . , xn),

such that θ∗j , after the substitution of these functions, differ from θi by a transfor-
mation of G. This gives rise to an exterior differential system. Cartan’s idea was
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to introduce the parameters of G as new variables, setting

ωi =
∑

j

gi
jθ

j , ω∗i =
∑

g∗i
j θ∗j , (gi

j), (g∗i
j ) ∈ G.

Then in the product of the manifold with G, the condition becomes

ωi = ω∗i,

which is symmetrical in both sides. This means we should study the problem in a
principal G-bundle and the formulation becomes global.

The equivalence problem gives local Riemannian geometry when G = O(n)
and the local invariants of an almost complex structure when n = 2m and G =
GL(m, C). Similarly, it gives the local invariants of CR-geometry when n = 2m−1
and G is a suitable subgroup of GL(m, C).

We have stated the equivalence problem because of its importance; it will not
be explicitly treated in this book; see Gardner [1989] for a modern exposition.

The subject is so rich that a worker in the field is torn between the devil of the
general theory and the angel of geometrical applications, which present all kinds of
interesting phenomena. We have attempted to strike a balance. We will develop
the general theory both from the standpoint of exterior differential systems and
from that of partial differential equations. We will also give a large number of
applications. A summary of contents follows:

Chapter I gives a review of exterior algebra, with emphasis on results which are
relevant to exterior differential systems. For those who like an intrinsic treatment
it includes an introduction to jet bundles.

Chapter II treats some simple exterior differential systems, particularly those
which can be put in a normal form by a change of coordinates. They include com-
pletely integrable systems (Frobenius theorem) and the pfaffian equation. Cauchy
characteristics for exterior differential systems come up naturally. Some arithmetic
invariants are introduced for pfaffian systems. Even a pfaffian system of codimen-
sion 2, only partially treated in the last section, is a rich subject, with several
interesting applications.

Chapter III discusses the generation of integral manifolds through the solution of
a succession of initial-value problems. Various basic concepts are introduced. The
Cartan–Kähler theorem is given as a generalization of the Cauchy–Kowalewsky
theorem; the proof follows that of Kähler. As an application we give a proof of the
isometric imbedding theorem of Cartan–Janet.

Chapter IV introduces the important concepts of involution, linear differential
systems, tableau and torsion. For linear pfaffian systems the condition of involution,
as expressed by Cartan’s test, takes a simple form that is useful in computing
examples. We also introduce the concept of prolongation, which will be more fully
developed in Chapter VI.

As one example we show that the high-dimensional Cauchy–Riemann equations
are in involution. We also study the system of q partial differential equations of the
second order for one function in n variables and find conditions for their involutivity.
A geometrical application is made to the problem of isometric surfaces preserving
the lines of curvature. It is an example of an over-determined system which, after
several prolongations, leads to a simple and elegant result. In this example the
effectiveness of exterior differential systems is manifest.
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Chapter V introduces the characteristic variety of a differential system. Intu-
itively its tangent spaces are hyperplanes of integral elements whose extension fails
to be unique. It plays as important a role as the characteristics in classical par-
tial differential equations. For a linear pfaffian system a definition can be given in
terms of the symbol and the two agree in the absence of Cauchy characteristics.
We discuss in detail the case of surfaces in E3 and their Darboux frames, as this
example illustrates many of the basic notions of exterior differential systems. Some
properties of the characteristic variety are given. The deeper ones require the sys-
tem to be involutive and the use of the complex characteristic variety. Their proofs
rely on results of commutative algebra and are postponed to Chapter VIII.

Chapter VI treats prolongation, another well-known process in the case of partial
differential equations. The issue is whether any system with an independence con-
dition (I, Ω) can be prolonged to an involutive system in a finite number of steps
(Cartan–Kuranishi theorem). With our definition of prolongation we prove that
the first prolongation of an involutive linear pfaffian system is involutive, a result
that does not seem to appear in the literature. We establish a somewhat weaker
version of the Cartan–Kuranishi theorem, thus giving in a sense a positive answer
to the above question. As usual the general theory is illustrated by a number of
examples.

Chapter VII is devoted to some examples and applications. We give a classi-
fication of systems of first-order partial differential equations of two functions in
two variables. Other examples include: triply orthogonal systems, finiteness of web
rank, isometric imbedding and the characteristic variety.

In Chapter VIII we study the algebra of a linear pfaffian system and its pro-
longations. The crucial information is contained in the tableau. Its properties are
given by the Spencer cohomology groups or the Koszul homology groups, which are
dual to each other. Involutive tableau is characterized by the vanishing of certain
Spencer cohomology or Koszul homology groups. It is a remarkable coincidence that
a regular integral flag and a quasi-regular graded SV -module represent essentially
the same object. Homological algebra provides the tools to complete the proofs of
the theorems stated in Chapters V and VI, and in particular the Cartan–Kuranishi
theorem. As a consequence sheaf theory in commutative algebra and micro-local
analysis in partial differential equations become parallel developments.

Chapters IX and X give an introduction to the Spencer theory of over-determined
systems of partial differential equations. While Cartan began his theory in the
study of infinite pseudogroups, Spencer had a similar objective, viz., the study of
the deformations of pseudogroup structures. His approach is more in the spirit of
Lie, with a full use of modern concepts. We see in our account more emphasis
on the general theory, although many examples are given. We hope that after the
exposition in this book we come to realize that exterior differential systems and
partial differential equations are one and the same subject. It is conceivable that
different attires are needed for different purposes.

This book grew through our efforts to work through and appreciate Partie II
of Cartan’s “Œuvres Complètes” (Cartan [1953]), which we found to be full of
interesting ideas and details. Hopefully our presentation will help the study of the
original work, which we cannot replace. In fact, for readers who have gone through
most of this book we propose the following problem as a final examination: Give a
report on his famous five-variable paper, “Les systèmes de Pfaff à cinq variables et
les équations aux dérivées partielles du second ordre” (Cartan [1910]).
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6 I. Preliminaries

CHAPTER I

PRELIMINARIES

In this chapter we will set up some notations and conventions in exterior algebra,
give a description of the basic topic of the book, and introduce the language of
jets which allows easy passage between partial differential equations and exterior
differential systems. In particular we establish some basic results in exterior algebra
Theorems 1.3, 1.5, and 1.7 which will be used in Chapter II.

§1. Review of Exterior Algebra.

Let V be a real vector space of dimension n and V ∗ its dual space. An element
x ∈ V is called a vector and an element ω ∈ V ∗ a covector. V and V ∗ have a
pairing

〈x, ω〉, x ∈ V, ω ∈ V ∗,

which is a real number and is linear in each of the arguments, x, ω.
Over V there is the exterior algebra, which is a graded algebra:

Λ(V ) = Λ0(V ) ⊕ Λ1(V ) ⊕ · · · ⊕ Λn(V ),

with
Λ0(V ) = R, Λ1(V ) = V.

An element ξ ∈ Λ(V ) can be written in a unique way as

ξ = ξ0 + ξ1 + · · ·+ ξn,

where ξp ∈ Λp(V ) is called the p-th component of ξ. An element

ξ = ξp ∈ Λp(V )

is called homogeneous of degree p or a multivector of dimension p.
Multiplication in Λ(V ) will be denoted by the wedge sign: ∧. It is associative,

distributive, but not commutative. Instead it satisfies the relation

ξ ∧ η = (−1)pqη ∧ ξ, ξ ∈ Λp(V ), η ∈ Λq(V ).

The multivector ξ is called decomposable, if it can be written as a monomial

(1) ξ = x1 ∧ · · · ∧ xp, xi ∈ V.

We have the following fundamental fact:
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Proposition 1.1 (Criterion on linear dependence). The vectors x1, . . . , xp are lin-
early dependent if and only if x1 ∧ · · · ∧ xp = 0.

If the decomposable multivector ξ in (1) is not zero, then x1, . . . , xp are linearly
independent and span a linear subspace W of dimension p in V . This space can be
described by

(2) W = {x ∈ V | x ∧ ξ = 0}.

Let x′
1, . . . , x

′
p be another base in W . Then

ξ′ = x′
1 ∧ · · · ∧ x′

p

is a (non-zero) multiple of ξ. We will call ξ, defined up to a constant factor, the
Grassmann coordinate vector of W , and write

(3) [ξ] = W,

the bracket indicating the class of coordinate vectors differing from each other by
a non-zero factor.

In the same way there is over V ∗ the exterior algebra

Λ(V ∗) = Λ0(V ∗) ⊕ Λ1(V ∗) ⊕ · · · ⊕ Λn(V ∗),
Λ0(V ∗) = R, Λ1(V ∗) = V ∗.

An element of Λp(V ∗) is called a form of degree p or simply a p-form.
Let ei be a base of V and ωk its dual base, so that

〈ei, ω
k〉 = δk

i , 1 ≤ i, k ≤ n.

Then an element ξ ∈ Λp(V ) can be written

(4) ξ = 1/p!
∑

ai1...ipei1 ∧ · · · ∧ eip

and an element α ∈ Λp(V ∗) as

(5) α = 1/p!
∑

bi1...ipω
i1 ∧ · · · ∧ ωip .

In (4) and (5) the coefficients ai1...ip and bi1...ip are supposed to be anti-symmetric
in any two of their indices, so that they are well defined. It follows from (4) that
any multivector is a linear combination of decomposable multivectors.

For our applications it is important to establish the explicit duality or pairing of
Λ(V ) and Λ(V ∗). We require that Λp(V ) and Λq(V ∗), p �= q, annihilate each other.
It therefore suffices to define the pairing of Λp(V ) and Λp(V ∗). Since, by the above
remark, any multivector is a linear combination of decomposable multivectors, it
suffices to have the pairing of

ξ = x1 ∧ · · · ∧ xp, xi ∈ V,
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and
α = ω1 ∧ · · · ∧ ωp, ωi ∈ V ∗.

We will define

(6) 〈ξ, α〉 = det(〈xi, ω
k〉), 1 ≤ i, k ≤ p.

It can be immediately verified that this definition is meaningful, i.e., if ξ (resp. α) is
expressed in a different way as a product of vectors (resp. covectors), the right-hand
side of (6) remains unchanged.

In terms of the expressions (4) and (5) the pairing is given by

(7) 〈ξ, α〉 = 1/p!
∑

ai1...ipbi1...ip .

This is proved by observing that the right-hand side of (7) is linear in the arguments
ξ and α and that the right-hand sides of both (6) and (7) are equal when ξ and α
are products of the elements of the dual bases.

An endomorphism f of the additive structure of Λ(V ) is called a derivation of
degree k if it satisfies the conditions:

(i) f : ΛpV → Λp+kV , 0 ≤ p ≤ n
(ii) f(ξ ∧ η) = f(ξ) ∧ η + (−1)kpξ ∧ f(η)

for ξ ∈ ΛpV , η ∈ ΛV .
A derivation of degree −1 is also called an anti-derivation.
Given ξ ∈ V , we define the exterior product

e(ξ) : Λ(V )→ Λ(V )

by
e(ξ)η = ξ ∧ η η ∈ Λ(V ).

The adjoint operator of e(ξ),

ξ : Λ(V ∗)→ Λ(V ∗)

is called the interior product, and is defined by the relation

〈η, ξ α〉 = 〈e(ξ)η, α〉 η ∈ Λ(V ), α ∈ Λ(V ∗).

The following result is easily proved:

Proposition 1.2. If x ∈ V , then x is an anti-derivation.

Notice that e(x) is neither a derivation nor an anti-derivation.

Definition. A subring I ⊂ Λ(V ∗) is called an ideal, if:
a) α ∈ I implies α ∧ β ∈ I for all β ∈ Λ(V ∗);
b) α ∈ I implies that all its components in Λ(V ∗) are contained in I.

A subring satisfying the second condition is called homogeneous. As a conse-
quence of a) and b) we conclude that α ∈ I implies β ∧ α ∈ I for all β ∈ Λ(V ∗).
Thus all our ideals are homogeneous and two-sided.

Given an ideal I ⊂ Λ(V ∗), we wish to determine the smallest subspace W ∗ ⊂ V ∗

such that I is generated, as an ideal, by a set S of elements of Λ(W ∗). An element of
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I is then a sum of elements of the form σ∧β, σ ∈ S, β ∈ Λ(V ∗). If x ∈W = (W ∗)⊥,
we have, since the interior product x is an anti-derivation,

x σ = 0,

x (σ ∧ β) = ±σ ∧ (x β) ∈ I.

Therefore we define
A(I) = {x ∈ V | x I ⊂ I},

where the last condition means that x α ∈ I, for all α ∈ I. A(I) is clearly a
subspace of V . It will play later an important role in differential systems, for which
reason we will call it the Cauchy characteristic space of I. Its annihilator

C(I) = A(I)⊥ ⊂ V ∗

will be called the retracting subspace of I.

Theorem 1.3 (Retraction theorem). Let I be an ideal of Λ(V ∗). Its retracting
subspace C(I) is the smallest subspace of V ∗ such that Λ(C(I)) contains a set S of
elements generating I as an ideal. The set S also generates an ideal J in Λ(C(I)),
to be called a retracting ideal of I. There exists a mapping

∆ : Λ(V ∗)→ Λ(C(I))

of graded algebras such that ∆(I) = J .

Proof. Suppose W ∗ ⊂ V ∗ be a subspace such that Λ(W ∗) contains a set S of
elements which generate I as an ideal. By the above discussion, if x ∈W = (W ∗)⊥,
we have x I ⊂ I. It follows that W ⊂ A(I), and consequently, C(I) = (A(I))⊥ ⊂
W ∗.

We now choose a complementary space B of C(I) in V ∗, so that V ∗ = B⊕C(I).
Let ωi, 1 ≤ i ≤ n, be a base in V ∗ with

ω1, . . . , ωk ∈ B, ωk+1, . . . , ωn ∈ C(I).

Its dual base ei, 1 ≤ i ≤ n, then has the property that A(I) = {e1, . . . , ek}. We
define

hj : Λ(V ∗)→ Λ(V ∗), 1 ≤ j ≤ k,

by
hj(α) = α− ωj ∧ (ej α), α ∈ Λ(V ∗).

It is easy to verify that
hj(α ∧ β) = hj(α) ∧ hj(β),

so that each hj is a mapping of graded algebras. The same is therefore true of the
composition

∆ = hk ◦ · · · ◦ h1.

Since ej ∈ A(I), 1 ≤ j ≤ k, we have hj(I) ⊂ I, from which we get ∆(I) ⊂ I.
Clearly we have the restrictions ∆|B = 0, ∆|C(I) = Id. Since ∆ is a mapping of
graded algebras, this implies that Λ(C(I)) is the image of ∆.
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It remains to construct the set S in Λ(C(I)) which generates I. This is done by
induction on the degrees of the elements of I. Let Ip be the set of elements of I
of degree p. To exclude the trivial case that I = Λ(V ∗) itself, we suppose I0 = ∅.
Using this assumption we have, by the definition of A(I), x α = 〈x, α〉 = 0,
x ∈ A(I), α ∈ I1. It follows that A(I) ⊂ I⊥1 of I1 ⊂ C(I).

To apply induction suppose that I1, . . . , Ip−1 are generated by elements of Λ(C(I)).
Denote by Jp−1 the ideal generated by them. Recall that hj, 1 ≤ j ≤ k, are map-
pings of graded algebras and induce the identity mapping on C(I). They therefore
leave Jp−1 invariant. By the definition of h1 we have h1(α) − α ∈ Jp−1. Applying
h2, . . . , hk successively, we get ∆(α) − α ∈ Jp−1. By replacing α by ∆(α) as a
generator of I, we complete the induction. �

We wish to make some applications of the retraction theorem (Theorem 1.3).
First we recall that, dualizing (2) and (3), the Grassmann coordinate vector [α] of
a subspace W ∗ ⊂ V ∗ of dimension p is a non-zero decomposable p-covector such
that

W ∗ = {ω ∈ V ∗ | ω ∧ α = 0}.
This notion can be extended to any p-form α, decomposable or not, by defining

Lα = {ω ∈ V ∗ | ω ∧ α = 0}.

Lα will be called the space of linear divisors of α, because of the property given in
the following theorem:

Proposition 1.4. Given a p-form α, let ω1, . . . , ωq be a base for Lα. Then α may
be written in the form

α = ω1 ∧ · · · ∧ ωq ∧ π, with π ∈ Λp−q(V ∗).

Proof. Take first the case q = 1. We can suppose ω1 to be a base element of V ∗.
By the expression (5) we can write

α = ω1 ∧ π + α1,

where α1 does not involve ω1. The hypothesis ω1 ∧ α = 0 implies α1 = 0, so that
the statement is true.

The general case follows by induction on q. �
Theorem 1.5. Let I be an ideal generated by the linearly independent elements
ω1, . . . , ωs ∈ V ∗ and the 2-form Ω ∈ Λ2(V ∗). Let p be the smallest integer such
that

(8) Ωp+1 ∧ ω1 ∧ · · · ∧ ωs = 0.

Then the retracting space C(I) is of dimension 2p + s and has the Grassmann
coordinate vector

Ωp ∧ ω1 ∧ · · · ∧ ωs.

Proof. Consider first the case s = 0. An element of I is a linear combination of Ω,
Ω2, . . . , Ωp �= 0. Hence by Theorem 1.3, we have Ω ∈ Λ(C(I)), and Ωp ∈ Λ2p(C(I)).
The latter implies

dimC(I) ≥ 2p.
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Let
f : V → V ∗

be the linear map defined by

f(x) = x Ω, x ∈ V.

Since I does not contain a linear form, we have

x Ω = 0 if and only if x ∈ A(I) = C(I)⊥.

This proves
ker f = A(I),

so that

(9) dim ker f = dimA(I) ≤ n− 2p.

On the other hand, the equation (8) gives for s = 0,

x Ωp+1 = (p + 1)(x Ω) ∧ Ωp = 0.

Hence the space of linear divisors of Ωp contains the image of f . Since Ωp is of
degree 2p and has at most 2p linear divisors, we have

(10) dim im f ≤ 2p.

Now it is an elementary fact that

dim ker f + dim im f = n.

Therefore the equality signs hold in both (9) and (10). In particular, we have
dimC(I) = 2p and Λ2p(C(I)) is of dimension one, with Ωp as a base element,
which is thus a Grassmann coordinate vector of C(I).

In the general case, let W ∗ = {ω1, . . . , ωs} be the space spanned by the ω’s.
Then W = (W ∗)⊥ ⊂ V and the quotient space V ∗/W ∗ have a pairing induced by
that of V and V ∗, and are dual vector spaces. We have

0 �= Ωp ∧ ω1 ∧ · · · ∧ ωs ∈ Λ2p+s(C(I)),

so that
dimC(I) ≥ 2p + s.

Consider the linear map
W

f−→ V ∗ π−→ V ∗/W ∗,

where π is the projection (into a quotient space) and f is defined by

f(x) = x Ω, x ∈W.

As above, we wish to find upper bounds for the dimensions of the kernel and image
of f ′ = π ◦ f . The sum of these dimensions is

dim ker f ′ + dim im f ′ = n− s.

A generalization of the above argument gives

dim ker f ′ ≤ n− 2p− s

dim im f ′ ≤ 2p

Hence the equality signs hold everywhere and the theorem follows as before.
�
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Proposition 1.6. Let ω1, . . . , ωs, π be linearly independent elements of V ∗ and
Ω ∈ Λ2V ∗; then

(11) Ωp ∧ ω1 ∧ · · · ∧ ωs ∧ π = 0

implies
Ωp+1 ∧ ω1 ∧ · · · ∧ ωs = 0.

Proof. Let {π} denote the one dimensional space spanned by π and let W ∗ denote
a complement in V ∗ of {π} which contains ω1, . . . , ωs. Then there exist α ∈ Λ2W ∗,
β ∈W ∗, uniquely determined, such that

Ω = α + β ∧ π.

It follows that
Ωp = αp + pαp−1 ∧ β ∧ π

and the hypothesis (11) implies

αp ∧ ω1 ∧ · · · ∧ ωs ∧ π = 0.

Since αp ∧ ω1 ∧ · · · ∧ ωs ∈ Λ(W ∗), we must have

αp ∧ ω1 ∧ · · · ∧ ωs = 0.

The conclusion now follows since

Ωp+1 = αp+1 + (p + 1)αp ∧ β ∧ π.

�
A sequential application of Theorem 1.5 leads to a constructive proof of the

algebraic normal form of a two form which is useful for many arguments in the
theory of exterior differential systems.

Theorem 1.7. Let Ω ∈ Λ2(V ∗) and let r be the smallest integer such that

Ωr+1 = 0.

Then there exist 2r linearly independent elements ω1, . . . , ω2r such that

(12) Ω =
r∑

i=1

ωr+i ∧ ωi.

Proof. The theorem is proved by repeated applications of Theorem 1.5. In fact,
from the hypotheses it follows that Ωr is decomposable and hence has a linear
divisor ω1. Next consider the ideal l(1) = {ω1, Ω} generated by ω1 and Ω. Let r1

be the smallest integer such that

Ωr1+1 ∧ ω1 = 0.
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Clearly r1 + 1 ≤ r.
Then Ωr1∧ω1 is the Grassmann coordinate vector of the retraction space C(l(1))

and is decomposable and non-zero. Let ω2 be a linear factor of Ωr1 ∧ ω1, which is
linearly independent from ω1. Then

Ωr1 ∧ ω1 ∧ ω2 = 0.

Let r2 be the smallest integer satisfying

Ωr2+1 ∧ ω1 ∧ ω2 = 0,

so that r2 < r1.
Continuing this process, we get a sequence of positive integers r > r1 > r2 > . . . ,

which must end with zero. This means that there are linear forms ω1, . . . , ωq,
linearly independent, satisfying

Ω ∧ ω1 ∧ · · · ∧ ωq = 0.

From this we get
Ω =

∑
1≤i≤q

ηi ∧ ωi,

where ηi are linear forms. Since Ωr �= 0, we must have q = r and ηi, ω
i, 1 ≤ i ≤ r

are linearly independent. The theorem is proved by setting
ωr+i = ηi.

�
Remark. Theorem 1.7 is equivalent to the theorem in linear algebra on the normal
form of a skew-symmetric matrix. In fact, in terms of a base ωi, 1 ≤ i ≤ n, of V ∗

we can write
Ω = 1/2

∑
i,j

aijω
i ∧ ωj , aij + aji = 0.

Let
ωi =

∑
k

si
kω∗k

, 1 ≤ i, k ≤ n

be a change of base. Then

Ω = 1/2
∑

a∗
klω

∗k

∧ ω∗l

,

where
(13) a∗

kl =
∑
i,j

aijs
i
ksj

l , 1 ≤ i, j, k, l ≤ n.

If we introduce the matrices

A = (aij), A∗ = (a∗
ij), S = (sj

i ),

of which A and A∗ are skew-symmetric, and S is non-singular, then (13) can be
written as a matrix equation

A∗ = SAtS, tS = transpose of S.

Theorem 1.7 can be stated as follows: Given a skew-symmetric matrix A. Its rank
is even. There exists a non-singular matrix S, such that

A∗ =

⎛
⎝ 0 Ip 0
−Ip 0 0
0 0 0

⎞
⎠ ,

where Ip is the unit matrix of order p.
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§2. The Notion of an Exterior Differential System.

Consider a differentiable manifold M of dimension n. Its cotangent bundle,
whose fibers are the cotangent spaces T ∗

x (M), x ∈ M , we will denote by T ∗M .
From T ∗M we construct the bundle ΛT ∗M , whose fibers are

ΛT ∗
x =

∑
0≤p≤n

ΛpT ∗
x ,

which have the structure of a graded algebra, as discussed in the last section. The
bundle ΛT ∗M has the subbundles ΛpT ∗M , whose definition is obvious. Similar
definitions are valid for the tangent bundle TM .

A section of the bundle

ΛpT ∗M =
⋃

x∈M

ΛpT ∗
x →M

is called an exterior differential form of degree p, or a form of degree p or simply a
p-form. By abuse of language we will call a differential form a section of the bundle
ΛT ∗M ; its p-th component is a p-form. All sections are supposed to be sufficiently
smooth.

In terms of a system of local coordinates x1, . . . , xn on M , an exterior differential
form of degree p has the expression

α = 1/p!
∑

ai1...ipdxi1 ∧ · · · ∧ dxip, 1 ≤ i1, . . . , ip ≤ n,

where the coefficients are smooth functions and are anti-symmetric in any two of
the indices.

Let Ωp(M) = C∞-sections of ΛpT ∗M and let Ω∗(M) =
⊕

Ωp(M).

Definition. (i) An exterior differential system is given by an ideal I ⊂ Ω∗(M) that
is closed under exterior differentiation; (ii) an integral manifold of the system is
given by an immersion f : N → M such that f∗α = 0 for all α ∈ I.

By our conventions I =
⊕
Iq is a direct sum of its homogeneous pieces Iq =

I ∩ Ωq(M), and by differentiation; and by differential closure we have dα ∈ I
whenever α ∈ I. We sometimes refer to an ideal I ⊂ Ω∗(M) satisfying dI ⊆ I as
a differential ideal.

In practice, I will be almost always generated as a differential ideal by a finite
collection {αA}, 1 ≤ A ≤ N of differential forms; forms of degree zero, i.e. functions,
are not excluded. An integral manifold of I is given by an immersion

f : N →M

satisfying f∗α = 0 for 1 ≤ A ≤ N . Then

f∗(β ∧ αA) = 0 and f∗(dαA) = 0,

and so f∗α = 0 for all α in the differential ideal generated by the {αA}.
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The fundamental problem in exterior differential systems is to study the integral
manifolds. We may think of these as solutions to the system

αA = 0

of exterior equations. When written out in local coordinates, this is a system of
P.D.E.’s.

The notion is of such generality that it includes all the ordinary and partial
differential equations, as the following examples show:

Example. The second-order differential equations in the (x, y)-plane,

d2y

dx2
= F (x, y,

dy

dx
)

can be written as an exterior differential system

dy− y′dx = 0,

dy′ − F (x, y, y′)dx = 0

in the space of the variables (x, y, y′).

Example. Consider the partial differential equation of the first order

(14) F (xi, z,
∂z

∂xi
) = 0, 1 ≤ i ≤ n.

By introducing the partial derivatives as new variables, it can be written as an
exterior differential system

(15)
F (xi, z, pi) = 0,

dz −
∑

pidxi = 0

in the (2n + 1)-dimensional space (xi, z, pi).

From these examples it is clear that any system of differential equations can
be written as an exterior differential system. However, not all exterior differential
systems arise in this way. The following example marks the birth of differential
systems:

Example. The equation

a1(x)dx1 + · · ·+ an(x)dxn = 0, x = (x1, . . . , xn),

is called a Pfaffian equation. Pfaff’s problem is to determine its integral manifolds
of maximal dimension.

From the examples we notice two important concepts. One is an exterior differen-
tial system with independence condition (I, Ω) which is given by a closed differential
ideal I together with a decomposable p-form

Ω = ω1 ∧ · · · ∧ ωp.
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An integral manifold of (I, Ω) is an integral manifold of I satisfying the additional
condition f∗Ω �= 0. This is the case when we wish to keep some variables inde-
pendent, as in the case when the system arises from a system of partial differential
equations. For instance, in the second example, we take

(16) Ω = dx1 ∧ · · · ∧ dxn.

The partial differential equation (14) is equivalent to the system with independence
condition (I, Ω), where I is generated by the left-hand members of (15) and Ω is
given by (16). Whether an independence condition should be imposed depends on
the particular problem.

The other important concept is that of prolongation, which will be treated in
detail later on. In our first and second examples it is necessary to introduce the
derivatives as new variables. With more general systems the consideration of higher-
order derivatives becomes necessary. Thus we could be forced to introduce higher-
dimensional manifolds and related systems, the prolonged systems, whose study is
necessary for that of the given system.

§3. Jet Bundles.

A rigorous theory of differential systems depends on a foundation of differentiable
manifolds and their differentiable maps. One such foundation is provided by the
theory of jets developed by Charles Ehresmann. An introduction will be given
below.

We will give a geometric description of the spaces of partial derivatives of maps
between two differentiable manifolds. These spaces will be constructed as differ-
entiable manifolds with underlying sets given by equivalence classes of maps. The
equivalence relation will be given in a form which is clearly intrinsic by first defin-
ing it for normalized functions on the real line and then defining it for general
maps by a universal extension. The analytical content of the equivalence relations
is then exhibited by a local characterization which is in turn used to provide the
differentiable structure.

Historically these ideas were motivated by geometers studying partial differential
equations, say

F (x1, . . . , xm, z, ∂z/∂x1, . . . , ∂z/∂xm) = 0,

and their desire to interpret this equation as representing a hypersurface in the
space with coordinates

x1, . . . , xm, z, ∂z/∂x1, . . . , ∂z/∂xm.

The idea behind jets is simply to give this a precise formulation.
Let R denote the real line, with the usual differentiable structure and let t denote

a coordinate function in a neighborhood of the origin. If

f : R → R and g : R → R

are two differentiable maps of the real line into itself which map the origin into the
origin, then f and g are said to have the same r-jet whenever

df

dt
(0) =

dg

dt
(0), . . . ,

drf

dtr
(0) =

drg

dtr
(0).
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Now let N be a differentiable manifold, and let p ∈ N , then a p-based parametrized
curve u, written

u : (R, 0)→ (N, p)

is a map of the real line into N which takes the origin of R into p and is differentiable.
Similarly, a p-based real valued function v, written

v : (N, p)→ (R, 0),

is a real valued function on N which maps the point p onto the origin of R and is
differentiable.

Let M and N be differentiable manifolds and let

f : N →M and g : N →M

be differentiable maps of N into M . Then f and g are said to have the same r-jet
at a point p ∈ M whenever

a) f(p) = g(p) = q
and

b) for all p-based parametrized curves u : (R, 0)→ (N, p),
and for all q-based real valued functions

v : (M, q)→ (R, 0),

the differentiable maps
v ◦ f ◦ u and v ◦ g ◦ u

of the real line into itself mapping the origin into the origin have the same r-jet.
The relation that two maps have the same r-jet at a point p is an equivalence

relation and the equivalence class with the representative

f : N →M

will be denoted by
jr
p(f).

The point p is called the source of jr
p(f) and the point f(p) is called the target

of jr
p(f).

We have given an intrinsic characterization of these equivalence classes. In order
to get hold of this notion we express the relation in local coordinates. Given

α = (α1, . . . , αm),

we define
α! = α1! . . .αm! and |α| = α1 + · · ·+ αm

and given x = (x1, . . . , xm) we define

xα = x1α1
. . . xmαm

and
Dα

x =
∂α1

∂x1α1
. . .

∂αm

∂xmαm

with the convention that D0
xf = f(0).
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Proposition 3.1. Let f and g be two differentiable maps

f : Rm → Rn and g : Rm → Rn

mapping the origin into the origin. Let {x1, . . . , xm} denote coordinates in a neigh-
borhood of the origin of Rm and {z1, . . . , zn} denote coordinates in a neighborhood
of the origin of Rn. These coordinates allow us to introduce real valued functions
f i, gi by

f(x) = (f1(x), . . . , fn(x)) and g(x) = (g1(x), . . . , gn(x)).

With these notations f and g have the same r-jet at the origin if and only if

(17) Dα
x f i(0) = Dα

x gi(0) (1 ≤ i ≤ n, |α| ≤ r).

Proof. Assume that (17) holds and let

u : (R, 0)→ (Rm, 0)

be an arbitrary 0-based curve. Using the {x1, . . . , xm} coordinates we may define

u(t) = (u1(t), . . . , um(t)).

Next let
v : (Rn, 0)→ (R, 0)

be an arbitrary 0-based real valued function. Then repeated application of the
chain rule and the Leibniz product formula gives rise to an equation

dk

dtk
v ◦ f ◦ u|t=0 = F (Dβ

z v(0), Dα
x f(0),

dγu

dtγ
(0)), |α|, |β|, γ ≤ r,

where F is a constant coefficient polynomial in the indicated indeterminates. It
follows that

dk

dtk
v ◦ f ◦ u|t=0 = F (Dβ

z v(0), Dα
x f(0),

dγu

dtγ
(0))

= F (Dβ
z v(0), Dα

x g(0),
dγu

dtγ
(0))

=
dk

dtk
v ◦ g ◦ u|t=0

for k ≤ r, which verifies that f and g have the same r-jet at 0.
Conversely let us assume that

jr
0(f) = jr

0(g).

Then if we take
u : (R, 0)→ (Rm, 0)
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to be the 0-based parametrized curve defined by

u(t) = (ξ1t, . . . , ξmt)

with ξi ∈ R, 1 ≤ i ≤m and take

vj : (Rn, 0)→ (R, 0)

to be the 0-based real valued function defined by projection on the j-th coordinate,
i.e.

vj(z1, . . . , zn) = zj , 1 ≤ j ≤ n

then by hypothesis

dk

dtk
fj (ξ1t, . . . , ξmt) =

dk

dtk
gj(ξ1t, . . . , ξmt), k ≤ r,

which implies

∑ ∂kfj

∂x1i1 . . . ∂xmim
(0)ξi1

1 . . . ξim
m =

∑ ∂kgj

∂x1i1 . . . ∂xmim
(0)ξi1

1 . . . ξim
m ,

i1 + · · ·+ im = k.

Since this last equation holds for all real ξ1, . . . , ξm, the corresponding coefficients
must be equal, that is

Dβ
xfj(0) = Dβ

xgj(0), 1 ≤ j ≤ n, |β| ≤ r

as claimed.
In order to carry this last result over to the general situation

(N, p)
f
−→
g

(M, q)

we introduce coordinates hU with p the origin, and hV with q the origin and define

(Rm, 0)
f
−→
g

(Rn, 0)

by
f = hV ◦ f ◦ h−1

U and g = hV ◦ g ◦ h−1
U .

Clearly we have jr
p(f) = jr

p(g) if and only if

jr
0(f) = jr

0(g).

Now let Jr
p,q(N, M) denote the set of all r-jets of mappings from N into M with

source p and target q. Then define the set

Jr(N, M) =
⋃

p∈M,q∈N

Jr
p,q(N, M).
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We introduce the natural projections

α : Jr(N, M)→ N and β : Jr(N, M)→ M

defined by
α(jr

p(f)) = p and β(jr
p (f)) = f(p).

Matters being so, if {Uλ} denotes a coordinate covering of N and {V µ} denotes
a coordinate covering for M , then we define a topology on the set Jr(N, M) by
prescribing a coordinate covering to have underlying open sets

Wλµ = {jr
p(f) | α(jr

p(f)) ∈ Uλ and β(jr
p (f)) ∈ V µ}.

Now if {x1, . . . , xm} denote the coordinate functions on Uλ and {z1, . . . , zn}
denote the coordinate functions on V µ, then Proposition 3.1 implies that we may
define a coordinate system on Wλµ by
(18)
h(jr

p(f)) = (xi(p), zj(f(p)), Dα
x (z ◦ f)(p)), 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ |α| ≤ r.

We will call these coordinates the natural coordinates on the jet space.
The Leibniz product formula together with the chain rule guarantee that a dif-

ferentiable change of local coordinates in Uλ and in V µ will induce a differentiable
change of local coordinates in Jr(N, M). The fact that this change of local coor-
dinates has non-zero Jacobian determinant follows from the fact that the matrix is
block upper triangular with the diagonal blocks given by symmetric powers of the
Jacobian of the original coordinate change. Thus we have defined a differentiable
structure on Jr(N, M).

The next natural question is to determine the dimension of Jr(N, M) in terms
of the dimensions of N and M .

A real valued function on an m-dimensional manifold N

f : N → R

has as many derivatives of order i as there are independent homogeneous polyno-
mials of degree i. This number is(

m + i− 1
m− 1

)
=
(

m + i− 1
i

)
.

The total dimension of Jr(N, R) is thus given by

m + 1 +
r∑

i=1

(
m + i− 1

i

)
= m +

r∑
i=0

(
m + i− 1

i

)
= m +

(
m + r

r

)
.

Now each coordinate function in a target space M will give rise to an independent
set of derivatives, thus

dimJr(N, M) = dimN + dimM

(
dimN + r

r

)
.
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Example. J2(R2, R)
Let (x, y) denote coordinates on R2 and z a coordinate on R. Let

p(j2
(x,y)(f)) = ∂f/∂x and q(j2

(x,y)(f)) = ∂f/∂y

and
r(j2

(x,y)(f)) = ∂2f/∂x2, s(j2
(x,y)(f)) = ∂2f/∂x∂y,

t(j2
(x,y)(f)) = ∂2f/∂y2 .

Then
h(j2

(x,y)(f)) = (x, y, z, p, q, r, s, t)

defines the natural coordinates for J1(R2, R).
If we introduce a change of coordinate on R2 by

S(x, y) = (ξ(x, y), η(x, y)),

then this induces a transformation of the derivatives. In fact⎛
⎜⎜⎜⎝

r
s
t
p
q

⎞
⎟⎟⎟⎠ =

(
S2(J(S)) | H(S)

0 | J(S)

)⎛
⎜⎜⎜⎝

r′

s′

t′

p′

q′

⎞
⎟⎟⎟⎠ ,

where

J(S) =
(

∂ξ/∂x ∂η/∂x
∂ξ/∂y ∂η/∂y

)
H(S) =

⎛
⎝ ∂2ξ/∂x2 ∂2η/∂x2

∂2ξ/∂x∂y ∂2η/∂x∂y
∂2ξ/∂y2 ∂2η/∂y2

⎞
⎠

and

S2(J(S))(S) =

⎛
⎝ (∂ξ/∂x)2 2∂ξ/∂x ∂η/∂x (∂η/∂x2)

∂ξ/∂x ∂ξ/∂y ∂ξ/∂x ∂η/∂y + ∂ξ/∂y ∂η/∂x ∂η/∂x ∂η/∂y
(∂ξ/∂y)2 2∂ξ/∂y ∂η/∂y (∂η/∂y)2

⎞
⎠ .

A good viewpoint to keep in mind is that

Jr(N, M)→ N ×M,

that is, Jr(N, M) sits over N ×M , and the coordinate transformations on N ×M
induce the action of a linear group on the set of elements in the inverse image of a
point.

The notion of jet bundles allows us to formulate general problems in differential
geometry. As an example we observe that a partial differential equation for maps

f : N →M

can be described by an imbedded submanifold

i : Σ→ Jr(N, M).
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A solution is a map f : N →M such that for all p ∈ N

jr
p(f) ∈ i(Σ).

We introduce the r-graph of a map f

jr(f) : N → Jr(N, M)

by the definition
jr(f)(p) = jr

p(f).

Then the problem of finding solutions to a partial differential equation is the prob-
lem of finding maps whose r-graphs lie on the locus i(Σ) of the partial differential
equation. This will be illustrated in Chapters IX and X.

Several standard constructions of differential geometry fit into the language of
jet bundles. For example the cotangent space T ∗

p (N) for p ∈ N is defined by

T ∗
p (N) = J1

p,0(N, R)

and the differential of a real valued function f : N → R at p ∈ N is defined by

df |p = j1
p(f − f(p)).

The vector space structure on T ∗
p (N) is intrinsically induced from the real line by

αj1
p(f) + βj1

p(g) = j1
p(αf + βg).

The tangent space Tp(N) for p ∈ N is defined as the space of linear functionals on
T ∗

p (N) and is realized by
Tp(N) = J1

0,p(R, N)

under the action
〈j1

0(u), j1
p(f)〉 = d/dt(f ◦ u)|t=0.

In particular the cotangent bundle is defined by

T ∗(N) =
⋃

p∈M

T ∗
p (N) ⊂ J1(N, R)

and the tangent bundle is defined by

T (N) =
⋃

p∈m

Tp(N) ⊂ J1(R, N).

Finally we wish to introduce the contact system Ωr(N, M) of a jet bundle
Jr(N, M). By a change of notation we can write the natural coordinates in (18) as

(19)
xi(p), zα(f(p)), pα

i , pα
i1i2

, . . . , pα
i1...ir

1 ≤ i, i1, . . . , ir ≤ m, 1 ≤ α ≤ n,

where the p’s are the partial derivatives with respect to the xi’s, up to the order r
inclusive, and are symmetric in their lower indices. The Pfaffian equations

(20)

dzα −
∑

pα
i dxi = 0,

dpα
i1
−
∑

pα
i1i2

dxi2 = 0,

dpα
i1...ir−1

−
∑

pα
i1...ir−1ir

dxir = 0,

define the contact system Ωr(N, M). A form in Ωr(N, M) is called a contact form.
The forms (20) are those that naturally arise when a system of partial differential

equations is converted to an exterior differential system. The fundamental property
of these systems is contained in the following theorem.
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Theorem 3.2. A section σ : N → Jr(N, M) is a r-graph, that is σ(p) = jr
p(f), if

and only if
σ∗Ωr(N, M) = 0.

A proof of this theorem and an intrinsic treatment of the contact system can
be found in various sources, cf. Gardner and Shadwick [1987] or Goldschmidt and
Sternberg [1973].
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CHAPTER II

BASIC THEOREMS

In this chapter we consider classical results on simple exterior differential systems
that can be established by algebra and ordinary differential equations. In particular
these results hold in the C∞-category. This is to be contrasted with later results
that rely on the Cartan–Kähler theorem and hold in the analytic category.

§1. Frobenius Theorem.

Perhaps the simplest exterior differential systems are those whose differential
ideal I is generated algebraically by forms of degree one. Let the generators be

α1, . . . , αn−r,

which we suppose to be linearly independent. The condition that I is closed gives

(F ) dαi ≡ 0, mod α1, . . . , αn−r, 1 ≤ i ≤ n− r.

This condition (F ) is called the Frobenius condition. A differential system

α1 = · · · = αn−r = 0

satisfying (F ) is called completely integrable.
Geometrically the α’s span at every point x ∈ M a subspace Wx of dimension

n − r in the cotangent space T ∗
x (M) or, what is the same, a subspace W⊥

x of
dimension r in the tangent space Tx. Following Chevalley, such data is known
as a distribution. Notice that the condition (F ) is intrinsic, i.e., independent of
local coordinates, and is also invariant under a linear change of the α’s with C∞-
coefficients.

The fundamental theorem on completely integrable systems is:

Theorem 1.1 (Frobenius). Let I be a differential ideal having as generators the
linearly independent forms α1, . . . , αn−r of degree one, so that the condition (F ) is
satisfied. In a sufficiently small neighborhood there is a coordinate system y1 , . . . , yn

such that I is generated by dyr+1 , . . . , dyn.

Proof. We will prove the theorem by induction on r. Let r = 1. Then the subspace
W⊥

x ⊂ Tx, x ∈ M , is of dimension 1. Relative to a system of local coordinates xi,
1 ≤ i ≤ n, the equations of the differential system is written in the classical form

dx1

X1(x)
= · · · = dxn

Xn(x)
,

where the functions Xi(x1, . . . , xn), not all zero, are the coefficients of a vector field
X =

∑
i Xi(x)∂/∂xi spanning W⊥

x . By the flow box coordinate theorem (Warner
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[1971], p. 40), we can choose coordinates y1 , . . . , yn, such that W⊥
x is spanned by

the vector ∂/∂y1 ; then Wx is spanned by dy2, . . . , dyn. The latter clearly form a
set of generators of I. Notice that in this case the condition (F ) is void.

Suppose r ≥ 2 and the theorem be true for r − 1. Let xi, 1 ≤ i ≤ n, be local
coordinates such that

α1, . . . , αn−r, dxr

are linearly independent. The differential system defined by these n − r + 1 forms
also satisfies the condition (F ). By the induction hypothesis there are coordinates
yi so that

dyr , dyr+1, . . . , dyn

are a set of generators of the corresponding differential ideal. It follows that dxr is
a linear combination of these forms or that xr is a function of yr , . . . , yn. Without
loss of generality we suppose

∂xr/∂yr �= 0.

Since

dxr =
∂xr

∂yr
dyr +

∑
i

∂xr

∂yr+1
dyr+i, 1 ≤ i ≤ n− r

we may now solve for dyr in terms of dxr and dyr+1 , . . . , dyn. Since α1, . . . , αn−r

are linear combinations of dyr , . . . , dyn they can now be expressed in the form

αi =
∑

j

ai
jdyr+j + bidxr, 1 ≤ i, j ≤ n− r.

Since αi and dxr are linearly independent, the matrix (ai
j) must be non-singular.

Hence we can find a new set of generators for I in the form

α′i = dyr+i + pidxr, 1 ≤ i ≤ n− r,

and the condition (F ) remains satisfied. Exterior differentiation gives

dα′i = dpi ∧ dxr ≡
∑

1≤λ≤r−1

∂pi

∂yλ
dyλ ∧ dxr ≡ 0, mod α′1, . . . , α′n−r.

It follows that

∂pi/∂yλ = 0, 1 ≤ i ≤ n− r, 1 ≤ λ ≤ r − 1,

which means that pi are functions of yr , . . . , yn. Hence in the y-coordinates we
are studying a system of n − r forms of degree one involving only the n − r + 1
coordinates yr , . . . , yn. This reduces to the situation settled at the beginning of
this proof. Hence the induction is complete. �

The theorem gives a “normal form” of a completely integrable system, i.e., the
system can be written locally as

dyr+1 = · · · = dyn = 0
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in a suitable coordinate system. The maximal integral manifolds are

yr+1 = const, . . . , yn = const,

and are therefore of dimension r. We say that the system defines a foliation, of
dimension r and codimension n− r, of which these submanifolds are the leaves.

The simplest non-trivial case of the Frobenius theorem is the system generated
by a single one form in three space. Thus

I = {Rdx + Sdy + Tdz}

and the condition (F ) are the necessary and sufficient conditions that there exist
an integrating factor for the one form ω = Rdx +Sdy+Tdz. That is there exists a
function µ such that µω is exact. This example will be considered when condition
(F ) is not identically satisfied in Example 5.11 of Chapter IV.

The condition (F ) has a formulation in terms of vector fields, which is also
useful. We add to α1, . . . , αn−r the r forms αn−r+1, . . . , αn, so that αi, 1 ≤ i ≤ n,
are linearly independent. Then we have

(1) dαi = 1/2
∑
j,k

ci
jkα

j ∧ αk, 1 ≤ i, j, k ≤ n, ci
jk + ci

kj = 0.

The condition (F ) can be expressed as

(2) ca
pq = 0, 1 ≤ a ≤ n− r, n − r + 1 ≤ p, q ≤ n.

Let f be a smooth function. The equation

(3) df =
∑

(Xif)αi

defines n operators or vector fields Xi, which form a dual base to αi. Exterior
differentiation of (3) gives

1/2
∑
i,j

(Xi(Xj(f)) −Xj(Xi(f)))αi ∧ αj +
∑

j

Xi(f)dαi = 0.

Substituting (1) into this equation, we get

(4) [Xi, Xj ]f = (XiXj −XjXi)f = −
∑

ck
ijXkf.

It follows that the condition (2) can be written

(5) [Xp, Xq]f = −
∑

cs
pqXsf, n − r + 1 ≤ p, q, s ≤ n.

Equation (4) is the dual version of (1). The vectors Xn−r+1, . . . , Xn span at each
point x ∈M the subspace W⊥

x of the distribution. Hence the condition (F ) or (2)
or (5) can be expressed as follows:

Proposition 1.2. Let a distribution M be defined by the subspace W⊥
x ⊂ Tx,

dimW⊥
x = r. The condition (F ) says that, for any two vector fields X, Y , such

that Xx, Yx ∈W⊥
x , their bracket [X, Y ]x ∈ W⊥

x .
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§2. Cauchy Characteristics.

The Frobenius Theorem shows that a completely integrable system takes a very
simple form upon a proper choice of the local coordinates. Given any exterior
differential system, one can ask the question whether there is a coordinate system
such that the system is generated by forms in a smaller number of these coordinates.
This question is answered by the Cauchy characteristics. Its algebraic basis is the
retraction theorem (Theorem 1.3 of Chapter I).

Let I be a differential ideal. A vector field ξ such that ξ I ⊂ I is called a
Cauchy characteristic vector field of I. At a point x ∈M we define

A(I)x = {ξx ∈ TxM | ξx Ix ⊂ Ix}

and C(I)x = A(I)⊥x ⊂ T ∗
x M . These concepts reduce to the ones treated in §1,

Chapter I. In particular, we will call C(I)x the retracting space at x and call
dimC(I)x the class of I at x. We have now a family of ideals Ix depending on
the parameter x ∈ M . When restricting to a point x we have a purely algebraic
situation.

Proposition 2.1. If ξ, η are Cauchy characteristic vector fields of a differential
ideal I, so is their bracket [ξ, η].

Proof. Let Lξ be the Lie derivative defined by ξ. It is well-known

Lξ = d(ξ ) + (ξ )d.

Since I is closed, we have dI ⊂ I. If ξ is a characteristic vector field, we have
ξ I ⊂ I. It follows that LξI ⊂ I. The lemma follows from the identity

(6) [Lξ, η ] =
def

Lξη −η Lξ = [ξ, η] ,

which is valid for any two vector fields ξ, η.
To prove (6) we observe that Lξ is a derivation of degree 0 and η is a derivation

of degree −1, so that [Lξ, η ] is also a derivation of degree −1. It therefore suffices
to verify (6) when the two sides act on functions f and differentials df . Clearly,
when acting on f , both sides give zero. When acting on df , we have

[Lξ, η ]df = Lξ(ηf) − η d(ξf)

= [ξ, η]f = [ξ, η] df.

This proves (6) and hence the proposition. �
Theorem 2.2. Let I be a finitely generated differential ideal whose retracting space
C(I) has constant dimension s = n − r. Then there is a neighborhood in which
there are coordinates (x1, . . . , xr; y1, . . . , ys) such that I has a set of generators
that are forms in y1, . . . , ys and their differentials.

Proof. By Proposition 1.2 the differential system defined by C(I) (or what is the
same, the distribution defined by A(I)) is completely integrable. We may choose
coordinates (x1, . . . , xr; y1, . . . , ys) so that the foliation so defined is given by

yσ = const, 1 ≤ σ ≤ s.
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By the retraction theorem, I has a set of generators which are forms in dyσ , 1 ≤
σ ≤ s. But their coefficients may involve xρ,
1 ≤ ρ ≤ r. The theorem follows when we show that we can choose a new set
of generators for I which are forms in the yσ coordinates in which the xρ do not
enter. To exclude the trivial case we suppose the I is a proper ideal, so that it
contains no non-zero functions.

Let Iq be the set of q-forms in I, q = 1, 2, . . . . Let ϕ1, . . . , ϕp be linearly
independent 1-forms in I1 such that any form in I1 is their linear combination.
Since I is closed, dϕi ∈ I, 1 ≤ i ≤ p. For a fixed ρ we have ∂

∂xρ ∈ A(I), which
implies

∂

∂xρ
dϕi = L∂/∂xρϕi ∈ I1,

since the left-hand side is of degree 1. It follows that

(7)
∂ϕi

∂xρ
= L∂/∂xρϕi =

∑
j

ai
jϕ

j , 1 ≤ i, j ≤ p

where the left-hand side stands for the form obtained from ϕi by taking the partial
derivatives of the coefficients with respect to xρ.

For this fixed ρ we regard xρ as the variable and
x1, . . . , xρ−1, xρ+1, . . . , xr, y1, . . . , ys as parameters. Consider the system of ordi-
nary differential equations

(8)
dzi

dxρ
=
∑

j

ai
jz

j , 1 ≤ i, j ≤ p.

Let zi
(k), 1 ≤ k ≤ p, be a fundamental system of solutions, so that

det(zi
(k)) �= 0.

We shall replace ϕi by the ϕ̃k defined by

(9) ϕi =
∑

zi
(k)ϕ̃

k.

By differentiating (9) with respect to xρ and using (7), (8), we get

∂ϕ̃k

∂xρ
= 0,

so that ϕ̃k does not involve xρ. Applying the same process to the other x’s, we
arrive at a set of generators of I1 which are forms in yσ .

Suppose this process carried out for I1, . . . , Iq−1, so that they consist of forms
in yσ . Let Jq−1 be the ideal generated by I1, . . . , Iq−1. Let ψα ∈ Iq, 1 ≤ α ≤
r, be linearly independent mod Jq−1, such that any q-form of Iq is congruent
mod Jq−1 to a linear combination of them. By the above argument such forms
include

∂

∂xρ
dψα = L∂/∂xρψα.



§2. Cauchy Characteristics 29

Hence we have

∂ψα

∂xρ
≡
∑

bα
βψβ , mod Jq−1, 1 ≤ α, β ≤ r.

By using the above argument, we can replace the ψα by ψ̃β such that

∂ψ̃α

∂xρ
∈ Jq−1.

This means that we can write

∂ψ̃α

∂xρ
=
∑

h

ηα
h ∧ ωα

h ,

where ηα
h ∈ I1 ∪ · · · ∪ Iq−1 and are therefore forms in yσ . Let θα

h be defined by

∂θα
h

∂xρ
= ωα

h .

Then the forms
≈

ψα = ψ̃α −
∑

h

ηα
h ∧ θα

h

do not involve xρ, and can be used to replace ψα. Applying this process to all xρ,
1 ≤ ρ ≤ r, we find a set of generators for Iq, which are forms in yσ only. �
Definition. The leaves defined by the distribution A(I) are called the Cauchy char-
acteristics.

Notice that generally r is zero, so that a differential system generally does not
have Cauchy characteristics (i.e., they are points). The above theorem allows us
to locally reduce a differential ideal to a system in which there are no extraneous
variables in the sense that all coordinates are needed to express I in any coordinate
system. Thus the class of I equals the minimal number of variables needed to
describe the system.

An often useful corollary of Theorem 2.2 which illustrates its geometric content
is the following:

Corollary 2.3. Let f : M → M ′ be a submersion with vertical distribution V ⊂
T (M) with connected fibers over x ∈M ′ given by (ker f∗)x. Then a form α on M
is the pull-back f∗α′ of a form α′ on M ′ if and only if

v α = 0 and v dα = 0 for all v ∈ V.

Proof. By the submersion theorem (Warner [1971], p. 31), there are local coordi-
nates such that

f(x1, . . . , xp, xp+1, . . . , xN) = (x1, . . . , xp).

As such

V =
(

∂

∂xp+1
, · · · , ∂

∂xN

)
.
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Now setting I = (α), we see that V ⊂ A(I). Therefore, by Theorem 2.2 there
exists a generator for I independent of (xp+1, . . . , xN), and hence of the form f∗α′′

with α′′ ∈M ′. Thus there is a function µ such that

µα = f∗α′′.

Since
0 = v (dµ ∧ α′′ + µdα′′) = v(µ)α′′ for all v ∈ V,

we see that µ is independent of (xp+1, . . . , xN) and hence µ = λ◦f for some function
λ defined on M ′. Setting α′ = 1

λα′′ we have our result that α = f∗(α′). �
We will apply this theorem to the first order partial differential equation

F (xi, z, ∂z/∂xi) = 0, 1 ≤ i ≤ n.

Following the example starting with §2 equation (14) of Chapter I, the equation
can be formulated as the differential system (15), §2, Chapter I. To these equations
we add their exterior derivatives to obtain

(10)

F (xi, z, pi) = 0

dz −
∑

pidxi = 0∑
(Fxi + Fzpi)dxi +

∑
Fpidpi = 0∑

dxi ∧ dpi = 0.

These equations are in the (2n+1)-dimensional space (xi, z, pi). The corresponding
differential ideal is generated by the left-hand members of (10).

To determine the space A(I) consider the vector

ξ =
∑

ui∂/∂xi + u∂/∂z +
∑

vi∂/∂pi

and express the condition that the interior product ξ keeps the ideal I stable.
This gives

(11)

u−
∑

piu
i = 0,∑

(Fxi + Fzpi)ui + Fpivi = 0,∑
(uidpi − vidxi) = 0.

Comparing the last equation of (11) with the third equation (10) we get

(12) ui = λFpi , vi = −λ(Fxi + Fzpi),

and the first equation of (11) then gives

(13) u = λ
∑

piFpi .
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The parameter λ being arbitrary, equations (12) and (13) show that
dimA(I) = 1, i.e., the characteristic vectors at each point form a one-dimensional
space. This fundamental (and remarkable) fact is the key to the theory of par-
tial differential equations of the first order. The characteristic curves in the space
(xi, z, pi), or characteristic strips in the classical terminology, are the integral curves
of the differential system

(14)
dxi

Fpi

= − dpi

Fxi + Fzpi
=

dz∑
piFpi

.

These are the equations of Charpit and Lagrange. To construct an integral manifold
of dimension n it suffices to take an (n−1)-dimensional integral manifold transverse
to the Cauchy characteristic vector field (or non-characteristic data in the classi-
cal terminology) and draw the characteristic strips through its points. Putting it
in another way, an n-dimensional integral manifold is generated by characteristic
strips.

We remark that points in (xi, pi)-space may be thought of as hyperplanes
∑

pidxi =
0 in the tangent spaces Tx(Rn). A curve in (xi, z, pi)-space projects to a curve in
(xi, pi)-space, which is geometrically a 1-parameter family of tangent hyperplanes.
This is the meaning of the terminology “strips”.

Example. Consider the initial value problem for the partial differential equation

z
∂z

∂x
+

∂z

∂y
= 1

with initial data given along y = 0 by z(x, 0) =
√

x.
Let us introduce natural coordinates in J1(2, 1) by (x, y, z, p, q). This initial data

D : R → R2 × R where D(x) = (x, 0,
√

x) is extended to a map δ : R → J2(2, 1)
where the image satisfies the equation and the strip condition

0 = δ∗(dz − p dx− q dy) =
1

2
√

x
dx− p dx

here p = 1
2
√

x
and q = 1 − zp = 1

2 and δ is unique. (For the general non-linear
equation, there can be more than one choice of δ.) The extended data becomes

δ(x) = (x, 0,
√

x,
1

2
√

x
, 1/2).

If we parametrize the equation by i : Σ→ J1(2, 1) where i(x, y, z, p) = (x, y, z, p, 1−
zp), then the data can be pulled back to a map ∆ : R → Σ, where ∆(s) =
(s, 0,

√
s, 1

2
√

s
).

The Cauchy characteristic vector field is

X = z
∂

∂x
+

∂

∂y
+

∂

∂z
− p2 ∂

∂p

and the corresponding flow is given by

dx

dt
= z,

dy

dt
= 1,

dz

dt
= 1,

dp

dt
= −p2.
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The solution for the given data representing the union of characteristic curves along
the data is

x =
t2

2
+ (
√

s)t + s, y = t, z = t +
√

s,

and eliminating s and t gives an implicit equation for z(x, y), namely

z2 − zy = x− y2

2
.

Note that only the upper branch of the double-valued solution

z =
y ±

√
4x− y2

2

actually satisfies the initial conditions.

Next we wish to apply the Cauchy characteristics to prove the following global
theorem:

Theorem 2.4. Consider the eikonal differential equation

(15)
∑

(∂z/∂xi)2 = 1 1 ≤ i ≤ n.

If z = z(x1, . . . , xn) is a solution valid for all (x1, . . . , xn) ∈ En

(= n-dimensional euclidean space), then z is a linear function in xi, i.e.,

z =
∑

aix
i + b,

where ai, b are constants satisfying
∑

a2
i = 1.

Proof. We will denote by En+1 the space of (x1, . . . , xn, z), and identify En with
the hyperplane z = 0. The solution can be interpreted as a graph Γ in En+1 having
a one-one projection to En. For the equation (15) the denominators in the middle
term of (14) are zero, so that the Cauchy characteristics satisfy

pi = const.

The equations (14) can be integrated and the Cauchy characteristic curves, when
projected to En+1, are the straight lines

(16) xi = xi
0 + pit, z = z0 + t,

where xi
0, piz0 are constants. Hence the graph Γ must have the property that it is

generated by the “Cauchy lines” (16), whose projections in En form a foliation of
En.

Changing the notation in the first equation of (16), we write it as

x∗i

= xi +
∂z

∂xi
t,

where z = z(x1, . . . , xn) is a solution of (15). For a given t ∈ R this can be
interpreted as a diffeomorphism ft : En → En defined by

ft(x) = x∗ = (x∗1
, . . . , x∗n

), x, x∗ ∈ En.
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Geometrically it maps x ∈ En to the point x∗ at a distance t along the Cauchy line
through x; this makes sense, because the Cauchy lines are oriented. Its Jacobian
determinant is

J (t) = det
(

δi
j +

∂2z

∂xi∂xj
t

)
and is never zero. But this implies

(17)
∂2z

∂xi∂xj
= 0,

and hence that z is linear. For if (17) is not true, then the symmetric matrix
(∂2z/∂xi∂xj) has a real non-zero eigenvalue, say λ, and J (−1/λ) = 0, which is a
contradiction. �

Remark. The function

z =

(∑
i

(xi)2
)1/2

satisfies (15), except at xi = 0. Hence Theorem 2.3 needs the hypothesis that (15)
is valid for all x ∈ En.

§3. Theorems of Pfaff and Darboux.

Another simple exterior differential system is one which consists of a single equa-
tion

(18) α = 0,

where α is a form of degree 1. This problem was studied by Pfaff [1814-15]. The
corresponding closed differential ideal I has the generators α, dα. The integer r
defined by

(19) (dα)r ∧ α �= 0, (dα)r+1 ∧ α = 0

is called the rank of the equation (18). It depends on the point x ∈ M , and is
invariant under the change

α → aα, a �= 0.

Putting it in a different way, the two-form dα mod α, has an even rank 2r in the
sense of linear algebra.

The study of the integral manifolds of (18) is clarified by the normal form, given
by the

Theorem 3.1 (The Pfaff problem). In a neighborhood suppose the equation (18)
has constant rank r. Then there exists a coordinate system w1, . . . , wn, possibly in
a smaller neighborhood, such that the equation becomes

(20) dw1 + w2dw3 + · · ·+ w2rdw2r+1 = 0.
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Proof. Let I = {α, dα} be the ideal generated by α, dα. By Theorem 1.5 of Chap-
ter I and (19), the retraction space C(I) is of dimension 2r + 1 and has the Grass-
mann coordinate vector (dα)r ∧ α. By Theorem 2.2 there is a function f1 such
that

(dα)r ∧ α ∧ df1 = 0.

Next let I1 be the ideal {df1, α, dα}. If r = 0, our theorem follows from the
Frobenius theorem. If r > 0, the forms df1 and α must be linearly independent.
Applying Theorem 1.5, Chapter I to I1, let r1 be the smallest integer such that

(dα)r1+1 ∧ α ∧ df1 = 0.

Clearly r1+1 ≤ r. The equality sign must hold, as otherwise we get a contradiction
to the first equation of (19), by Theorem 1.6, Chapter I. Applying Theorem 2.2 to
I1, there is a function f2 such that

(dα)r−1 ∧ α ∧ df1 ∧ df2 = 0.

Continuing this process, we find r functions f1, . . . , fr satisfying

dα ∧ α ∧ df1 ∧ · · · ∧ dfr = 0,

α ∧ df1 ∧ · · · ∧ dfr �= 0.

Finally, let Ir be the ideal {df1, . . . , dfr, α, dα}. Its retraction space C(Ir) is of
dimension r + 1. There is a function fr+1 such that

α ∧ df1 ∧ · · · ∧ dfr+1 = 0,

df1 ∧ · · · ∧ dfr+1 �= 0.

By modifying α by a factor, we can write

α = dfr+1 + g1df1 + · · ·+ grdfr.

Because of the first equation of (19) the functions f1, . . . , fr+1, g1, . . . , gr are inde-
pendent. Theorem 3.1 follows by setting

w1 = fr+1 , w2i = gi, w2i+1 = fi, 1 ≤ i ≤ r.

�
Corollary 3.2 (Symmetric normal form). In a neighborhood suppose the equation
(18) has constant rank r. Then there exist independent functions z, y1, . . . , yr,
x1, . . . , xr such that the equation becomes

(21) dz + 1/2
r∑

i=1

(yidxi − xidyi) = 0.

Proof. It suffices to apply the change of coordinates

w1 = z − 1
2
∑

xiyi,

w2i = yi, w2i+1 = xi, 1 ≤ i ≤ r.
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�

From the normal form (20) we see that the maximal integral manifolds are of
dimension r. They are, for instance, given by

w1 = f(w3, . . . , w2s+1), s < r

w2t+1 = const, w2t arbitrary, s + 1 ≤ t ≤ r.

Related to the Pfaffian problem are normal forms for the forms themselves and
not the ideals generated by them. For one-forms and closed two-forms we have the
following theorems.

Theorem 3.3 (Darboux). Let Ω be a closed two-form satisfying

Ωr �= 0, Ωr+1 = 0, r = const.

Locally there exist coordinates w1, . . . , wn such that

(22) Ω = dw1 ∧ dw2 + · · ·+ dw2r−1 ∧ dw2r.

Proof. We put Ω = dα, where α is a one-form. The argument in the proof of Theo-
rem 3.1 applies, and we can suppose α to be a form in the 2r variables y1 , . . . , y2r.
In 2r variables the Pfaffian equation α = 0 must be of rank ≤ r− 1, and is exactly
equal to r − 1, because Ωr �= 0. Hence we can set

α = u(dz1 + z2dz3 + · · ·+ z2r−2dz2r−1),

or, by a change of notation

α = w1dw2 + · · ·+ w2r−1dw2r.

This gives the Ω in (22). Since Ωr �= 0, the functions w1, . . . , w2r are independent
and are a part of a local coordinate system. �

Consider next the case of a one-form α. The rank r is defined by the conditions

α ∧ (dα)r �= 0, α ∧ (dα)r+1 = 0.

There is a second integer s defined by

(dα)s �= 0, (dα)s+1 = 0.

Elementary arguments show that there are two cases:

(i) s = r;
(ii) s = r + 1.
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Theorem 3.4. Let α be a one-form. In a neighborhood suppose r and s be constant.
Then α has the normal form

α = y0dy1 + · · ·+ y2rdy2r+1, if r + 1 = s;(23a)

α = dy1 + y2dy3 + · · ·+ y2rdy2r+1, if r = s.(23b)

In these expressions, the y’s are independent functions and are therefore parts of a
local coordinate system.

Proof. Let I be the differential ideal generated by α and dα. By Theorem 3.1 there
are coordinates y1, . . . , yn in a neighborhood such that

α = u(dy1 + y2dy3 + · · ·+ y2rdy2r+1).

A change of notation allows us to write

α = z0dy1 + z2dy3 + · · ·+ z2rdy2r+1.

Then

(dα)r+1 = cdz0 ∧ dy1 ∧ dz2 ∧ dy3 ∧ · · · ∧ dz2r ∧ dy2r+1, c = const. c �= 0.

If s = r + 1, this is �= 0, and the functions z0, z2, . . . , z2r, y1, y3, . . . , y2r+1 are
independent. This proves the normal form (23a).

Consider next the case r = s. Then dα is a two-form of rank 2r. By Theorem 3.3
we can write

dα = dw1 ∧ dw2 + · · ·+ dw2r−1 ∧ dw2r

= d(w1dw2 + · · ·+ w2r−1dw2r).

Hence the form
α− (w1dw2 + · · ·+ w2r−1dw2r)

is closed, and is equal to dv. A change of notation gives (23b). �

Remark. A manifold of dimension 2r + 1 provided with a one-form α, defined up
to a factor, such that

α ∧ (dα)r �= 0,

is called a contact manifold. An example is the projectivized cotangent bundle of
a manifold, whose points are the non-zero one-forms on the base manifold defined
up to a factor. A manifold of dimension 2r provided with a closed two-form of
maximum rank 2r is called a symplectic manifold. An example here is the cotangent
bundle of a manifold. In terms of local coordinates x1, . . . , xr on an r-dimensional
manifold M , points in the projectivized cotangent bundle PT ∗M are non-zero 1-
forms

η =
r∑

i=1

pidxi,
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where we identify η and λη for λ �= 0. In a neighborhood in PT ∗M in which, say,
p1 �= 0 we may normalize by taking p1 = −1. Then (x1, . . . , xr, p2, . . . , pr) are local
coordinates on PT ∗M in terms of which

η = −dx1 +
r∑

i=2

pidxi.

If we normalize differently on change of local coordinates on M , η changes by a
non-zero factor. It then defines the contact structure on PT ∗M .

The symplectic structure on T ∗M is given locally by∑
i

dpi ∧ dxi.

It is invariant under changes of coordinates on M . Both contact manifolds and
symplectic manifolds play a fundamental role in theoretical mechanics and partial
differential equations. Unlike Riemannian manifolds they have no local invariants.

Remark. Darboux’s Theorem 3.3 has been generalized in several directions, in par-
ticular to Banach manifolds, by Weinstein [1971].

Finally, we wish to make an application of the normal form in Corollary 3.2 to
prove a theorem of C. Caratheodory on local accessibility, which played a funda-
mental role in his “foundations of thermodynamics” (Caratheodory [1909]) and is
now of equal importance in control theory. We say that the Pfaffian equation (18)
has the local accessibility property if every point x ∈M has a neighborhood U such
that every point y ∈ U can be joined to x by an integral curve of (18). Then we
have

Theorem 3.5 (Caratheodory). Suppose the rank of the Pfaffian equation

α = 0

be constant. It has the local accessibility property if and only if

α ∧ dα �= 0.

Proof. The condition is equivalent to saying that the rank r defined in (19) is ≥ 1.
Suppose r = 0. This means that the Frobenius condition is satisfied and the

equation can locally be written
dz = 0.

Thus the integral curves are restricted to the leaves z = const, and local accessi-
bility is impossible.

For r ≥ 1 we use the normal form (21), by supposing that the local coordinates
be z, x1, y1, . . . , xr, yr , u1, . . . , us where 2r+s+1 = n = dimM . Let x be the origin
and let y have the coordinates (z0, x

1
0, y

1
0 , . . . , x

r
0, y

r
0 , u

1
0, . . . , u

s
0). In the (xi, yi)-

plane, 1 ≤ i ≤ r, let Ci be the curve (xi(t), yi(t)), 0 ≤ t ≤ 1, satisfying

xi(0) = yi(0) = 0, xi(1) = xi
0, yi(1) = yi

0.
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Consider the function

z(t) =
1
2

∫ t

0

∑
1≤i≤r

(
xi dyi

dt
− yi dxi

dt

)
dt.

On the curves Ci we impose the further condition

z(1) = z0,

which is clearly possible. Geometrically this means that z0 is the sum of the areas
bounded by the curves Ci and the chords joining their end-points. The curve γ in
M defined by

(
z(t), x1(t), y1(t), . . . , xr(t), yr(t), tu1

0, . . . , tu
s
0

)
, 0 ≤ t ≤ 1,

is an integral curve of (21) and joints x to y. �

Note that the accessibility is by smooth curves, is constructive with an infinite
number of solutions, and is valid in the largest domain in which the normal form can
be constructed. The theorem was extended by Chow [1940] to finitely generated
Pfaffian systems with certain constant rank conditions.

§4. Pfaffian Systems.

A Pfaffian system is a differential system

(24) α1 = · · · = αs = 0,

where the α’s are one-forms. We suppose them to be linearly independent and
s = const. We will denote the Pfaffian system by I and call s its dimension. The
first properties will be described by the two-forms

(25) dαi mod (α1, . . . , αs) 1 ≤ i ≤ s.

The Frobenius condition is equivalent to saying that they are zero. We shall consider
the general case and study their properties.

Geometrically the α’s span at every point x ∈M a subspace W ∗
x of dimension s

in the cotangent space T ∗
x , or equivalently, a subspace Wx = (W ∗

x )⊥ of dimension
n− s (n = dimM) in the tangent space Tx. They form a subbundle of the tangent
bundle. Already in the case of the Pfaffian problem (s = 1), we have shown that
there is a local invariant given by the rank. In the general case the local properties
could be very complicated. In this and the next sections we shall single out, after
a general discussion, some of the simple cases and give some applications.

We can view I ⊂ Ω1(M) as the sub-module over C∞(M) of 1-forms

α =
∑

i

fiα
i
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where the fi are functions. We denote by {I} ⊂ Ω∗(M) the algebraic ideal generated
by I. Thus β ∈ {I} is of the form

β =
∑

i

γi ∧ αi

where the γi are differential forms. The exterior derivative induces a mapping

δ : I → Ω2(M)/{I}

that is linear over C∞(M). We set

I(1) = ker δ

and call I(1) the first derived system. We thus have

0→ I(1) → I
δ−→ dI/{I} → 0,

and I(1) = I exactly in the Frobenius case. Now I is the space of C∞ sections of a
sub-bundle W ⊂ T ∗M with fibres Wx = span(α1(x), . . . , αs(x)). The images of

W ⊗ ΛqT ∗M → Λq+1T ∗M

are sub-bundles W q+1 ⊂ Λq+1T ∗M , and the mapping δ above is induced from a
bundle mapping

W
δ−→ Λ2T ∗M/W 2.

We assume that δ has constant rank, so that I(1) is the sections of a sub-bundle
W1 ⊂W ⊂ T ∗M .

Continuing with this construction we arrive at a filtration

(26) I(k) ⊂ · · · ⊂ I(2) ⊂ I(1) ⊂ I(0) = I,

defined inductively by
I(k+1) = (I(k))(1).

We assume that the ranks of mappings δ are all constant, so that the above filtration
corresponds to a flag of bundles

Wk ⊂ · · · ⊂W2 ⊂W1 ⊂W.

There will then be a smallest integer N such that WN+1 = WN , i.e.

I(N+1) = I(N).

We call (26) the derived flag of I0 and N the derived length. Note that I(N) is the
largest integrable subsystem contained in I. We also define the integers

(27)
p0 = dim I(N)

p
N−i

= dim I(i)/I(i+1), 0 ≤ i ≤ N − 1,

p
N+1 = dimC(I)/I.
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These are called the type numbers of I. Our hypothesis says that they are all
constants. The type numbers are not arbitrary; there are inequalities between
them. Cf. Gardner [1967].

An integral manifold of I annihilates all the elements of its derived flag, and in
particular those of I(N). A function g with differential dg ∈ I(N) is called a first
integral of I, since it is constant on all integral manifolds of I.

There are two other integers, which can be defined for a Pfaffian system I. The
wedge length or the Engel half-rank of I is the smallest integer ρ such that

(dα)ρ+1 ≡ 0 mod {I} for all α ∈ I.

The Cartan rank of I is the smallest integer v such that there exist π1, . . . , πv in
Ω1(M)/I with

π1 ∧ · · · ∧ πv �= 0

and
dα ∧ π1 ∧ · · · ∧ πv ≡ 0 mod {I} for all α ∈ I.

We will suppose that both ρ and v are constants. The following theorems are simple
properties concerning the wedge length and the Cartan rank:

Proposition 4.1. Let I be a Pfaffian system and ρ its wedge length. Then all
(ρ + 1)-fold products of the elements in dI mod {I} are zero.

Proof. If I is given by the equation (24), an element of the module I is

α = t1α
1 + · · ·+ tsα

s,

where the t’s are arbitrary smooth functions. The hypothesis implies

(t1dα1 + · · ·+ tsdαs)ρ+1 ≡ 0 mod {I},

where the t’s can be considered as indeterminates. Expanding the left-hand side
of this equation and equating to zero the coefficients of the resulting polynomial in
the t’s, we prove the proposition (Griffin [1933]).

Proposition 4.2. Between the wedge length ρ and the Cartan rank v the following
inequalities hold:

(28) ρ ≤ v ≤ 2ρ.

Proof. The condition that dα ∧ π1 ∧ · · · ∧ πv ≡ 0 mod {I} for all α ∈ I can be
written

dα ≡ 0 mod {I, π1, . . . , πv}.

Hence
(dα)v+1 ≡ 0, mod {I},

so that ρ ≤ v.
To prove the inequality at the right-hand side we notice that by the definition

of ρ there exists η ∈ I such that

(dη)ρ �≡ 0, and (dη)ρ+1 ≡ 0 mod {I}.
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By Theorem 3.3, (dη)ρ is a monomial of degree 2ρ. Moreover, by Proposition 4.1,
we have

dα ∧ (dη)ρ ≡ 0 mod {I} for all α ∈ I.

It follows that v ≤ 2ρ. �
Remark. The bounds for v in (28) are sharp. The lower bound is achieved by
a system consisting of a single equation. To achieve the upper bound consider in
R3ρ+3 with the coordinates (x1k, x2k, x3k, y

1, y2, y3), 1 ≤ k ≤ ρ, the Pfaffian system

α1 = dy1 +
∑

k

x2kdx3k

α2 = dy2 +
∑

k

x3kdx1k,

α3 = dy3 +
∑

x1kdx2k.

This system has v = 2ρ.

Proposition 4.3. With our notations the following inequalities hold:

(29) s + 2ρ ≤ dimC(I) ≤ s + ρ + pN ρ.

Proof. We remark that C(I) is the retracting subspace of I. By the definition of ρ
the left-hand side inequality is obvious.

To prove the inequality at the right-hand side we recall that by (27)

pN = dim I/I1 .

We choose a basis of I such that

(dα1)ρ �≡ 0 mod {I}.

But the left-hand side is a monomial (Theorem 3.3), which we can write as

(dα1)ρ = β1 ∧ · · · ∧ β2ρ �= 0 mod {I},

when the β’s are one-forms. By Proposition 4.1 we have

(dα1)ρ ∧ dαj ≡ 0 mod {I}, 2 ≤ j ≤ pN

or
dαj ∈ ideal{β1, . . . , β2ρ, I}.

Now we can use the proof of Theorem 1.7 of Chapter I on the construction of
the canonical form of a two form, by choosing sequentially divisors γ1

j , . . . , γ
pj

j of
dαj, 2 ≤ j ≤ pN resulting in

Class I ≤ s + 2ρ + (pN − 1)ρ = s + ρ + pNρ.

This proves the right hand side of (29). �
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Remark. The lower bound for dimC(I) is achieved by a system consisting of a
single equation. To reach the upper bound consider the contact system

I = {dzλ −
∑

pλ
i dxi}, 1 ≤ i ≤ m, 1 ≤ λ ≤ n,

in the space (xi, zλ, pλ
i ). For this system we have

I1 = 0, s = pN = n, ρ = v = m

and
dimC(I) = mn + m + n.

These properties characterize the contact system, as given by the following the-
orem. For this theorem, and for the rest of this chapter, we shall let {β1, . . . , βs} ⊂
Ω1(M) be the sub-module of 1-forms β =

∑
fiβ

i generated by the set of 1-forms
β1, . . . , βs.

Theorem 4.4 (Bryant normal form). Let I = {α1, . . . , αs} be a differential system
with I1 = 0. If

(30) dim C(I) = s + vs + v, s ≥ 3,

there is a local coordinate system containing the coordinates xi, zλ, pλ
i , 1 ≤ i ≤ v,

1 ≤ λ ≤ s, such that
I = {dzλ −

∑
pλ

i dxi}.

Proof. By the definition of v there exist π1, . . . , πv, such that

π1 ∧ · · · ∧ πv �= 0 mod I,

dαλ ∧ π1 ∧ · · · ∧ πv ≡ 0 mod I.

The last relation can be written

dαλ ≡
∑

ηλ
i ∧ πi mod I.

The hypothesis (30) implies that the forms αλ, πi, ηλ
i are linearly independent. By

exterior differentiation of the last relation we get∑
ηλ

i ∧ dπi ≡ 0 mod {I, π1, . . . , πv},

which implies
dπi ≡ 0 mod {I, π1, . . . , πv, ηλ

i },

for every fixed λ. Since s ≥ 3, this is possible only when

dπi ≡ 0 mod I, π1, . . . , πv.

It follows that the system

J = {α1, . . . , αs, π1, . . . , πv}



§5. Pfaffian Systems of Codimension Two 43

is completely integrable, and we can write

J = {dξ1, . . . , dξs+v},

where the ξ’s are the first integrals. Then we have

αλ =
∑

bλ
AdξA, 1 ≤ A ≤ s + v,

in which we can assume that the (s× s)-minor at the left-hand side of the matrix
(bλ

A) is non-zero. Writing

ξλ = zλ, ξs+i = xi, 1 ≤ λ ≤ s, 1 ≤ i ≤ v,

we can suppose
I = {dzλ −

∑
pλ

i dxi}.

Because of our hypothesis the functions xi, zλ, pλ
i are independent. �

Remark. The theorem is true for s = 1, in which case it reduces to the Pfaffian
problem. It is not true for s = 2. An important counter-example is the following:
Consider in R5 a Pfaffian system

I = {α1, α2},

satisfying
dα1 ≡ α3 ∧ α4, dα2 ≡ α3 ∧ α5, mod I,

where α1, . . . , α5 are linearly independent one-forms. We have I1 = 0 and

s = 2, v = 1, dimC(I) = 5,

so that the hypotheses of Theorem 4.4 are satisfied. But this system has further
local invariants; cf. the end of the next section.

Remark. The original Bryant normal form was a deeper theorem proved in his
thesis (Bryant [1979]), which can be stated as follows:
The conclusion of Theorem 4.4 remains valid, if the condition (30) is replaced by

dimC(I) = s + ρs + ρ.

The proof depends on an algebraic argument to show that ρ = v.

§5. Pfaffian Systems of Codimension Two.

We follow the notations of the last section and consider a Pfaffian system I
defined by (24). If s = n − 1, the system I is completely integrable. In fact, on
the choice of an independent variable, it becomes a system of ordinary differential
equations.

In this section we study the case n = s+2. We will show that this case is already
a rich subject and the diverse phenomena are present. The case s = 3 is the content
of Cartan’s [1910] paper and the general case has barely been touched. We will also
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make some applications to ordinary differential equations of the Monge type which
have applications to control theory.

To the forms at the left-hand side of (24) we add the forms αn−1, αn, so that
α1, . . . , αn are linearly independent. Then we have

dαi ≡ T iαn−1 ∧ αn mod I, 1 ≤ i ≤ s.

If T i = 0, I is completely integrable, and I(1) = I. We discard this case and suppose
(T 1, . . . , T s) �= 0. The α’s are defined up to the non-singular linear transformation

⎛
⎝ α1

...
αn

⎞
⎠ −→

⎛
⎜⎜⎜⎝

u1
1 . . . u1

s 0 0
. . .
us

1 . . . us
s 0 0

un−1
1 . . . un−1

s un−1
n−1 un−1

n

un
1 . . . un

s un
n−1 un

n

⎞
⎟⎟⎟⎠
⎛
⎝ α1

...
αn

⎞
⎠ .

By choosing the above matrix u properly, we can suppose

T 1 = · · · = T s−1 = 0, T s = 1,

i.e.,

(31) dα1 ≡ · · · ≡ dαs−1 ≡ 0, dαs ≡ αn−1 ∧ αn, mod I.

Under this choice I(1) is generated by α1, . . . , αs−1, and we have dim I(1) = s− 1.
In the case s = 2, n = 4 we have the theorem:

Theorem 5.1 (Engel’s normal form). Let I be a Pfaffian system of two equations
in four variables with derived flag satisfying

dim I(1) = 1, I(2) = 0.

Then locally there are coordinates x, y, y′, y′′ such that

I = {dy − y′dx, dy′ − y′′dx}.

Proof. The derived system I(1) is generated by α1. Since I(2) = 0, we have

dα1 ∧ α1 �= 0.

On the other hand, we have, for dimension reason,

(dα1)2 ∧ α1 = 0.

By Theorem 3.1 we can therefore suppose

{α1} = {dy − y′dx}.

From (31) we have
dα1 ∧ α1 ∧ α2 = 0,
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which gives
dx∧ dy′ ∧ α1 ∧ α2 = 0,

and consequently
α2 ≡ ady′ + bdx mod α1.

The coefficients a and b are not both zero. If a �= 0, we write

1
a
α2 ≡ dy′ − y′′dx mod α1.

Since
dα2 ∧ α1 ∧ α2 = α1 ∧ α2 ∧ α3 ∧ α4 �= 0,

we have
dx∧ dy ∧ dy′ ∧ dy′′ �= 0,

so that x, y, y′, y′′ are independent functions and can serve as local coordinates.
Similarly, if b �= 0, we obtain the form

1
b
α2 = dx− y′′dy′.

The two normal forms
I = {dy− y′dx, dy′ − y′′dx}

and
II = {dy− y′dx, dx− y′′dy′}

are however equivalent since the coordinate change

(x, y, y′, y′′)→ (y′, y− xy′,−x,−y′′)

takes the normal form I into the normal form II. �
If a system is put into Engel normal form then the “general solution” is visibly

given by
y = f(x), y′ = f ′(x), y′′ = f ′′(x),

where f(x) is an arbitrary function of x. Here general solution means a solution of
the Pfaffian system with independence condition: (I, dx) so that dx �= 0.

The Engel normal form is the key tool in the theory of the Monge equation

(32) F (x, y, z, y′, z′) = 0, y′ =
dy

dx
, z′ =

dz

dx
,

which is an under-determined first order system of one equation for the two un-
known functions y and z in the independent variable x.

The Pfaffian system equivalent to this problem is

I = {dy− y′dx, dz − z′dx}.

The manifold in question is the hypersurface (32) in the jet manifold
J1(R, R2), which is five-dimensional and has the coordinates x, y, z, y′, z′. The
equation dF = 0 gives, when expanded

Fy′ dy′ + Fz′ dz′ + Fy (dy − y′ dx) + Fz(dz − z′ dx) +
dF

dx
dx = 0,
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where
dF

dx
= Fx + Fy y′ + Fz z′

denotes the so-called ‘total derivative’. To achieve the equations (31), we suppose

F 2
y′ + F 2

z′ �= 0,

and set

α1 = Fy′(dy − y′dx) + Fz′(dz − z′dx),

α2 = −Fz′(dy − y′dx) + Fy′(dz − z′dx)

Then

dα1 ≡ 0 mod I

dα2 ≡ (Fz′dy′ − Fy′dz′) ∧ dx �≡ 0 mod I.

Hence the conditions of Theorem 5.1 are satisfied and we have the following corol-
lary:

Corollary 5.2. If the Monge equation (32) satisfies the condition

F 2
y′ + F 2

z′ �= 0,

it has a general solution depending upon an arbitrary function in one variable and
its first two derivatives.

Example.
y′2 + z′2 = 1.

This can be interpreted either as the equation for unit speed curves in the plane
or as null curves in the Lorentzian 3-space with metric dx2 − dy2 − dz2.

The equation can be parametrized by

y′ = sin ϕ z′ = cosϕ

and leads to the differential system

I =
{

dy − sin ϕdx

dz − cosϕdx.

The first derived system is given by

I(1) = {dx− sin ϕdy− cosϕdz}

= {d(x− sin ϕy − cos ϕz) + (cos ϕy − sinϕz)dϕ}.

Following the general theory we set

x− sin ϕy − cos ϕz = f(ϕ)

− cosϕy + sin ϕz = f ′(ϕ)

sin ϕy + cosϕz = f ′′(ϕ)
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and solve for x, y, z to find

x = f ′′(ϕ) + f(ϕ)

y = sinϕf ′′(ϕ)− cosϕf ′(ϕ)

z = cosϕf ′′(ϕ) + sin ϕf ′(ϕ),

where f(ϕ) is an arbitrary function of ϕ.
The applications to ordinary differential equations of higher order lead to the

Pfaffian system, where

α1 = dy− y′dx,

...

αs = dys−1 − y(s)dx,

the space being (x, y, y′, . . . , y(s)). This system is of codimension two. It satisfies
the relations

(33)
dαi = −αi+1 ∧ dx, 1 ≤ i ≤ s− 1

dαs �= 0 mod I.

Such a system can be characterized by a set of conditions, as given by the theorem:

Theorem 5.3 (Goursat normal form). Let

I = {α1, . . . , αs}

be a Pfaffian system of codimension two in a space of dimension n = s+2. Suppose
there exists a Pfaffian form π �= 0, mod I, satisfying

(34) dαi ≡ −αi+1 ∧ π mod α1, . . . , αi, 1 ≤ i ≤ s− 1, dαs �= 0 mod I.

Then there is a local coordinate system x, y, y′, . . . , y(s), such that

I = {dy− y′dx, . . . , dy(s−1) − y(s)dx}.

Proof. The first equation of (33) gives, for i = 1,

dα1 ∧ α1 �= 0, (dα1)2 ∧ α1 = 0.

By Theorem 3.1, we can suppose, by multiplying α1 by a factor if necessary,

α1 = dy − y′dx.

As in the proof of Theorem 5.1, we have

dα1 ∧ α1 ∧ α2 = 0.
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The proof of Theorem 5.1 applies, and we can suppose, by replacing α2 by a linear
combination α1, α2 if necessary,

α2 = dy′ − y′′dx.

Equation (34) then gives

α1 ∧ dα1 = −α1 ∧ α2 ∧ π = −dx ∧ dy ∧ dy′,

from which it follows that

π ∧ dx ∧ dy ∧ dy′ = 0,

and that we can write
π = ady′ + bdx + cdy.

By hypothesis we have

π ≡ (ay′′ + cy′ + b)dx �≡ 0 mod α1, α2,

or
ay′′ + cy′ + b �= 0.

Suppose s ≥ 3 and suppose, as induction hypothesis,

α3 = dy′′ − y′′′dx, . . . , αi−1 = dy(i−2) − y(i−1)dx, i ≤ s− 1.

Equation (34) gives

dαi−1 = dx ∧ dy(i−1) ≡ −αi ∧ (ay′′ + cy′ + b)dx mod α1, . . . , αi−1.

It follows that, mod α1, . . . , αi−1 and dx, the form αi is a non-zero multiple of
dy(i−1). We can therefore change αi to

αi = dy(i−1) − y(i)dx.

This completes the induction.
By the second equation of (34) we have

α1 ∧ · · · ∧ αs ∧ dαs �= 0,

giving
dx ∧ dy ∧ · · · ∧ dy(s) �= 0,

so that x, y, y′, . . . , y(s) serve as a local coordinate system. �
To understand the significance of the Goursat normal form we return to the

general case. Suppose the α’s be chosen so that the equations (31) are satisfied.
They are determined up to the transformation

(35)

⎛
⎝ α1

...
αn

⎞
⎠ −→

⎛
⎜⎜⎜⎜⎜⎜⎝

u1
1 . . . u1

s−1 0 . . . 0
. . .

us−1
1 . . . us−1

s−1 0 . . . 0
us

1 . . . us
s−1 us

s 0 . . . 0
un−1

1 . . . . . . un−1
s un−1

n−1 un−1
n

un
1 . . . . . . un

s un
n−1 un

n

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ α1

...
αn

⎞
⎠ .
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Let

dαj ≡ Rjαs ∧ αn−1 + Sjαs ∧ αn, mod α1, . . . , αs−1, 1 ≤ j ≤ s− 1.

Under the transformation (35), the rank of the matrix

(36)
(

R1 . . . Rs−1

S1 . . . Ss−1

)

is invariant. In fact, dim I(2) = s − 2 or s − 3, according as this rank is 1 or 2.
Comparing with (34), we see that a necessary condition for I to be in the Goursat
normal form is dim I(2) = s− 2.

Example. The Goursat normal form can be used to study the second-order Monge
equation

(37)
dz

dx
= F (x, y, z, y′, y′′), y′ =

dy

dx
, y′′ =

d2y

dx2
, Fy′′ �= 0.

This can be studied as a Pfaffian system of codimension two in the space (x, y, z, y′, y′′),
namely, (s = 3, n = 5)

I = {dy− y′dx, y′ − y′′dx, dz − F (x, y, z, y′, y′′)dx}.

To achieve the equations (31), we set

α1 = dy − y′dx,

α2 = dz − Fdx− Fy′′(dy′ − y′′dx),

α3 = dy′ − y′′dx,

α4 = dx,

α5 = dy′′.

An easy calculation gives

dα1 = dx∧ dy′ = α4 ∧ α3

dα2 ≡ cα4 ∧ α3 + Fy′′y′′α3 ∧ α5
mod α1, α2

where c is some function. Hence I can be put in the Goursat normal form only if
Fy′′y′′ = 0, i.e. F is linear in y′′.

Consider the system J in the Goursat normal form:

β1 = dw −w′dt,

β2 = dw′ − w′′dt,

β3 = dw′′ −w′′′dt.
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If Fy′′y′′ �= 0, there is no local diffeomorphism

x = x(t, w, w′, w′′, w′′′),

y = y(t, w, w′, w′′, w′′′),

z = z(t, w, w′, w′′, w′′′),

y′ = y′(t, w, w′, w′′, w′′′),

y′′ = y′′(t, w, w′, w′′, w′′′),

which maps I into J . In other words, the “general” solution of I or (37) cannot
be expressed in terms of an arbitrary function w(t) and its successive derivatives.
This was proved by D. Hilbert for the equation

dz

dx
=
(

d2y

dx2

)2

.

On the other hand, for the equation

dz

dx
= ym d2y

dx2
,

which is linear in y′′, É. Cartan gave the solution

x = −2tf ′′(t)− f ′(t),

ym+1 = (m + 1)2t3f
′′2(t)

z = (m− 1)t2f ′′(t)−mtf ′(t) + mf(t),

where f(t) is an arbitrary function in t.
We continue with the case s = 3, n = 5. Its generic situation is when the rank of

the matrix (36) is 2. Then the α’s can be so chosen that the matrix (30) becomes(
1 0
0 1

)
,

i.e.
dα1 ≡ α3 ∧ α4, dα2 = α3 ∧ α5, mod α1, α2.

By (31) we also have

dα3 ≡ α4 ∧ α5, mod α1, α2, α3.

This generic case is very interesting. A complete system of invariants was deter-
mined in Cartan [1910] by the method of equivalence. The fundamental invariant is
a ternary quartic (symmetric) differential form. If it vanishes identically, the Pfaf-
fian system is invariant under the exceptional simple Lie group G2 of 14 dimensions.
This is clearly a very natural way that the split real form of G2 is geometrically
realized. The general case involves tensorial invariants. Its treatment has to be
divided into cases and is long; cf. Cartan’s paper for details.
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CHAPTER III

CARTAN–K
¨
AHLER THEORY

In the first two chapters, we have seen how problems in differential geometry
and partial differential equations can often be recast as problems about integral
manifolds of appropriate exterior differential systems. Moreover, in differential
geometry, particularly in the theory and applications of the moving frame and
Cartan’s method of equivalence, the problems to be studied often appear naturally
in the form of an exterior differential system anyway.

This motivates the problem of finding a general method of constructing integral
manifolds. When the exterior differential system I has a particularly simple form,
standard differential calculus and the techniques of ordinary differential equations
allow a complete (local) description of the integral manifolds of I. Examples of such
systems are furnished by the theorems of Frobenius, Pfaff–Darboux, and Goursat
(see Chapter II).

However, the differential systems arising in practice are usually more complicated
than the ones dealt with in Chapter II. Certainly, one cannot expect to construct
the general integral manifold of a differential system I using ordinary differential
equation techniques alone. However, at least locally, this problem can be expressed
as a problem in partial differential equations. It is instructive to see how this can
be done.

Let S ⊂ Ω∗(M) be an arbitrary set of differential forms on M . Suppose that
we are interested in finding the n-dimensional integral manifolds of the set S. To
simplify our notation, we will agree on the index ranges 1 ≤ i, j, k ≤ n and 1 ≤
a, b, c ≤ m − n and make use of the summation convention. We choose local
coordinates x1, x2, . . . , xn, y1, . . . , ym−n centered at z on a z-neighborhood U ⊂M .
Let Ω = dx1 ∧ . . . dxn. Let Gn(TU, Ω) denote the dense open subset of Gn(TU)
consisting of the n-planes P ⊂ TwU on which Ω restricts to be non-zero. Then
there are well defined functions pa

i on Gn(TU, Ω) so that, for each P ∈ Gn(TU, Ω),
the vectors

(1) Xi(P ) = (∂/∂xi + pa
i (P )∂/∂ya)|w

form a basis of P . In fact, the functions xi, ya, pa
i form a coordinate system on

Gn(TU, Ω).
Now, for each q-form ϕ on U with q ≤ n and every multi-index J = (j1, j2, . . . , jq)

with 1 ≤ j1 < j2 < · · · < jq ≤ n we may define a function Fϕ,J on Gn(TU, Ω) by
setting

(2) Fϕ,J(P ) = ϕ(Xj1 (P ), . . . , Xjq(P )).

(Note that, when Fϕ,J is expressed in the coordinates xi, ya, pa
i , it is linear in the

(k × k)-minors of the matrix p = (pα
i ), where k ≤ q.)

Any submanifold V ⊂ U of dimension n which passes through z ∈ U and satisfies
Ω|V �= 0 can be described in a neighborhood of z as a ‘graph’ ya = ua(x) =
ua(x1, . . . , xn) of a set of m − n functions ua of the n variables xi. For each
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w = (x, u(x)) in V , the p-coordinates of TwV ∈ Gn(TU, Ω) are simply the partials
pa

i = ∂ua/∂xi evaluated at x. It follows that V is an integral manifold of S if and
only if the function u satisfies the system of first order partial differential equations

(3) Fϕ,J(x, u, ∂u/∂x) = 0

for all ϕ ∈ S and all J with deg(ϕ) = |J | ≤ n.
Thus, constructing integral manifolds of S is locally equivalent to solving a sys-

tem of first order partial differential equations of the form (3). Conversely, any first
order system of P.D.E. for the functions u1, . . . , um−n as functions of x1, . . . , xn

which is linear in the minors of the Jacobian matrix ∂u/∂x can be expressed as the
condition that the graph (x, u(x)) in Rm be an integral manifold of an appropriate
set S of differential forms on Rm.

It is then natural to ask about methods of solving systems of P.D.E. of the form
(3). It is rare that the system (3) can be placed in a form to which the classical
existence theorems in P.D.E. can be applied directly. In general, even for simple
systems S, the corresponding system of equations (3) is overdetermined, meaning
that there are more independent equations in (3) than unknowns u. For example,
if m = 2n and S consists of the single differential form ϕ = dy1 ∧ dx1 + dy2 ∧ dx2 +
· · · + dyn ∧ dxn, then (3) becomes the system of equations ∂ui/∂xj = ∂uj/∂xi,
which is overdetermined when n > 3. Even when (3) is not overdetermined, it
cannot generally be placed in one of the classical forms (e.g., Cauchy–Kowalevski).

Nevertheless, certain systems of equations of the form (3) had been treated
successfully (at least, in the real analytic category) in the nineteenth century by
methods generalizing the initial value problem (sometimes called the “Cauchy prob-
lem” because of Cauchy’s work on initial value problems). Let us illustrate such an
approach by the following simple example: Consider the following system of first
order partial differential equations for one function u of two variables x and y:

(4) ux = F (x, y, u), uy = G(x, y, u).

If we seek a solution of (4) which satisfies u(0, 0) = c, then we may try to construct
such a solution by first solving the initial value problem

(5) vx = F (x, 0, v) where v(0) = c

for v as a function of x, and then solving the initial value problem (regarding x as
a parameter)

(6) uy = G(x, y, u) where u(x, 0) = v(x).

Assuming that F and G are smooth in a neighborhood of (x, y, u) = (0, 0, c),
standard O.D.E. theory tells us that this process will yield a smooth function u(x, y)
defined on a neighborhood of (x, y) = (0, 0). However, the function u may not
satisfy the equation ux = F (x, y, u) except along the line y = 0. In fact, if we set
E(x, y) = ux(x, y) − F (x, y, u), then E(x, 0) = 0 and we may compute that

Ey(x, y) = (G(x, y, u))x − Fy(x, y, u)− Fu(x, y, u)G(x, y, u)

= Gu(x, y, u)E(x, y) + T (x, y, u)
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where

T (x, y, u) = F (x, y, u)Gu(x, y, u)−G(x, y, u)Fu(x, y, u) + Gx(x, y, u)− Fy(x, y, u).

Suppose that F and G satisfy the identity T ≡ 0. Then E satisfies the differential
equation with initial condition

Ey = Gu(x, y, u)E and E(x, 0) = 0.

By the usual uniqueness theorem in O.D.E., it follows that E(x, y) ≡ 0, so u satisfies
the system of equations (4). It follows that the condition T ≡ 0 is a sufficient
condition for the existence of local solutions of (4) where u(0, 0) is allowed to be an
arbitrary constant as long as (0, 0, u(0, 0)) is in the common domain of F and G.

Note that if we consider the differential system I (on the domain in R3 where
F and G are both defined) which is generated by the 1-form ϑ = du−Fdx−Gdy,
then dϑ ≡ −Tdx∧dy mod ϑ, so the condition T ≡ 0 is equivalent to the condition
that I be generated algebraically by ϑ. Thus, we recover a special case of the
Frobenius theorem. It is an important observation that the process of computing
the differential closure of this system uncovers the “compatibility condition” T ≡ 0.

Let us pursue the case of first order equations with two independent variables a
little further. Given a system of P.D.E. R(x, y, u, ux, uy) = 0, where u is regarded as
a vector-valued function of the independent variables x and y, then, under certain
mild constant rank assumptions, it will be possible to place the equations in the
following (local) normal form

u0
x = F (x, y, u)(i)

u0
y = G(x, y, u, ux)(ii)

u1
y = H(x, y, u, ux)

by making suitable changes of coordinates in (x, y) and decomposing u into u =
(u0, u1, u2) where each of the uα is a (vector-valued) unknown function of x and y.
Note that the original system may thus be (roughly) regarded as being composed
of an “overdetermined” part (for u0), a “determined” part (for u1), and an “under-
determined” part (for u2). (This “normal form” generalizes in a straightforward
way to the case of n independent variables, in which case the unknown functions u
are split into (n + 1) vector-valued components.)

The “Cauchy–Kowalewski approach” to solving this system in the real analytic
case can then be described as follows: Suppose that the collection uα consists of
sα ≥ 0 unknown functions. For simplicity’s sake, we assume that F , G, H are real
analytic and well-defined on the entire Rk (where k has the appropriate dimension).
Then we choose s0 constants, which we write as f0, s1 analytic functions of x, which
we write as f1(x), and s2 analytic functions of x and y, which we write as f2(x, y).
We then first solve the following system of O.D.E. with initial conditions for s0

functions v0 of x:

v0
x = F (x, 0, v0, f1(x), f2(x, 0))(i′)

v0(0) = f0
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and then second solve the following system of P.D.E. with initial conditions for
s0 + s1 functions (u0, u1) of x and y:

(ii′)

u0
y = G(x, y, u0, u1, f2(x, y), u0

x, u1
x, f2

x(x, y))

u1
y = H(x, y, u0, u1, f2(x, y), u0

x, u1
x, f2

x(x, y))

u0(x, 0) = v0(x)

u1(x, 0) = f1(x).

This process yields a function u(x, y) = (u0(x, y), u1(x, y), u2(x, y)) (where u2(x, y)
is defined to be f2(x, y)) which is uniquely determined by the collection f =
{f0, f1(x), f2(x, y)}. While it is clear that the u(x, y) thus constructed satisfies
(ii), it is not at all clear that u satisfies (i). In fact, if we set

E(x, y) = u0
x(x, y)− f(x, y, u(x, y)),

then E(x, 0) ≡ 0 since u(x, 0) satisfies (i′), but, in general E(x, y) �≡ 0 for the
generic choice of “initial data” f .

In the classical terminology, the system (i), (ii) is said to be “involutive” or “in
involution” if, for arbitrary analytic initial data f , the unique solution uf of (i′,ii′) is
also a solution of (i,ii). Because of the nature of the initial conditions f , the classical
terminology further described the “general solution” of (i,ii) in the involutive case
as “depending on s0 constants, s1 functions of one variable, and s2 functions of two
variables”.

In the analytic category, the condition of involutivity for the system (i,ii) can
be expressed in terms of certain P.D.E., called “compatibility conditions”, which
must be satisfied by the functions F , G, and H . For example, in the case of (4),
the compatibility condition takes the form T ≡ 0. Also note that, for the system
(4), we have (s0, s1, s2) = (1, 0, 0).

Of course, this notion of involutivity extends to P.D.E. systems with n indepen-
dent variables.

The condition of involutivity is rather stringent (except in the case (s0, . . . , sn) =
(0, . . . , 0, s, 0), which corresponds to the classical Cauchy problem). Thus, one often
must modify the equations in some way in order to reduce to the involutive case.

Let us give an example. Consider the following system of three equations for
three unknown functions u1, u2, u3 of three independent variables x1, x2, x3. Here
we write ∂j for ∂/∂xj and v1 , v2, v3 are some given functions of x1, x2, x3.

∂2u
3 − ∂3u

2 = u1 + v1

∂3u
1 − ∂1u

3 = u2 + v2(7, i,ii,iii)

∂1u
2 − ∂2u

1 = u3 + v3

The approach to treating (7) as a sequence of Cauchy problems (with (s0, s1, s2, s3) =
(0, 1, 1, 1)) is as follows:

(1) Choose three functions ϕ1(x1), ϕ2(x1, x2), ϕ3(x1, x2, x3).
(2) Solve the equation in R2, ∂2w = ∂1ϕ2 − ϕ̄3 − v̄3 with the initial condition

w(x1, 0) = ϕ1(x1) where ϕ̄3(x1, x2) = ϕ3(x1, x2, 0) and v̄3(x1, x2) = v3(x1, x2, 0).
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(3) Solve the pair of equations ∂3u
1 = ∂1ϕ

3 +u2 +v2 and ∂3u
2 = ∂2ϕ

3−u1−v1

with the initial conditions u1(x1, x2, 0) = w(x1, x2) and u2(x1, x2, 0) = ϕ2(x1, x2).

(4) Set u3 equal to ϕ3.

However, the resulting set of functions ua will not generally be a solution to
(7, iii). If we set E = ∂1u

2 − ∂2u
1 − u3 − v3, then, of course E(x1, x2, 0) = 0, but

if we compute ∂3E = −{∂1(u1 + v1) + ∂2(u2 + v2) + ∂3(u3 + v3)}, we see that E
vanishes identically if and only if the functions ua satisfy the additional equation

(7, iv) 0 = ∂1(u1 + v1) + ∂2(u2 + v2) + ∂3(u3 + v3).

This suggests modifying our Cauchy sequence by adjoining (7, iv), thus getting a
new system with (s0, s1, s2, s3) = (0, 1, 2, 0) and then proceeding as follows:

(1*) Choose three functions ϕ1(x1), ϕ2(x1, x2), ϕ3(x1, x2)

(2*) Solve the equation in R2, ∂2w = −∂1ϕ
2−ϕ3− v̄3 with the initial condition

w(x1, 0) = ϕ1(x1) where v̄3(x1, x2) = v3(x1, x2, 0).

(3*) Solve the triple of equations with initial conditions

∂3u
1 = ∂1u

3 + u2 + v2, u1(x1, x2, 0) = w(x1, x2)
∂3u

2 = ∂2u
3 − u1 − v1, u2(x1, x2, 0) = ϕ2(x1, x2)

∂3u
3 = −∂1(u1 + v1) − ∂2(u2 + v2) − ∂3v

3, u3(x1, x2, 0) = ϕ3(x1, x2).

It then follows easily that the resulting ua also satisfy (7, iii) (assuming that we are
in the analytic category, so that we have existence and uniqueness in the Cauchy
problem).

In the example just given, the “compatibility condition” took the form of an
extra equation which must be adjoined to the given equations so that the Cauchy
sequence approach would work. One can imagine more complicated phenomena.
Indeed, in the latter part of the nineteenth century, many examples of systems
of P.D.E. were known to be tractable when treated as a sequence of initial value
problems, provided that one was able to find a sufficient number of “compatibility
conditions.”

Around the turn of the century, Riquier [1910] and Cartan [1899] began to make
a systematic study of this compatibility problem. Riquier’s approach was to work
directly with the partial differential equations in question while Cartan, motivated
by his research in differential geometry and Lie transformation groups (nowadays
called Lie pseudo-groups), sought a coordinate-free approach.

It was Cartan who realized that partial differentiation (which depends on a choice
of coordinates) could be replaced by the exterior derivative operator (which does
not). His method was to regard a collection of s functions ua of n variables xi as
defining, via its graph, an n-dimensional submanifold of Rn+s. The condition that
the collection ua satisfy a system of first order P.D.E. which was linear in the minors
of the Jacobian matrix ∂u/∂x was then regarded as equivalent to the condition that
the graph be an integral of a system S of differential forms on Rn+s. Cartan then let
I be the differential ideal generated by the system S. The problem of constructing
n-dimensional integral manifolds of I by a sequence of Cauchy problems then was
reformulated as the problem of “extending” a p-dimensional integral manifold of I
to one of dimension (p + 1).
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Cartan’s next major insight into this problem was to realize that the condition
that a submanifold N ⊂M be an integral manifold of a differential ideal I on M is
a condition only on the tangent planes of N . This led him to define the fundamental
concept of integral elements of a differential system. Namely, the integral elements
of dimension p of I are the p-planes E ⊂ TzM on which all of the forms in I vanish.
These form a closed subspace Vp(I) of Gp(TM). Cartan’s approach was to study the
structure of these subspaces and their interrelationships as p varies. Two important
concepts arise which depend only on the structure of I as an algebraic ideal. These
are the notions of ordinarity and regularity which are treated in detail in Section 1
of this Chapter. Roughly speaking, these concepts describe the smoothness of
the spaces Vp(I) and the incidence spaces Vp,p+1(I) ⊂ Vp(I) × Vp+1(I). If one
thinks intuitively of integral elements as “infinitesimal integral manifolds,” then
these notions describe the well-posedness of the “infinitesimal Cauchy problem.”
The main highlight of this section is Theorem 1.11, a version of Cartan’s test for
an integral element to be ordinary. The version given here is an improvement over
Cartan’s original version and was suggested to us by the recent work of W. K.
Allard [1989].

In Section 2, after stating the classical Cauchy–Kowalevski theorem on the initial
value problem for first order P.D.E., we state and prove the fundamental Cartan–
Kähler theorem. Roughly speaking, this theorem states that in the real-analytic
category, the well-posedness of the initial value problem for an exterior differential
ideal I is determined completely by the infinitesimal (algebraic) properties of the
space of integral elements. Here, the condition that the ideal be differentially
closed takes the place of the compatibility conditions which one must deal with in
the P.D.E. formulation. We also discuss the classical terminology concerning the
“generality” of the space of integral manifolds of a differential system, and introduce
the important sequence of Cartan characters, which generalize the s0, s1, . . . , etc.
described above.

In Section 3, we consider a set of examples which demonstrate the use of the
Cartan–Kähler theorem in practice. Some of the examples are merely instructive
while others are of interest in their own right. One example in particular, the
isometric embedding example (Example 3.8), reproduces (with some improvements)
Cartan’s original proof of the Cartan–Janet isometric embedding theorem.

The following terminology will be used in the remainder of this chapter.
If X is a smooth manifold and F ⊂ C∞(X) is any set of smooth functions on X,

let Z(F) ⊂ X denote the set of common zeros of the functions in F . We say that
x ∈ Z(F) is an ordinary zero of F if there exists a neighborhood V of x and a set
of functions f1 , f2, . . . , fq in F whose differentials are independent on V so that

Z(F) ∩ V = {y ∈ V | f1(y) = f2(y) = · · · = fq(y) = 0}.

By the implicit function theorem, Z(F) ∩ V is then a smooth submanifold of
codimension q in V . Note that the set of ordinary zeroes of F is an open subset of
Z(F) (in the relative topology). If we let Z0(F) denote the set of ordinary zeroes
of F , then Z0(F) is a disjoint union of connected, embedded submanifolds of X.
Of course, the components of Z0(F) do not all have to have the same dimension.
By definition, the codimension of Z0(F) at x ∈ Z0(F) is the codimension in X of
the component of Z0(F) which contains x.

A related piece of terminology is the following. If A ⊂ X is any subset and
x ∈ A, then we say that A has codimension at most (resp., at least) q at x if there
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exists an open neighborhood V of x ∈ X so that A∩V contains (resp., is contained
in) a smooth (embedded) submanifold of V of codimension q which passes through
x. Clearly A has codimension at least q at x and has codimension at most q at x
if and only if A has the structure of a smooth submanifold of codimension q on a
neighborhood of x.

§1. Integral Elements.

Throughout this section, M will be a smooth manifold of dimension m and
I ⊂ Ω∗(M) will be a differential ideal on M . Recall from Chapter I that an integral
manifold of I is a submanifold ι : V → M with the property that ι∗(α) = 0 for
all α ∈ I. If v ∈ V and E = TvV ⊂ TvM is the tangent space to V at v, then
ι∗(α)|v = αE where, as usual, αE denotes the restriction of α|v to E ⊂ TvM . It
follows that the vanishing of ι∗(α)|v for all α ∈ I depends only on the tangent space
of V at v. This leads to the following fundamental definition.

Definition 1.1. Let M and I be as above. A linear subspace E ⊂ TxM is said to
be an integral element of I if ϕE = 0 for all ϕ ∈ I. The set of all integral elements
of I of dimension p is denoted Vp(I).

A submanifold of M is an integral manifold of I if and only if each of its tangent
spaces is an integral element of I. Intuitively, one thinks of the integral elements
of I as “infinitesimal integral manifolds” of I.

It is not true, in general, that every integral element of I is tangent to an integral
manifold of I. A simple counterexample is obtained by letting M = R1 and letting
I be generated by the 1-form α = xdx. The space E = T0R1 is an integral element
of I, but E is clearly not tangent to any 1-dimensional integral manifold of I.

A more subtle example (which will be used to illustrate several concepts in this
section) is the following one.

Example 1.2. Let M = R5 and let I be generated by the two 1-forms ϑ1 = dx1 +
(x3 − x4x5)dx4 and ϑ2 = dx2 + (x3 + x4x5)dx5. Then I is generated algebraically
by the forms ϑ1, ϑ2, dϑ1 = ϑ3 ∧ dx4, and dϑ2 = ϑ3 ∧ dx5 where we have written
ϑ3 = dx3 + x5dx4 − x4dx5. For each p ∈M , let

Hp = {v ∈ TpR5 | ϑ1(v) = ϑ2(v) = 0} ⊂ TpR5.

Then H ⊂ TR5 is a rank 3 distribution. A 1-dimensional subspace E ⊂ TpR5 is an
integral element of I if and only if E ⊂ Hp. Thus, V1(I) ∼= PH and it is a smooth
manifold of dimension 7. Now let

Kp = {v ∈ TpR5 | ϑ1(v) = ϑ2v) = ϑ3(v) = 0}.

Then K ⊂ H is a rank 2 distribution on R5. It is easy to see that, for each p ∈ R5,
Kp is the unique 2-dimensional integral element of I based at p. Thus, V2(I) ∼= R5.
Moreover, I has no integral elements of dimension greater than 2.

It is not difficult to describe the 1-dimensional integral manifolds of I. Let
f(t) = (f3(t), f4(t), f5(t)) be an arbitrary smooth immersed curve in R3. There
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exist functions f1(t), f2(t) (unique up to a choice of 2 constants) which satisfy the
differential equations

df1/dt = −(f3 − f4f5)df4/dt

df2/dt = −(f3 + f4f5)df5/dt.

Then F (t) = (f1(t), f2(t), f3(t), f4(t), f5(t)) is an integral manifold of I. Con-
versely, every 1-dimensional integral manifold of I is obtained this way. It is now
easy to see that there exists an integral manifold of dimension 1 tangent to each
element of V1(I).

On the other hand, by our calculation of V2(I) above, any 2-dimensional integral
manifold of I is an integral manifold of the differential system I+ generated by ϑ1,
ϑ2, and ϑ3. Using the fact that dϑ3 = −2 dx4 ∧ dx5, we see that I+ is generated
algebraically by ϑ1, ϑ2, ϑ3, and dx4 ∧ dx5. Hence I+ has no 2-dimensional integral
elements, and a fortiori, no 2-dimensional integral manifolds. Thus, I has no 2-
dimensional integral manifolds either.

As Example 1.2 shows, the relationship between the integral elements of a differ-
ential system and its integral manifolds can be subtle. In general, even the problem
of describing the spaces Vn(I) can be complicated. The rest of this section will be
devoted to developing basic properties of integral elements of I and of the subsets
Vn(I).

Proposition 1.3. If E is an n-dimensional integral element of I, then every sub-
space of E is also an integral element of I.

Proof. Suppose that W ⊂ E is a subspace of E. If W were not an integral element
of I, then there would be a form ϕ in I satisfying ϕW �= 0. But then we would
clearly have ϕE �= 0, contradicting the assumption that E is an integral element of
I. �

Proposition 1.4.

Vn(I) = {E ∈ Gn(TM) | ϑE = 0 for all ϑ in I of degree n}.

Proof. The containment “⊂” is clear. Thus, we must prove that if ϑE = 0 for all
ϑ in I of degree n then ϕE = 0 for all ϕ in I. Suppose that ϕE �= 0 for some ϕ in
I of degree p < n. Then there exists η0 in Λn−p(E∗) so that ϕE ∧ η0 is a non-zero
form in Λn(E∗). Let η be a smooth (n−p)-form on M so that ηE = η0. Then ϕ∧η
is a form in I of degree n, but (ϕ ∧ η)E = ϕE ∧ η0 �= 0. �

It follows from Proposition 1.4 that, for each x ∈ M , the set Vn(I) ∩Gn(TxM)
is an algebraic subvariety of Gn(TxM). The structure of this algebraic variety
can be complicated. Fortunately, it is seldom necessary to confront this problem
directly. In practice, the spaces Vn(I) are most often studied by an inductive
procedure which uses information about Vp(I) to get information about Vp+1(I).
The ultimate reason for this approach will be clear in the next section when we
prove the Cartan–Kähler theorem, which builds integral manifolds of I by solving
a sequence of initial value P.D.E. problems. A more immediate reason will be
furnished by Proposition 1.6 below.
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Definition 1.5. Let e1, e2, . . . , ep be a basis of E ⊂ TxM . We define the polar space
of E to be the vector space

H(E) = {v ∈ TxM | ϕ(v, e1 , e2, . . . , ep) = 0 for all ϕ in I of degree p + 1}.

Note that E ⊂ H(E). The annihilator of H(E) is denoted E(E) ⊂ T ∗
x M and is

referred to as the space of polar equations of E.

The importance of H(E) is explained by the following proposition.

Proposition 1.6. Let E be an integral element of I of dimension p. Then a
(p + 1)-plane E+ containing E is an integral element of I if and only if it satisfies
E+ ⊂ H(E).

Proof. Suppose that E+ = E + Rv and that e1, e2, . . . , ep is a basis of E. By
Proposition 1.4, E+ is an integral element of I if and only if ϕE+ = 0 for all
(p + 1)-forms ϕ in I. By definition, this latter condition holds if and only if v lies
in H(E). �

Even though the space Vp+1(I) ∩ Gp+1(TxM) may be a complicated algebraic
variety, for a fixed E ∈ Vp(I), the space of those E+ ∈ Vp+1(I) which contain E
is a (real) projective space which is canonically isomorphic to P(H(E)/E). This
motivates us to define a function r : Vp(I)→ Z by the formula

r(E) = dimH(E) − (p + 1).

Note that r(E) ≥ −1 with equality if and only if E lies in no (p+1)-dimensional
integral element of I, i.e., E is maximal. When r(E) ≥ 0, the set of (p + 1)-
dimensional integral elements of I which contain E is then a real projective space
of dimension r(E).

This linearization of an exterior algebra problem is related to the linearization
process in multi-linear algebra known as “polarization,” the most common example
being the polarization of a quadratic form on a vector space to produce a bilinear
form. We shall not try to make this relationship more precise. We merely offer
this comment as a motivation for the name “polar space” for H(E), which was
coined by É. Cartan. Other authors have referred to H(E) as the “space of integral
enlargements of E” or used similar terminology.

If Ω is any n-form on M , let Gn(TM, Ω) denote the open set consisting of those
E’s for which ΩE �= 0. If ϕ is any other n-form on M , we can define a function
ϕΩ on Gn(TM, Ω) by the formula ϕE = ϕΩ(E)ΩE for all E ∈ Gn(TM, Ω). (Since
Λn(E∗) is 1-dimensional with basis ΩE , this definition makes sense.)

By Proposition 1.4, the set Vn(I, Ω) = Vn(I) ∩Gn(TM, Ω) is the space of com-
mon zeroes of the set of functions

FΩ(I) = {ϕΩ | ϕ lies in I and has degree n}.

Definition 1.7. An integral element E ∈ Vn(I) will be said to be Kähler-ordinary if
there exists an n-form Ω on M with ΩE �= 0 with the property that E is an ordinary
zero of the set of functions FΩ(I). We shall use the notation V o

n (I) ⊂ Vn(I) to
denote the subspace of Kähler-ordinary points of Vn(I). If E is a Kähler-ordinary
integral element and the function r is locally constant on a neighborhood of E in
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V o
n (I), then we say that E is Kähler-regular. We shall use the notation V r

n (I) ⊂
V o

n (I) to denote the subspace of Kähler-regular points of V o
n (I).

The role of Ω in the above definition is not critical. If Ω and Ψ are two n-forms
with ΩE �= 0 and ΨE �= 0, then E ∈ Gn(TM, Ω) ∩ Gn(TM, Ψ) and the identity
ϕΩ = ϕΨ · ΨΩ holds on Gn(TM, Ω) ∩ Gn(TM, Ψ). Since ΨΩ never vanishes on
Gn(TM, Ω)∩Gn(TM, Ψ), it follows that E is an ordinary zero of FΩ(I) if and only
if it is an ordinary zero of FΨ(I). Note that V o

n (I) is an embedded submanifold
of Gn(TM) and is an open subset of Vn(I) in the relative topology. Since r is an
upper semicontinuous function on V o

n (I), V r
n (I) is a open, dense subset of V o

n (I).

Example 1.2 (continued). We will show that all of the 2-dimensional integral el-
ements of I are Kähler-regular. Let Ω = dx4 ∧ dx5. Then every element E ∈
G2(TR5, Ω) has a unique basis of the form

X4(E) = ∂/∂x4 + p1
4(E)∂/∂x1 + p2

4(E)∂/∂x2 + p3
4(E)∂/∂x3

X5(E) = ∂/∂x5 + p1
5(E)∂/∂x1 + p2

5(E)∂/∂x2 + p3
5(E)∂/∂x3.

The functions x1, . . . , x5, p1
4, . . . , p

3
5 form a coordinate system on G2(TR5, Ω).

Computation gives
(ϑ1 ∧ dx4)Ω = −p1

5

(ϑ1 ∧ dx5)Ω = p1
4 + (x3 − x4x5)

(ϑ2 ∧ dx4)Ω = −p2
5 − (x3 + x4x5)

(ϑ2 ∧ dx5)Ω = p2
4

(ϑ3 ∧ dx4)Ω = −p3
5 + x4

(ϑ3 ∧ dx5)Ω = +p3
4 + x5.

These 6 functions are clearly independent on G2(TR5, Ω) and their common zeroes
are exactly V2(I). Thus, every point of V2(I) is Kähler-ordinary. Since none of
these elements has any extension to a 3-dimensional integral element, it follows that
r(E) = −1 for all E ∈ V2(I). Thus, every element of V2(I) is also Kähler-regular.

Similarly, it is easy to see that every E ∈ V1(I) is Kähler-ordinary. However,
not every element of V1(I) is Kähler-regular. To see this, note that any E ∈ V1(I)
on which ϑ3 does not vanish cannot lie in any 2-dimensional integral element of I.
Thus, r(E) = −1 for all E ∈ V1(I, ϑ3). On the other hand, each E+ ∈ V1(I) on
which ϑ3 does vanish lies in a unique E+ ∈ V2(I) and hence has r(E) = 0. Since
V1(I, ϑ3) is clearly dense in V1(I), it follows that V r

1 (I) = V1(I, ϑ3).

Returning to the general theory, we shall need to understand the following inci-
dence correspondences:

Vp,p+1(I) = {(E, E+) ∈ Vp(I)× Vp+1(I) | E ⊂ E+}

V r
p,p+1(I) = {(E, E+) ∈ V r

p (I) × Vp+1(I) | E ⊂ E+}.

We let πp : Vp,p+1(I) → Vp(I) denote the projection onto the first factor and
we let πp+1 : Vp,p+1(I) → Vp+1(I) denote the projection onto the second factor.
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The fibers of these maps are easy to describe. If E ∈ Vp(I) has r(E) ≥ 0, then
(πp)−1(E) ∼= P(H(E)/E) ∼= RPr(E). On the other hand, if E+ ∈ Vp+1(I), then
(πp+1)−1(E+) ∼= P(E+)∗, the space of hyperplanes in E+. It is helpful to keep in
mind the following diagram.

Vp,p+1(I)
πp↙ ↘πp+1

Vp(I) Vp+1(I)

This “double fibration” fails, in general, to be surjective or submersive on either
base. The next proposition shows that the picture is better for V r

p,p+1(I). Its
proof, although technical, is straightforward. Some care is needed to prove that the
regularity assumption suffices to guarantee that certain maps have maximal rank.

Proposition 1.8. If V r
p,p+1(I) is not empty, then it is a smooth manifold. More-

over, the image πp+1(V r
p,p+1(I)) is an open subset of V o

p+1(I) and both of the maps
πp : V r

p,p+1(I)→ V r
p (I) and πp+1 : V r

p,p+1(I)→ πp+1(V r
p,p+1(I)) are submersions.

Proof. Let E ∈ V r
p (I) have base point z ∈ M and let t = dimM − dimH(E).

By hypothesis, there exist t (p + 1)-forms κ1, κ2, . . . , κt in I so that, for any basis
e1, e2, . . . , ep of E, we have

H(E) = {v ∈ TzM | κτ(v, e1 , e2, . . . , ep) = 0 for 1 ≤ τ ≤ t}.

Since r is locally constant on a neighborhood of E in V r
p (I), it follows easily that

we must have

H(Ẽ) = {v ∈ Tz̃M | κτ(v, ẽ1, ẽ2, . . . , ẽp) = 0 for 1 ≤ τ ≤ t}

for all Ẽ in V r
p (I) (based at z̃, with basis ẽ1, ẽ2, . . . , ẽp) sufficiently near E. From

this, it follows that if we set H = {(E, v) ∈ Vp(I) × TM | v ∈ H(E)}, then H is
a family of vector spaces over Vp(I) which restricts to each component of V r

p (I)
to be a smooth vector bundle of constant rank. We also conclude that, for each
component Z of V r

p (I) on which r is non-negative, the component (πp)−1(Z) of
V r

p,p+1(I) is a smooth bundle over Z.
We now show that the image of πp+1 restricted to V r

p,p+1(I) is open in Vp+1(I).
Let (E, E+) belong to V r

p,p+1(I). There exists an open neighborhood of E, U ⊂
Gp(TM), so that U ∩ Vp(I) ⊂ V r

p (I) and an open neighborhood of E+, U+ ⊂
Gp+1(TM), so that every Ẽ+ in U+ contains a p-plane Ẽ in U . Thus, if Ẽ+ ∈
U+∩Vp+1(I), then Ẽ ∈ U∩Vp(I) ⊂ V r

p (I). It follows that πp+1(V r
p,p+1(I)) contains

U+ ∩ Vp+1(I).
It remains to show that πp+1(V r

p,p+1(I)) lies in V o
p+1(I) and that πp+1 restricted

to V r
p,p+1(I) is a submersion onto its image. To do this, we choose coordinates. Let

(E, E+) belong to V r
p,p+1(I), let r = r(E) ≥ 0, and let t = dimM − dimH(E) =

dimM − (r + p + 1). The cases where either r or t are zero can be handled by
obvious simplifications of the following argument, so we assume that r and t are
positive.

Choose coordinates x1, . . . , xp, y, v1, . . . , vr, u1, . . . , ut centered on the base point
z of E with the properties

(i) E is spanned by the vectors ∂/∂xi at z for 1 ≤ i ≤ p.
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(ii) E+ is spanned by the vectors in E and the vector ∂/∂y.
(iii) H(E) is spanned by the vectors in E+ and the vectors ∂/∂vρ at z for

1 ≤ ρ ≤ r.
Let Ω = dx1 ∧ · · ·∧ dxp. By hypothesis, there exist a set of p-forms {ϕ1, . . . , ϕq}

in I and an E-neighborhood U ⊂ Gp(TM, Ω) so that the functions fc = ϕc
Ω for

1 ≤ c ≤ q have independent differentials on U and

Vp(I) ∩ U = {Ẽ ∈ U | fc(Ẽ) = 0 for all c}.

We may also suppose, by shrinking U if necessary, that there are t (p+1)-forms
κ1, κ2, . . . , κt in I so that

H(Ẽ) = {v ∈ Tz̃M | κτ(v, ẽ1, ẽ2, . . . , ẽp) = 0 for 1 ≤ τ ≤ t}

for all Ẽ in Vp(I) ∩ U (based at z̃, with basis ẽ1, ẽ2, . . . , ẽp).
We now want to show that if we set Ω+ = Ω ∧ dy and define gc = (ϕc ∧ dy)Ω+

and hτ = (κτ )Ω+ then there is an open neighborhood U+ ⊂ Gp+1(TM, Ω+) of E+

so that the set of functions {gc, hτ} have independent differentials on U+ and that

Vp+1(I) ∩ U+ = {Ẽ+ ∈ U+ | gc(Ẽ+) = hτ (Ẽ+) = 0 for all c and τ}.

In particular, we will conclude that E+ ∈ V o
p+1(I).

Note that every Ẽ+ ∈ Gp+1(TM, Ω+) contains a unique p-plane, which we will
denote Ẽ ⊂ Ẽ+, on which the differential dy vanishes. Let U+ ⊂ Gp+1(TM, Ω+) be
an E+-neighborhood in Gp+1(TM) so that Ẽ ∈ U whenever Ẽ+ ∈ U+. There exist
unique functions Aρ

i , Bτ
i , aρ, and bτ on Gp+1(TM, Ω+) so that the p + 1 vectors

Xi(Ẽ+) = ∂/∂xi + Aρ
i (Ẽ

+)∂/∂vρ + Bτ
i (Ẽ+)∂/∂uτ

Y (Ẽ+) = ∂/∂y + aρ(Ẽ+)∂/∂vρ + bτ (Ẽ+)∂/∂uτ

are a basis of Ẽ+. The vectors Xi(Ẽ+) form a basis of Ẽ. Note that the functions
x, y, v, u, A, B, a, and b form a coordinate system on Gp+1(TM, Ω+).

Since dy(Xi(Ẽ+)) = 0, we have the formula gc(Ẽ+) = fc(Ẽ) for all c and all
Ẽ+ ∈ Gp+1(TM, Ω+). It follows that, if Ẽ+ ∈ U+ and gc(Ẽ+) = 0 for all c, then
Ẽ ∈ Vp(I) ∩ U . Since hτ (Ẽ+) = κτ (X1(Ẽ+), . . . , Xp(Ẽ+), Y (Ẽ+)), it follows that
the equations hτ(Ẽ+) = 0 imply that Y (Ẽ+) lies in H(Ẽ) whenever Ẽ ∈ Vp(I)∩U .
It follows that

Vp+1(I) ∩ U+ ⊃ {Ẽ+ ∈ U+ | gc(Ẽ+) = hτ (Ẽ+) = 0 for all c and τ}.

Since the reverse inclusion is clear, we have proved equality.
It remains to show that the functions {gc, hτ} have linearly independent differen-

tials at E+. To see this, first note that since hτ(Ẽ+) = κτ(X1(Ẽ+), . . . , Xp(Ẽ+), Y (Ẽ+)),
when we expand the functions hτ in terms of the coordinates (x, y, v, u, A, B, a, b)
they are linear in the functions {aρ, bτ}. Thus hτ = N τ + M τ

ν bν for some coeffi-
cients N and M that depend only on (x, y, v, u, A, B, a). By hypothesis, we have
N τ

ρ (E+) = 0 and the t×t matrix (M τ
ν (E+)) is invertible. It follows that, by shrink-

ing U+ if necessary, we may suppose that (M τ
ν (Ẽ+)) is invertible for all Ẽ+ ∈ U+.
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Hence we may write hτ = M τ
ν (bν −T ν ) where the functions T ν depend only on the

variables x, y, v, u, A, B and a. It follows that the functions {gc, hτ} have indepen-
dent differentials at E+ if and only if the functions {gc, bτ − T τ} have independent
differentials at E+. Since the functions gc can be expressed in terms of the coor-
dinates x, y, v, u, A, and B alone, it follows that the functions {gc, bτ − T τ} have
independent differentials at E+ if and only if the functions {gc} have independent
differentials at E+. Let K ⊂ U be the set of p-planes on which the differential dy
vanishes. Then K is clearly a smooth submanifold of U which contains E. Since Ẽ
lies in K whenever Ẽ+ lies in U+, and since we have the identity gc(Ẽ+) = fc(Ẽ),
it follows that functions {gc} have independent differentials at E+ if and only if the
functions {fc} have independent differentials at E after they have been restricted
to K. Now every Ẽ ∈ U has a unique basis of the form

Xi(Ẽ) = ∂/∂xi + wi(Ẽ)∂/∂y + Aρ
i (Ẽ)∂/∂vρ + Bτ

i (Ẽ)∂/∂uτ ,

and the functions x, y, v, u, A, B, and w form a coordinate system on U centered on
E. Also, we have K = {Ẽ ∈ U | wi(Ẽ) = 0 for all i}. It follows that the functions
{fc} have independent differentials at E after they have been restricted to K if and
only if the functions {wi} have independent differentials on the set Vp(I) ∩ U =
{Ẽ ∈ U | fc(Ẽ) = 0 for all c}. However, since E+ ∈ Vp+1(I), it follows that, for
any vector λ = (λ1, . . . , λn) where the λi are sufficiently small, Vp(I) ∩ U contains
the p-plane Eλ ⊂ E+ which is spanned by the vectors Xi(λ) = ∂/∂xi + λi∂/∂y for
i between 1 and p. Since the functions {wi} are independent when restricted to the
p-manifold E = {Eλ | Eλ ∈ U} ⊂ Vp(I) ∩ U , we are done.

Since we have shown that E+ is a Kähler-ordinary integral element of I, it
follows that πp+1(V r

p,p+1(I)) is an open subset of V o
p+1(I). The fact that πp+1 is a

submersion when restricted to V r
p,p+1(I) is now elementary. �

The proof of Proposition 1.8 has an important corollary: If (E, E+) ∈ V r
p,p+1(I),

then the following formula holds

(8)
(codim Vp+1(I) in Gp+1(TM) at E+)

= (codim Vp(I) in Gp(TM) at E) + (codim H(E) in TzM).

A nested sequence of subspaces (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TzM where
each Ek is of dimension k and En is an integral element of I is called an integral
flag of I of length n based at z. If z is an ordinary point of the set of functions
F = I ∩Ω0(M) (i.e., the set of 0-forms in I), and the function r is locally constant
on a neighborhood of Ek in Vk(I) for all k ≤ n − 1, then Proposition 1.8 applies
inductively to show that each Ek is Kähler-regular for k ≤ n − 1 and that En is
Kähler-ordinary.

Definition 1.9. Let I be a differential system on a manifold M . An integral element
E ∈ Vn(I) is said to be ordinary if its base point z ∈ M is an ordinary zero of
I ∩Ω0(M) and moreover there exists an integral flag (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂
TzM with E = En where Ek is Kähler-regular for k ≤ n− 1. If E is both ordinary
and Kähler-regular, then we say that E is regular.

In an integral flag (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TzM where each Ek is Kähler-
regular for k ≤ n − 1, note that each Ek is actually regular for k ≤ n − 1. Such
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a flag is called an ordinary flag. If, in addition, En is also regular, the flag is said
to be regular. Note that, for integral elements, we have the implications: regular
⇒ Kähler-regular, ordinary⇒ Kähler-ordinary, and regular ⇒ ordinary. However,
these implications are not generally reversible.

Our goal in the remainder of this section is to describe one of the fundamen-
tal tests for an integral element to be ordinary. First, we shall introduce a set of
constructions which are frequently useful in the study of integral flags of I. It is
convenient to assume that the differential ideal I contains no non-zero forms of de-
gree 0. Since this is usually the case in practice, this restriction is not unreasonable.

Proposition 1.10. Let I ⊂ Ω+(M) be a differential ideal which contains no non-
zero forms of degree 0. Let (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TzM be an integral
flag of I. Let e1, e2, . . . , en be a basis of En so that e1, e2, . . . , ek is a basis of
Ek for all 1 ≤ k ≤ n. For each k ≤ n, let ck be the codimension of H(Ek) in
TzM . The numbers ck satisfy ck−1 ≤ ck. For each integer a between 1 and cn−1,
define the level of a, denoted λ(a), to be the smallest integer so that a ≤ cλ(a). If
cn−1 > 0, then there exists a sequence ϕ1, . . . , ϕcn−1 of forms in I so that ϕa has
degree λ(a) + 1 and so that for all 0 ≤ k ≤ n− 1,

(9) H(Ek) = {v ∈ TzM | ϕa(v, e1, . . . , eλ(a)) = 0 for all a ≤ ck}.

Proof. Since it is clear that H(Ek+1) ⊂ H(Ek), it follows that ck+1 ≥ ck. To
construct the sequence ϕ1, . . . , ϕcn−1 , we proceed by induction on the level k. By
the very definition of H(E0), there exist 1-forms ϕ1, . . . , ϕc0 in I so that (9) holds
for k = 0. Suppose now that we have constructed a sequence ϕ1, . . . , ϕcp−1 so
that (9) holds for all k < p. Let ω1, . . . , ωn be a sequence of 1-forms on M so
that their restriction to E is the dual coframe to e1, e2, . . . , en. Define ϕ̃a ∈ I by
ϕ̃a = ϕa ∧ωλ(a)+1 ∧ωλ(a)+2 ∧ · · · ∧ωp. Then ϕ̃a is a form in I of degree p +1 and,
since ϕa vanishes on E, the identity

(10) ϕ̃a(v, e1, . . . , ep) = ϕa(v, e1, . . . , eλ(a))

holds for all v ∈ TzM . If cp = cp−1, then H(Ep) = H(Ep−1), so (10) shows that (9)
already holds for k = p. If cp > cp−1, then by the definition of H(Ep), we can choose
a set of (p+1)-forms in I, {ϕa | cp−1 < a ≤ cp}, so that H(Ep) is the set of vectors
v satisfying ϕ̃a(v, e1, . . . , ep) = 0 for all a ≤ cp−1 as well as ϕa(v, e1, . . . , ep) = 0 for
all cp−1 < a ≤ cp. This completes the induction step. �

A sequence ϕ1, . . . , ϕcn−1 of forms in I with the properties given in Propos-
tion 1.10 will be call a polar sequence associated to the integral flag (0)z ⊂ E1 ⊂
E2 ⊂ · · · ⊂ En ⊂ TzM . Note that the polar sequence does not necessarily carry
complete information about H(En).

Theorem 1.11 (Cartan’s test). Let I ⊂ Ω+(M) be an ideal which contains no
non-zero forms of degree 0. Let (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TzM be an integral
flag of I and, for each k < n, let ck be the codimension of H(Ek) in TzM . Then
Vn(I) ⊂ Gn(TM) is of codimension at least c0 + c1 + · · ·+ cn−1 at En. Moreover,
each Ek is regular for all k < n (and hence En is ordinary) if and only if En has a
neighborhood U in Gn(TM) so that Vn(I)∩U is a smooth manifold of codimension
c0 + c1 + · · ·+ cn−1 in U .
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Proof. Set s = dimM − n. There exists a z-centered local coordinate system
x1, . . . , xn, u1, . . . , us with the property that Ek is spanned by the vectors {∂/∂xi}i≤k

and so that, for all k < n,

H(Ek) = {v ∈ TzM | dua(v) = 0 for all a ≤ ck}.

Let ϕ1, . . . , ϕcn−1 be a polar sequence for the given flag so that

dua(v) = ϕa(v, ∂/∂x1, ∂/∂x2, . . . , ∂/∂xλ(a))

for all v ∈ TzM . It follows that

ϕa = dua ∧ dx1 ∧ dx2 ∧ · · · ∧ dxλ(a) + ψa,

where ψa is a form of degree λ(a)+1 which is a sum of terms of the following three
kinds:

(i) dub ∧ dxJ where J is a multi-index of degree λ(a) which contains at least one
index j which is larger than λ(a),

(ii) forms which vanish at z,
(iii) forms which are of degree at least 2 in the differentials {dub}.
We are now going to show that the forms {ϕa | a ≤ cn−1} suffice to generate a set

of at least c0 +c1 + · · ·+cn−1 functions on a neighborhood of En whose differentials
are linearly independent at En and whose set of common zeroes contains Vn(I) in
a neighborhood of En.

Let Ω = dx1 ∧ dx2 ∧ · · ·∧ dxn. Let Gn(TU , Ω) ⊂ Gn(TM) be the set of n-planes
E which are based in the domain U of the (x, u)-coordinates and for which ΩE �= 0.
Then there exist functions {pa

i | 1 ≤ j ≤ n and 1 ≤ a ≤ s} on Gn(TU , Ω) so that,
for each E ∈ Gn(TU , Ω), the vectors Xi(E) = ∂/∂xi + pa

i (E)∂/∂ua form a basis of
E. The functions (x, u, p) form an En-centered coordinate system on Gn(TU , Ω).

For convenience, we define λ(a) = n for all cn−1 < a ≤ s. Let us say that a
pair of integers (j, a) where 1 ≤ j ≤ n and 1 ≤ a ≤ s is principal if it satisfies
j ≤ λ(a) otherwise, we say that the pair is non-principal. (For example, there are
no principal pairs if c0 = s.) Since, for j ≥ 1, there are cj − cj−1 values of a in
the range 1 ≤ a ≤ s which satisfy λ(a) = j, it easily follows that the number of
principal pairs is ns − (c0 + c1 + · · ·+ cn−1). Hence, the number of non-principal
pairs is c0 + c1 + · · ·+ cn−1.

Let (j, a) be a non-principal pair. Define the function F a
j on Gn(TU , Ω) by

F a
j (E) = ϕa(Xj(E), X1(E), X2(E), . . . , Xλ(a)(E)). Then we have an expansion

F a
j = pa

j + P a
j + Qa

j

where P a
j is a linear combination (with constant coefficients) of the variables xi,

ua, and {pa
i | (i, a) is principal} and Qa

j vanishes to second order at En. This
expansion follows directly from an examination of the terms in ψa as described
above. It follows that the functions {F a

j | (j, a) is non-principal} have linearly
independent differentials at En. Let U ⊂ Gn(TU , Ω) be a neighborhood of En on
which these functions have everywhere linearly independent differentials. Then we
clearly have

Vn(I) ∩ U ⊂ {E ∈ U | F a
j (E) = 0 for all non-principal (j, a)}.
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It follows that Vn(I) has codimension at least c0 + c1 + · · ·+ cn−1 at En, as desired.
This proves the first part of the theorem.

In order to prove the second statement of the theorem, we begin by supposing
that each Ek is Kähler-regular for all 1 ≤ k < n. Then, by definition, En is ordinary.
Then (8) shows that we have the following recursion formula for all k between 1
and n:

(codim Vk(I) in Gk(TM) at Ek)

= ck−1 + (codim Vk−1(I) in Gk−1(TM) at Ek−1).

Since, by hypothesis, I contains no 0-forms, it follows that V0(I) =
G0(TM) = M . Thus, by induction, the codimension of Vn(I) in Gn(TM) at
En has the desired value c0 + c1 + · · ·+ cn−1.

To prove the converse statement, let us now suppose that there is an En-
neighborhood U in Gn(TM) so that Vn(I)∩U is a smooth manifold of codimension
c0+c1+· · ·+cn−1 in U . It follows that, by shrinking U if necessary, we may suppose
that

Vn(I) ∩ U = {E ∈ U | F a
j (E) = 0 for all non-principal (j, a)}

and that the functions F = {F a
j | (j, a) is non-principal} have linearly independent

differentials on all of U . If we set ϕa
j = ϕa ∧dxK(a,j) where K(a, j) is a multi-index

of degree n− (λ(a) + 1) with the property that

dxj ∧ dx1 ∧ dx2 ∧ · · · ∧ dxλ(a) ∧ dxK(a,j) = dx1 ∧ dx2 ∧ · · · ∧ dxn,

then F a
j (E) = ϕa

j (X1(E), X2(E), . . . , Xn(E)) for all E ∈ U . It follows that En is
Kähler-ordinary. In fact, we can say more. Applying the implicit function theorem
to the above expansion of F a

j , it follows that, by shrinking U if necessary, the
submanifold Vn(I) ∩ U in U can be described by equations of the form

pa
i = P a

i for all (i, a) non-principal,

where the functions P a
j are functions of the variables xi, ua, and {pa

i | (i, a) is
principal}. (For the sake of uniformity, we define the function P a

i to be pa
i when

the pair (i, a) is principal.) Thus, the variables xi, ua, and {pa
i | (i, a) is principal}

form an En-centered coordinate system on Vn(I) ∩ U .
By the first part of the proof, we know that Vn−1(I) has codimension at least

c0 +c1 + · · ·+cn−2 in Gn−1(TM) at En−1. We will now show that, in fact, Vn−1(I)
contains a submanifold of codimension c0+c1+· · ·+cn−2 in Gn−1(TM) which passes
through En−1. This will imply that En−1 is Kähler-ordinary and that Vn−1(I) has
codimension c0 +c1 + · · ·+cn−2 in Gn−1(TM) at En−1. To demonstrate this claim,
let v = (v1, v2, . . . , vn−1) ∈ Rn−1, and define a map Φ : Rn−1×Vn(I)∩U → Vn−1(I)
by letting Φ(v, E) = Ev be the (n − 1)-plane in E which is spanned by the n − 1
vectors

Xi(Ev) = Xi(E) + viXn(E) for all 1 ≤ i ≤ n− 1

= ∂/∂xi + vi∂/∂xn + (P a
i (E) + viP

a
n(E))∂/∂ua.

We claim that Φ has rank ρ = n + s + (n− 1)(s + 1)− (c0 + c1 + · · ·+ cn−2) at
(0, En). To see this, note that since c0+c1+· · ·+cn−2 is already known to be a lower
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bound on the codimension of Vn−1(I) in Gn−1(TM) at En−1, the image of Φ must
lie in a submanifold of Gn−1(TM) whose codimension is at least c0 +c1 + · · ·+cn−2

and hence the rank of Φ cannot be larger than ρ at any point of some neighborhood
of (0, En). On the other hand, the rank of Φ at (0, En) is equal to ρ, since it is clear
that the ρ functions xi, ua, {vi | 1 ≤ i ≤ n − 1}, and {P a

i (E) + viP
a
n (E) | (i, a)

principal and i ≤ n− 1} have linearly independent differentials on a neighborhood
of (0, En). Thus, the rank of Φ must be identically ρ near (0, En).

Moreover, there is a neighborhood O of (0, En) in Rn−1×Vn(I)∩U and a neigh-
borhood U− of En−1 in Gn−1(TM) so that Vn−1(I)∩U− is a smooth submanifold
of U− of codimension c0 + c1 + · · ·+ cn−2 and so that Φ : O → Vn−1(I) ∩ U− is a
surjective submersion. As noted above, this implies that En−1 is Kähler-ordinary.

We may also conclude that En−1 is Kähler-regular by the following observation.
For all Ẽ in U−, the set {E ∈ Vn(I) ∩ U | Φ(v, E) = Ẽ for some v} is an open
subset of the set P(H(Ẽ)/Ẽ) of n-dimensional integral elements which contain Ẽ.
The dimension of this set is thus r(Ẽ). However, since Φ is a surjective submersion,
this set clearly has the dimension of the fibers of Φ, which is the same as the
dimension of the fiber Φ−1(En−1). It follows that the function r is locally constant
on a neighborhood of En−1 in Vn−1(I). Thus, En−1 is Kähler-regular, as desired.

By induction, it follows that each Ek is Kähler-regular for all 1 ≤ k ≤ n − 1.
Since I contains no forms of degree 0, it immediately follows that each Ek is regular
for each 1 ≤ k ≤ n− 1. �
Example 1.2 (continued). Using Theorem 1.11, we can give a quick proof that none
of the elements in V2(I) are ordinary. For any integral flag (0)z ⊂ E1 ⊂ E2 ⊂ TzR5,
we know that c0 ≤ 2 since there are only 2 independent 1-forms in I. Also, since
E2 ⊂ H(E1), it follows that c1 ≤ 3. Since there is a unique 2-dimensional integral
element at each point of R5, it follows that V2(I) has codimension 6 in G2(TR5).
Since 6 > c0+c1, it follows, by Theorem 1.11, that none of the integral flags of length
2 can be ordinary. Hence there are no ordinary integral elements of dimension 2.

Example 1.12. Let M = R6 with coordinates x1, x2, x3, u1, u2, u3. Let I be the
differential system generated by the 2-form

ϑ = d(u1dx1 + u2dx2 + u3dx3)− (u1dx2 ∧ dx3 + u2dx3 ∧ dx1 + u3dx1 ∧ dx2).

Of course, I is generated algebraically by the forms {ϑ, dϑ}. We have

dϑ = −(du1 ∧ dx2 ∧ dx3 + du2 ∧ dx3 ∧ dx1 + du3 ∧ dx1 ∧ dx2).

We can use Theorem 1.11 to show that all of the 3-dimensional integral elements
of I on which Ω = dx1 ∧ dx2 ∧ dx3 does not vanish are ordinary. Let E ∈ V3(I, Ω)
be fixed with base point z ∈ R6. let (e1, e2, e3) be the basis of E which is dual to
the basis (dx1, dx2, dx3) of E∗. Let E1 be the line spanned by e1, let E2 be the
2-plane spanned by the pair {e1, e2}, and let E3 be E. Then (0)z ⊂ E1 ⊂ E2 ⊂ E3

is an integral flag. Since I is generated by {ϑ, dϑ} where ϑ is a 2-form, it follows
that c0 = 0. Moreover, since ϑ(v, e1) = π1(v) where π1 ≡ du1 mod (dx1, dx2, dx3),
it follows that c1 = 1. Note that, since H(E2) ⊃ E3, it follows that c2 ≤ 3. On the
other hand, we have the formula

ϑ(v, e1) = π1(v)

ϑ(v, e2) = π2(v)

dϑ(v, e1, e2) = −π3(v)
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where in each case, πk ≡ duk mod (dx1, dx2, dx3). Since the 1-forms πk are clearly
independent and annihilate H(E2), it follows that c2 ≥ 3. Combined with the pre-
vious argument, we have c2 = 3. It follows by Theorem 1.11 that the codimension
of V3(I) in G3(TR6) at E is at least c0 + c1 + c2 = 4.

We are now going to show that V3(I, Ω) is a smooth submanifold of G3(TR6)
of codimension 4, and thence, by Theorem 1.11, conclude that E is ordinary. To
do this, we introduce functions pij on G3(TR6, Ω) with the property that, for each
E ∈ G3(TR6, Ω) based at z ∈ R6, the forms πi = dui − pij(E)dxj ∈ T ∗

z (R6) are
a basis for the 1-forms which annihilate E. Then the functions (x, u, p) form a
coordinate system on G3(TR6, Ω). It is easy to compute that

ϑE = (p23 − p32 − u1)dx2 ∧ dx3 + (p31 − p13 − u2)dx3 ∧ dx1

+ (p12 − p21 − u3)dx1 ∧ dx2

dϑE = −(p11 + p22 + p33)dx1 ∧ dx2 ∧ dx3.

It follows that the condition that E ∈ G3(TR6, Ω) be an integral element of I
is equivalent to the vanishing of 4 functions on G3(TR6, Ω) whose differentials are
independent. Thus V3(I, Ω) is a smooth manifold of codimension 4 in G3(TR6, Ω),
as we desired to show.

The following results will be used in later sections:

Proposition 1.13. Let I ⊂ Ω∗(M) be a differential ideal which contains no non-
zero forms of degree 0. Let Z ⊂ Vn(I) be a connected component of the space of
ordinary integral elements. Then there exists a unique sequence (c0, c1, c2, . . . , cn−1)
of integers so that ck is the codimension of H(Ek) in TzM for any ordinary integral
flag (0) ⊂ E1 ⊂ · · · ⊂ En ⊂ TzM with En ∈ Z.

Proof. Let Z̃ ⊂ V r
0 (I) × V r

1 (I) × . . .× V r
n−1(I) × Z denote the space of ordinary

integral flags F = (E0, E1, . . . , En) of I with En ∈ Z. We endow Z̃ with the
topology and smooth structure it inherits from this product. Note that even though
Z is connected, Z̃ may not be connected. However, if we define ck(F ) = dimM −
dimH(Ek), then the functions ck for k < n are clearly locally constant on Z̃. We
must show that these functions are actually constant on Z̃ .

To do this, suppose that for some p < n, cp were not constant on Z̃. Then there
would exist non-empty open sets Z̃1, Z̃2 so that cp ≡ q on Z̃1 and cp �= q on Z̃2. The
images Z1, Z2 of these two sets under the submersion Z̃ → Z would then be an open
cover of Z. By the connectedness of Z, they would have to intersect non-trivially.
In particular, there would exist an E ∈ Z and two p-planes E1, E2 ∈ V r

p (I)∩Gp(E)
for which r(E1) = q �= r(E2).

We shall now show that this is impossible. Since E ⊂ TzM is an integral element,
it follows that Gp(E) ⊂ Vp(I) and hence that V r

p (I) ∩Gp(E) is an open subset of
Gp(E). Moreover, since the function r is locally constant on V r

p (I), it follows that
V r

p (I) ∩ Gp(E) is a subset of the open set G∗
p(E) ⊂ Gp(E) on which r is locally

constant. Thus, it suffices to show that r is constant on G∗
p(E).

Let ϕ1, . . . , ϕq be a set of (p+1)-forms in I with the property that a (p+1)-plane
Ep+1 ⊂ TzM is an integral element of I if and only if each of the forms ϕ1, . . . , ϕq

vanish on Ep+1. (Since we are only considering planes based at z, such a finite



§1. Integral Elements 69

collection of forms exists.) Then for any Ep ∈ Gp(E) with basis e1, e2, . . . , ep,

H(Ep) = {v ∈ TzM | ϕa(v, e1, e2, . . . , ep) = 0, 1 ≤ a ≤ q}.

By the usual argument involving the ranks of linear equations whose coefficients
involve parameters, it follows that dimH(Ep) is locally constant on Gp(E) only on
the open set where it reaches its minimum. Thus, r is constant on G∗

p(E), as we
wished to show. �
Proposition 1.14. Let I ⊂ Ω∗(M) be a differential ideal which contains no non-
zero forms of degree 0. If ϕ1, . . . , ϕcn−1 is a polar sequence for the ordinary integral
flag (0) ⊂ E1 ⊂ · · · ⊂ En ⊂ TzM , then it is also a polar sequence for all nearby
integral flags.

Proof. Obvious. �
We conclude this section by proving a technical proposition which provides an

effective method of computing the numbers ci which are associated to an integral
flag. We need the following terminology: If J = (j1, j2, . . . , jp) is a multi-index of
degree p taken from the set {1, 2, . . . , n}, then we define supJ to be the largest of
the integers {j1, j2, . . . , jp}. If J = ∅ is the (unique) multi-index of degree 0, we
define sup J = 0.

Proposition 1.15. Let I ⊂ Ω+(M) be an ideal which contains no non-zero forms
of degree 0. Let E ∈ Vn(I) be based at z ∈ M . Let ω1, . . . , ωn, π1,
. . . , πs (where s = dimM − n) be a coframing on a z-neighborhood so that E =
{v ∈ TzM | πa(v) = 0 for all a}. For each p ≤ n, define Ep = {v ∈ E | ωk(v) = 0
for all k > p}. Let {ϕ1, ϕ2, . . . , ϕr} be a set of forms which generate I algebraically
where ϕρ has degree dρ + 1.

Then, for each ρ, there exists an expansion

ϕρ =
∑

|J|=dρ

πρ
J ∧ ωJ + ϕ̃ρ

where the 1-forms πρ
J are linear combinations of the π’s and the terms in ϕ̃ρ are

either of degree 2 or more in the π’s or else vanish at z.
Moreover, we have the formula

H(Ep) = {v ∈ TzM | πρ
J(v) = 0 for all ρ and sup J ≤ p}.

In particular, for the integral flag (0)z ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ TzM of I, cp

is the number of linearly independent 1-forms in the set {πρ
J |z | sup J ≤ p}.

Proof. The existence of the expansion cited for ϕρ is an elementary exercise in
exterior algebra using the fact that E is an integral element of I. The “remainder
term” ϕ̃ρ has the property that ϕ̃ρ(v, e1, e2, . . . , edρ) = 0 for all v ∈ TzM and all
{e1, e2, . . . , edρ} ⊂ E. If e1, e2, . . . , en is the basis of E which is dual to the coframing
ω1, ω2, . . . , ωn and K = (k1, k2, . . . , kdρ) is a multi-index with deg K = dρ, we have
the formula ϕρ(v ∧ eK) = πρ

K(v). The stated formulas for H(Ep) and cp follow
immediately. �

To see the utility of Proposition 1.15, consider Example 1.12. Here, I is generated
by two forms ϕ1 = ϑ and ϕ2 = −dϑ, of degrees 2 and 3 respectively. If E ∈
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G3(TR6, Ω) is any integral element, then the annihilator of E is spanned by 1-
forms πi = dui − pijdxj for some numbers pij. It is clear that we have expansions
of the form

ϕ1 = ϑ = π1 ∧ dx1 + π2 ∧ dx2 + π3 ∧ dx3 + ϕ̃1

ϕ2 = −dϑ = π3 ∧ dx1 ∧ dx2 + π2 ∧ dx3 ∧ dx1 + π1 ∧ dx2 ∧ dx3 + ϕ̃2,

on a neighborhood of the base point of E. By Proposition 1.15, it follows that the
annihilator of H(E1) is spanned by {π1} and the annihilator of H(E2) is spanned
by {π1, π2, π3}. Thus, we must have c1 = 1 and c2 = 3, as we computed before.

§2. The Cartan–Kähler Theorem.

In this section, we prove the Cartan–Kähler theorem, which is the fundamen-
tal existence result for integral manifolds of a real-analytic differential system.
This theorem is a coordinate-free, geometric generalization of the classical Cauchy–
Kowalevski theorem, which we now state.

We shall adopt the index ranges 1 ≤ i, j ≤ n and 1 ≤ a, b ≤ s.

Theorem 2.1 (Cauchy–Kowalevski). Let y be a coordinate on R, let x = (xi) be
coordinates on Rn, let z = (za) be coordinates on Rs, and let p = (pa

i ) be coordinates
on Rns. Let D ⊂ Rn ×R ×Rs × Rns be an open domain, and let G : D → Rs be a
real analytic mapping. Let D0 ⊂ Rn be an open domain and let f : D0 → Rs be a
real analytic mapping so that the “1-graph”

(11) Γf = {(x, y0, f(x), Df(x)) | x ∈ D0}

lies in D for some constant y0. (Here, Df(x) ∈ Rns, the Jacobian of f, is described
by the condition that pa

i (Df(x)) = ∂fa(x)/∂xi.)
Then there exists an open neighborhood D1 ⊂ D0 × R of D0 × {y0} and a real

analytic mapping F : D1 → Rs which satisfies the P.D.E. with initial condition

(12)
∂F/∂y = G(x, y, F, ∂F/∂x)

F (x, y0) = f(x) for all x ∈ D0.

Moreover, F is unique in the sense that any other real-analytic solution of (12)
agrees with F on some neighborhood of D0 × {y0}.

We shall not prove the Cauchy–Kowalevski theorem here, but refer the reader to
other sources, such as Trêves [1975] or Spivak [1979]. We remark, however, that the
assumption of real analyticity is necessary in both the function G (which defines
the system of P.D.E.) and the initial condition f . In the smooth category, there
are examples where the existence part of the above statement fails and there are
other examples where the uniqueness part of the above statement fails.

We now turn to the statement of the Cartan–Kähler theorem. If I ⊂ Ω∗(M)
is a differential ideal, we shall say that an integral manifold of I, V ⊂ M , is
a Kähler-regular integral manifold if the tangent space TvV is a Kähler-regular
integral element of I for all v ∈ V . If V is a connected, Kähler-regular integral
manifold of I, then we define r(V ) to be r(TvV ) where v is any element of V .
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Theorem 2.2 (Cartan–Kähler). Let I ⊂ Ω∗(M) be a real analytic differential
ideal. Let P ⊂ M be a connected, p-dimensional, real analytic, Kähler-regular
integral manifold of I.

Suppose that r = r(P ) is a non-negative integer. Let R ⊂ M be a real analytic
submanifold of M which is of codimension r, which contains P , and which satisfies
the condition that TxR and H(TxP ) are transverse in TxM for all x ∈ P .

Then there exists a real analytic integral manifold of I, X, which is connected
and (p + 1)-dimensional and which satisfies P ⊂ X ⊂ R. This manifold is unique
in the sense that any other real analytic integral manifold of I with these properties
agrees with X on an open neighborhood of P .

Proof. The theorem is local, so it suffices to prove existence and uniqueness in
a neighborhood of a single point x0 ∈ P . Let s = dimM − (r + p + 1). (The
following proof holds with the obvious simplifications if any of p, r, or s are zero.
For simplicity of notation, we assume that they are all positive.)

Our hypothesis implies that the vector space TxR∩H(TxP ) has dimension p+1
for all x ∈ P . It follows that we may choose a local (real analytic) system of coordi-
nates centered on x0 of the form
x1, . . . , xp, y, u1, . . . , us, v1, . . . , vr so that P is given in this neighborhood by the
equations y = u = v = 0, R is given in this neighborhood by the equations
v = 0, and, for all x ∈ P , the polar space H(TxP ) is spanned by the vectors
{∂/∂xj}1≤j≤p ∪ {∂/∂y} ∪ {∂/∂vρ}1≤ρ≤r.

Now, there exists a neighborhood U of Tx0P in Gp(TM) so that every E ∈ U
with base point z ∈M has a basis of the form

Xi(E) = (∂/∂xi + qi(E)∂/∂y + pσ
i (E)∂/∂uσ + wρ

i (E)∂/∂vρ)|z.

The functions x, y, u, v, q, p, w form a coordinate system on U centered on Tx0P .
By the definition of H(Tx0P ), there exist s real analytic (p + 1)-forms κ1, . . . , κs in
I with the property that

H(Tx0P ) = {v ∈ Tx0M | κσ(v, ∂/∂x1, ∂/∂x2, . . . , ∂/∂xp) = 0 for 1 ≤ σ ≤ s}.

In fact, we may even assume that κσ(v, ∂/∂x1, ∂/∂x2, . . . , ∂/∂xp) = duσ(v) for
1 ≤ σ ≤ s and all v ∈ Tx0M . By the Kähler-regularity of Tx0P , we may assume,
by shrinking U if necessary, that, for all E ∈ Vp(I) ∩U with base point z ∈M , we
have

H(E) = {v ∈ TzM | κσ(v, X1(E), X2(E), . . . , Wp(E)) = 0 for 1 ≤ σ ≤ s}.

If we seek v ∈ H(E) of the form

v = (a∂/∂y + bσ∂/∂uσ + cρ∂/∂vρ)|z,

then the s equations κσ(v, X1(E), X2(E), . . . , Xp(E)) = 0 are, of course, linear
equations for the quantities a, b, and c of the form

Aσ(E)a + Bσ
τ (E)bτ + Cσ

ρ (E)cρ = 0.

Again, by hypothesis, when E = Tx0P these s equations are linearly independent
and reduce to the equations bσ = 0. Thus, by shrinking U if necessary, we may
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assume that the s×s matrix B(E) = (Bσ
τ (E)) is invertible for all E ∈ U . It follows

that there exist unique real analytic functions Gσ on U so that, for each E ∈ U
based at z ∈M , the vector Y (E) = (∂/∂y + Gσ(E)∂/∂uσ)|z satisfies

κσ(Y (E), X1(E), X2(E), . . . , Xp(E)) = 0.

Since the functions x, y, u, v, q, p, w form a coordinate system on U centered on
Tx0P , we may regard the functions Gσ as functions of these variables.

We first show that there exists a real analytic submanifold of R of the form
v = 0, u = F (x, y) on which the forms κσ vanish. Note that the following vectors
would be a basis of the tangent space to such a submanifold at the point z(x, y) =
(x, y, F (x, y), 0):

Xi(x, y) = (∂/∂xi + ∂iF
σ(x, y)∂/∂uσ)|z(x,y)

Y (x, y) = (∂/∂y + ∂yF σ(x, y)∂/∂uσ)|z(x,y).

It follows that the function F would have to be a solution to the system of P.D.E.
given by

(13) ∂yF σ = Gσ(x, y, F, 0, 0, ∂xF, 0).

Moreover, in order that the submanifold contain P (which is given by the equations
y = u = v = 0), it is necessary that the function F satisfy the initial condition

(14) F (x, 0) = 0.

Conversely, if F satisfies (13) and (14), then the submanifold of R given by v = 0 and
u = F (x, y) will both contain P and be an integral of the set of forms {κσ}1≤σ≤s.

By the Cauchy–Kowalevski theorem, there exists a unique real analytic solution
F of (13) and (14). We let X ⊂ R denote the (unique) submanifold of dimension
p + 1 constructed by this method. Replacing the functions u in our coordinate
system by the functions u − F (x, y) will not disturb any of our normalizations so
far and allows us to suppose, as we shall for the remainder of the proof, that X is
described by the equations u = v = 0.

We must now show that X is an integral manifold of I. We have already seen
that X is the unique connected real analytic submanifold of dimension p + 1 which
satisfies P ⊂ X ⊂ R and is an integral of the forms {κσ}1≤σ≤s. We now show that
all of the p-forms in I vanish on X.

Again using the Kähler-regularity of Tx0P , let β1 , . . . , βa be a set of real analytic
p-forms in I so that the functions fc(E) = βc(X1(E), . . . , Xp(E)) for 1 ≤ c ≤
a have linearly independent differentials on U and have the locus Vp(I) ∩ U as
their set of common zeros. (We may have to shrink U once more to do this.)
Since Tx0X lies in Vp+1(I) by construction, Proposition 1.8 shows that Tx0X is
Kähler-ordinary. In fact, the proof of Proposition 1.8 shows that the (p + 1)-forms
{βc ∧ dy}1≤c≤a ∪ {κσ}1≤σ≤s have Vp+1(I) ∩ U+ as their set of ordinary common
zeros in some neighborhood U+ of Tx0X in Gp+1(TM). Thus, in order to show that
X is an integral manifold of I, it suffices to show that the forms {βc ∧ dy}1≤c≤a

vanish on X.
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Shrinking U+ if necessary, we may suppose that every E+ ∈ U+ has a basis

X1(E+), X2(E+), . . . , Xp(E+), Y (E+)

that is dual to the basis of 1-forms dx1, dx2, . . . , dxp, dy. If we set

Bc(E+) = βc ∧ dy(X1(E+), X2(E+), . . . , Xp(E+), Y (E+))

Kσ(E+) = κσ(X1(E+), X2(E+), . . . , Xp(E+), Y (E+)),

then we have

Vp+1(I) ∩ U+ = {E+ ∈ U+ | Bc(E+) = Kσ(E+) = 0}.

Since I is an ideal, the forms βc∧dxi are also in I and hence vanish on Vp+1(I)∩U+.
Thus, if we set

Bci(E+) = βc ∧ dxi(X1(E+), X2(E+), . . . , Xp(E+), Y (E+)),

then the functions Bci are in the ideal generated by the functions Bc and Kσ . It
follows that there exist real analytic functions A and L on U+ so that

Bci = Aci
b Bb + Lci

σ Kσ.

Since Kσ(TzX) = 0 for all z ∈ X by construction, it follows that

Bci(TzX) = Aci
b (TzX)Bb(TzX)

for all z ∈ X.
Since I is differentially closed, the forms dβc are in I. Thus, if we set

Dc(E+) = dβc(X1(E+), X2(E+), . . . , Xp(E+), Y (E+)),

there must exist functions G and H on U+ so that

Dc = Gc
bB

b + Hc
σKσ.

Again, since Kσ(TzX) = 0, we must have

Dc(TzX) = Gc
b(TzX)Bb(TzX)

for all z ∈ X.
Now, if we restrict the forms βc to X, then we have an expansion of the form

βc|X = Bc(x, y)dx1 ∧ · · · ∧ dxp

+
∑

i

(−1)p−i+1Bci(x, y)dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxp ∧ dy,

where, for z = (x, y, 0, 0) ∈ X, we have set Bc(x, y) = Bc(TzX) and Bci(x, y) =
Bci(TzX). We also have the formula

dβc|X = (−1)p

(
∂yBc(x, y) +

∑
i

∂iB
ci(x, y)

)
dx1 ∧ · · · ∧ dxp ∧ dy

= Dc(x, y)dx1 ∧ · · · ∧ dxp ∧ dy,
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where we have written Dc(x, y) = Dc(TzX) for z as before. Using the formulas

Dc(x, y) = Gc
b(x, y)Bb(x, y)

Bci(x, y) = Aci
b (x, y)Bb(x, y),

we see that the functions Bc(x, y) satisfy a linear system of P.D.E. of the form

∂yBc(x, y) = Ãci
b (x, y)∂iB

b(x, y) + G̃c
b(x, y)Bb(x, y)

for some functions Ã and G̃ on X. Moreover, since TzX is an integral element of
I when y = 0, we have the initial conditions Bc(x, 0) = 0. By the uniqueness part
of the Cauchy–Kowalevski theorem and the fact that all of the functions involved
are real-analytic, it follows that the functions Bc(x, y) must vanish identically. In
turn, this implies that the forms βc vanish on X. Hence X is an integral manifold
of I, as we wished to show. Since we have already established uniqueness, we are
done. �

The role of the “restraining manifold” R in the Cartan–Kähler theorem is to
convert the “underdetermined” Cauchy problem one would otherwise encounter in
extending P to a (p + 1)-dimensional integral to a determined problem. In the
coordinate system we introduced in the proof, we could have taken, instead of R,
which was defined by the equations vρ = 0, the submanifold R̃, defined by the
equations vρ = fρ(x, y) where the functions fρ are “small” but otherwise arbitrary
real analytic functions of the p + 1 variables (x1, x2, . . . , xp, y). The construction
in the above proof would then have lead to an integral manifold X̃ of dimension
p + 1 defined locally by equations uσ = gσ(x, y) and vρ = fρ(x, y). In this sense,
the (p+1)-dimensional extensions of a given p-dimensional, Kähler-regular integral
manifold P of I depend on r(P ) functions of p + 1 variables.

The Cartan–Kähler theorem has the following extremely useful corollary. (In
fact, this corollary is used more often than Theorem 2.2 and is often called the
Cartan–Kähler theorem, even in this book.)

Corollary 2.3. Let I be an analytic differential ideal on a manifold M . Let E ⊂
TxM be an ordinary integral element of I. Then there exists an integral manifold
of I which passes through x and whose tangent space at x is E.

Proof. Assume that the dimension of E is n and let (0)x = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂
En = E ⊂ TxM be an ordinary integral flag. Suppose that, for some p < n, we
have found a p-dimensional, regular, real analytic integral manifold Xp of I which
passes through x and which satisfies TxXp = Ep. Then it is easy to see that there
exists a real analytic manifold Rp ⊂M which contains Xp, is of codimension r(Ep),
and satisfies TxRp∩H(Ep) = Ep+1. Shrinking Xp if necessary, we may assume that
TzRp is transverse to H(TzXp) for all z ∈ Xp. Applying Theorem 2.2, we see that
there exists a real analytic integral manifold of I of dimension (p + 1), Xp+1, with
the property that TxXp+1 = Ep+1. If p + 1 < n, then Ep+1 is a Kähler-regular
integral element of I and hence, by shrinking Xp+1 if necessary, we may assume
that Xp+1 is a (p + 1)-dimensional, Kähler-regular, real analytic integral manifold
of I. If p + 1 = n, then Xp+1 is the desired integral manifold. �

We conclude this section by explaining some classical terminology regarding the
“generality” of the space of ordinary integral manifolds of an analytic differential
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system I. For simplicity, let us suppose that I is a real analytic differential system
on a manifold M and that I contains no non-zero 0-forms. Let (0)z = E0 ⊂ E1 ⊂
· · · ⊂ En ⊂ TzM be an ordinary integral flag of I. As usual, for 0 ≤ k ≤ n− 1, let
ck be the codimension of H(Ek) in TzM . For convenience of notation, let us set
c−1 = 0 and cn = s = dimM − n. Then we may choose a z-centered coordinate
system on some z-neighborhood of the form x1, x2, . . . , xn, u1, u2, . . . , us so that Ek

is spanned by the vectors {∂/∂xj}1≤j≤k and so that, for k < n,

H(Ek) = {v ∈ TzM | dua(v) = 0 for all a ≤ ck}.

For any integer a between 1 and s, let λ(a), the level of a, be the integer k
between 0 and n which satisfies ck−1 < a ≤ ck. The number of integers of level k
is clearly ck − ck−1. The (non-negative) number sk = ck − ck−1 is called the kth

Cartan character of the given integral flag.
Let Ω = dx1∧dx2∧ · · ·∧dxn and let Vn(I, Ω) denote the space of n-dimensional

integral elements of I on which Ω does not vanish. For each Ẽ ∈ Vn(I, Ω), let
us define Ẽk = {v ∈ Ẽ | dxj(v) = 0 for all j > k}. Then for each k, the map
Ẽ �→ Ẽk is a continuous mapping from Vn(I, Ω) to Vk(I). It follows that there
exists a (connected) neighborhood U of En in Vn(I, Ω) with the property that Ẽk

is Kähler-regular for all k < n and all Ẽ ∈ U . By shrinking U if necessary, we may
even suppose that the 1-forms {dxj}1≤j≤n and {dua}a>ck are linearly independent
on H(Ẽk) for all k < n and all Ẽ ∈ U .

We now want to give a description of the collection C of real analytic n-dimensional
integral manifolds of I whose tangent spaces all belong to U and which intersect
the locus x = 0. By Corollary 2.3, we know that C is non-empty. If X belongs to C,
then locally, we may describe X by equations of the form ua = F a(x1, x2, . . . , xn).
If the index a has level k, let us define fa to be the function of k variables given
by fa(x1, x2, . . . , xk) = F a(x1, x2, . . . , xk, 0, 0, . . . , 0). By convention, for level 0 we
speak of “functions of 0 variables” as “constants”.) Then the collection {fa}1≤a≤s

is a set of s0 constants, s1 functions of 1 variable, s2 functions of 2 variables, . . . ,
and sn functions of n variables.

We now claim that the collection {fa}1≤a≤s characterizes X in the sense that
any X̃ in C which gives rise to the same collection of functions {fa}1≤a≤s agrees
with X on a neighborhood of the point (x, u) = (0, F (0)). Moreover, the functions
in the collection {fa}1≤a≤s are required to be “small”, but are otherwise arbitrary.
It is in this sense that C is parametrized by s0 constants, s1 functions of 1 variable,
s2 functions of 2 variables, . . . , and sn functions of n variables. It is common to
interpret this as meaning that the local n-dimensional integrals of I depend on
s0 constants, s1 functions of 1 variable, s2 functions of 2 variables, . . . , and sn

functions of n variables.
To demonstrate our claim, let {fa}1≤a≤s be a collection of real analytic functions

which are suitably “small” and where fa is a function of the variables x1, x2, . . . , xλ(a).
For 1 ≤ k ≤ n, define the manifold Rk to be the locus of the equations xk+1 =
xk+2 = · · · = xn = 0 and ua = fa(x1, . . . , xk, 0, . . . , 0) where a ranges over all in-
dices of level greater than or equal to k. The codimension of Rk is n−k+(s−ck−1) =
r(Ek−1). Define X0 to be the point (x, u) = (0, f(0)). By sucessive applications of
the Cartan–Kähler theorem, we may construct a unique nested sequence of integral
manifolds of I, {Xk}0≤k≤n, which also satisfy the conditions Xk ⊂ Rk. (It is at
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this stage that we use the assumption of “smallness” in order to guarantee that the
necessary transversality conditions hold.) This clearly demonstrates our claim.

The following proposition shows that the sequence of Cartan characters has an
invariant meaning.

Proposition 2.4. Let I ⊂ Ω∗(M) be a smooth differential system which contains
no 0-forms. Let Z ⊂ Vn(I) be a component of the space of ordinary integral ele-
ments. Then the sequence of Cartan characters (s0, s1, . . . , sn) is the same for all
ordinary integral flags (0)z ⊂ E1 ⊂ · · · ⊂ En with En ∈ Z.

Proof. This follows immediately from Proposition 1.13 and the definitions of the
sk, namely: s0 = c0, sk = ck − ck−1 for 1 ≤ k < n, and sn = s− cn−1.

Usually, the component Z must be understood from context when such state-
ments as “The system I has Cartan characters (s0, s1, . . . , sn).” are made. In fact,
in most cases of interest, the space of ordinary, n-dimensional integral elements of
I has only one component anyway.

æ

§3. Examples.

In this section, we give some applications of the Cartan–Kähler theorem. Some
of the examples are included merely to demonstrate techniques for calculating the
quantities one must calculate in order to apply the Cartan–Kähler theorem, while
others are more substantial. The most important example in this section is the
application of the Cartan–Kähler theorem to the problem of isometric embedding
(see Example 3.8).

Example 3.1 (The Frobenius theorem). Let M be a manifold of dimension m =
n + s and let I be a differential system which is generated algebraically in degree
1 by a Pfaffian system I ⊂ T ∗M of rank s. Then at each x ∈ M , there is a
unique integral element of dimension n, namely I⊥x ∈ TxM . In fact, every integral
element of I based at x must be a subspace of I⊥x , since H((0)x) = I⊥x . Thus, if
(0)x ⊂ E1 ⊂ · · · ⊂ En = I⊥x is an integral flag, then we have H(Ep) = I⊥x for all
0 ≤ p ≤ n. Thus cp = s for all p. It follows by Theorem 1.11 that Vn(I) must have
codimension at least ns in Gn(TM). On the other hand, since there is a unique
integral element of I at each point of M , it follows that Vn(I) is a smooth manifold
of dimension n+s while Gn(TM) has dimension n+s+ns. Thus, Vn(I) is a smooth
submanifold of codimension ns in Gn(TM). By Theorem 1.11, it follows that all
of the elements of Vn(I) are ordinary. If we now assume that I is real analytic,
then the Cartan–Kähler theorem applies (in the form of Corollary 2.3) to show that
there exists an n-dimensional integral manifold of I passing through each point of
M . The characters are s0 = s and sp = 0 for all p > 0. Thus, according to our
discussion at the end of Section 2, the local integral manifolds of I of dimension n
depend on s constants. This is in accordance with the usual theory of foliations.

The assumption of analyticity is, of course, not necessary. We have already
proved the Frobenius theorem in the smooth category in Chapter II. The reader
might find it helpful to compare this proof with the proof given there.
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Example 3.2 (Orthogonal coordinates). Let g be a Riemannian metric on a manifold
N of dimension n. We wish to know when there exist local coordinates x1, x2, . . . , xn

on N so that the metric takes the diagonal form

g = g11(dx1)2 + g22(dx2)2 + · · ·+ gnn(dxn)2.

Equivalently, we wish the coordinate vector fields {∂/∂xi}1≤i≤n to be orthogonal
with respect to the metric. Such a local coordinate system is said to be orthogonal.

If x1, x2, . . . , xn is such an orthogonal coordinate system, then the set of 1-forms
ηi =

√
giidxi is a local orthonormal coframing of N . These forms clearly satisfy the

equations ηi∧dηi = 0. Conversely, if η1, η2, . . . , ηn is a local orthonormal coframing
on M which satisfies the equations ηi∧dηi = 0, then the Frobenius theorem implies
that there exist local functions x1, x2, . . . , xn on N so that ηi = fidxi (no summa-
tion) for some non-zero functions fi. It follows that the functions x1, x2, . . . , xn

form a local orthogonal coordinate system on N . Thus, our problem is essentially
equivalent to the problem of finding local orthonormal coframes η1, η2, . . . , ηn which
satisfy the equations ηi ∧ dηi = 0.

Let F → N denote the bundle of orthonormal coframes for the metric g on N .
Thus, for each x ∈ N , the fiber Fx consists of the set of all orthonormal coframings
of the tangent space TxN . The bundle F has a canonical coframing ωi, ωij = −ωji

which satisfies the structure equations of É. Cartan:

dωi = −
∑

j

ωij ∧ ωj

dωij = −
∑

k

ωik ∧ ωkj + 1
2

∑
k,l

Rijkl ωk ∧ ωl.

The forms ωi have the “reproducing property” described as follows: If η =
(η1, η2, . . . , ηn) is any local orthonormal coframing defined on an open set U ⊂M ,
then η may be regarded as a local section η : U → F of F . Then the formula
η∗(ωi) = ηi holds.

We set Ω = ω1∧ω2∧ · · ·∧ωn. Notice that Ω does not vanish on the submanifold
η(U) ⊂ F since η∗(Ω) = η1 ∧ η2 ∧ · · · ∧ ηn �= 0. Conversely, it is clear that any
n-dimensional submanifold X ⊂ F on which Ω does not vanish is locally of the
form η(U) for some section η. Let I denote the differential system on F generated
by the n 3-forms Θi = ωi ∧ dωi. If X ⊂ F is an integral of the system I on which
Ω does not vanish, then clearly X is locally of the form η(U) where η is a local
orthonormal coframing satisfying our desired equations ηi ∧ dηi = 0. Conversely, a
local orthonormal coframing η satisfying ηi ∧dηi = 0 has the property that η(U) is
an n-dimensional integral manifold of I on which Ω does not vanish.

We proceed to analyse the n-dimensional integral manifolds of I on which Ω
does not vanish. Note that I is generated algebraically by the 3-forms Θi and the
4-forms Ψi = dΘi. Let E ∈ Vn(I, Ω) be based at f ∈ F . When we restrict the
forms ωi, ωij to E, the forms ωi remain linearly independent, and we have relations
of the form

Θi = −(
∑

j

ωij ∧ ωj) ∧ ωi = 0.
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It follows that there exist 1-forms λi =
∑

j Lijωj so that (
∑

j ωij ∧ ωj) = λi ∧ ωi.
Collecting terms, we have the equation∑

j

(ωij + Lijωi − Ljiωj) ∧ ωj = 0.

Since the forms ϕij = (ωij + Lijωi − Ljiωj) are skew-symmetric in their indices, it
follows that the above equations can only hold if we have

ωij + Lijωi − Ljiωj = 0.

Conversely, we claim that if {Lij}i 	=j is any set of n2−n numbers, then the n-plane
E ⊂ TfF annihilated by the 1-forms ϕij = (ωij + Lijωi − Ljiωj) is an integral
element of I on which Ω does not vanish. To see this, note that for such E, we
have the identity −dωi = (

∑
j ωij ∧ ωj) = λi ∧ ωi. It immediately follows that

Θi = ωi ∧ dωi and Ψi = dωi ∧ dωi must vanish on E.
It follows that the space of integral elements of I which are based at a point of F

is naturally a smooth manifold of dimension n2 − n. Moreover, the space Vn(I, Ω)
is a smooth manifold of dimension dimF + (n2 − n). Thus, the codimension of
Vn(I, Ω) in Gn(F) is (n− 2)

(
n
2

)
.

When n = 2, we are looking for integrals of dimension 2. However, I has no
non-zero forms of degree less than 3. It follows that any surface in F is an integral
of I.

From now on, we assume that n ≥ 3. Since dimF = 1
2(n2 + n), if (0)f ⊂ E1 ⊂

· · · ⊂ En is an integral flag, it follows that cp ≤
(
n
2

)
for all 0 ≤ p ≤ n. However,

since I contains no non-zero forms of degree less than 3, it follows that c0 = c1 = 0.
Moreover, since I contains only n 3-forms, it follows that c2 ≤ n. Thus, we have

the inequality

c0 + c1 + c2 + · · ·+ cn−1 ≤ n + (n− 3)
(

n
2

)
It follows, by Theorem 1.11, that for n ≥ 4, none of the elements of Vn(I, Ω)

are ordinary. Thus, the Cartan–Kähler theorem cannot be directly applied in the
case where n ≥ 4. This is to be expected since a Riemannian metric in n variables
has

(
n
2

)
“off diagonal” components in a general coordinate system and a choice

of coordinates depends on only n functions of n variables. Thus, if n <
(
n
2

)
,

(which holds when n ≥ 4) we do not expect to be able to diagonalize the “generic”
Riemannian metric in n variables by a change of coordinates.

Let us now specialize to the case n = 3. By Theorem 1.11 and the calculation
above, an integral element E ∈ V3(I, Ω) is an ordinary integral element if and only
if it contains a 2-dimensional integral element E2 whose polar space has codimen-
sion 3. Now a basis for the 3-forms in I can be taken to be {ω23 ∧ ω2 ∧ ω3, ω31 ∧
ω3 ∧ω1, ω12 ∧ ω1 ∧ω2}. If E ∈ V3(I, Ω) is given, then let v1, v2 ∈ E be two vectors
which span a 2-plane E2 on which none of the 2-forms {ω2 ∧ ω3, ω3 ∧ ω1, ω1 ∧ ω2}
vanish. Then it immediately follows that the polar equations of E2 have rank 3.
Thus E is ordinary. This yields the following theorem.

Theorem 3.3 (Cartan). Let (M3, g) be a real analytic Riemannian metric. Let S
be a real analytic surface in M and let η : S → F be a real analytic coframing along
S so that none of the 2-forms {η2 ∧ η3, η3 ∧ η1, η1 ∧ η2} vanishes when restricted
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to S. Then there is an open neighborhood U of S in M and a unique real analytic
extension of η to U so that the equations ηi ∧ dηi = 0 hold.

Proof. The surface η(S) ⊂ F is a Kähler-regular integral of I by the above calcu-
lation. The rest follows from the Cartan–Kähler theorem.

Corollary 3.4. Let (M3, g) be a real analytic Riemannian metric. Then every
point of M lies in a neighborhood on which there exists a real analytic orthogonal
coordinate system for g.

Remark. Theorem 3.3 has been proved in the smooth category by DeTurck and
Yang [1984]. Their proof relies on the theory of the characteristic variety of an
exterior differential system, and in that context, this example will be revisited in
Chapter V. For example, the conditions on the ηi ∧ ηj in the above theorem say
exactly that S is non-characteristic.

Example 3.5 (Special Lagrangian geometry). This example is due to Harvey and
Lawson [1982]. Let M = Cn with complex coordinates z1, z2, . . . , zn. Let I be the
ideal generated by the 2-form Φ and the n-form Ψ where

Φ = (
√
−1/2)(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + · · ·+ dzn ∧ dz̄n)

and
Ψ = Re(dz1 ∧ dz2 ∧ · · · ∧ dzn)

= 1
2(dz1 ∧ dz2 ∧ · · · ∧ dzn + dz̄1 ∧ dz̄2 ∧ · · · ∧ dz̄n).

Note that I is invariant under the group of motions of Cn generated by the trans-
lations and the rotations by elements of SU(n).

We want to examine the set Vp(I) for all p. First assume that E ∈ Vp(I) where
p is less than n. Let e1, e2, . . . , ep be an orthonormal basis for E, where we use the
standard inner product on Cn. Since, for any two vectors v, w ∈ Cn, the formula
Φ(v, w) = 〈

√
−1 v, w〉 holds, it follows that 〈

√
−1 ej , ek〉 = 0 for all j and k. Thus,

the vectors e1, e2, . . . , ep are Hermitian orthogonal as well as Euclidean orthogonal.
Since p < n, it follows that by applying a rotation from SU(n), we may assume
that ek = ∂/∂xk where we define the usual real coordinates on Cn by the equation
zk = xk +

√
−1 yk. It follows that the group of motions of Cn which preserve I

acts transitively on the space Vp(I) for all p < n. In particular, the polar spaces of
all of the elements of Vp(I) have the same dimension. Since I contains no non-zero
0-forms, Proposition 1.10 now shows that every integral element of I of dimension
less than n is Kähler-regular. Thus, every integral element of I of dimension n is
ordinary.

For each p < n, let Ep be spanned by the vectors {∂/∂xk}k≤p. Then it is easy
to compute that, for p < n− 1,

H(Ep) = {v ∈ TzCn | dyk(v) = 0 for all k ≤ p}.

On the other hand, we have

H(En−1) = {v ∈ TzCn | dyk(v) = 0 for all k ≤ n− 1 and dxn(v) = 0}.

Thus, cp = p for all p < n − 1 and cn−1 = n. In particular, note that there are
no integral elements of dimension n + 1 or greater, and each E ∈ Vn(I) is the
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polar space of any of its (n − 1)-dimensional subspaces. It follows that the group
of motions of Cn which preserve I acts transitively on Vn(I) as well.

Using the technique of calibrations, Harvey and Lawson show that any n-dimensional
integral manifold Nn ⊂ Cn of I is absolutely area minimizing with respect to com-
pact variations. They call such manifolds special Lagrangian. We may now combine
our discussion of the integral elements of I with the Cartan–Kähler theorem to
prove one of their results:

Theorem 3.6. Every (n − 1)-dimensional real analytic submanifold P ⊂ Cn on
which Φ vanishes lies in a unique real analytic n-dimensional integral manifold of
I.
Remark. Because of the area minimizing property of the n-dimensional integrals
of I, it follows that every integral of I is real analytic. Thus, if P ⊂ Cn−1 is an
integral of Φ which is not real analytic, then there may be no extension of P to
an n-dimensional integral of I in Cn. As an example of such a P , consider the
submanifold defined by the equations

zn = y1 = y2 = · · · = yn−2 = yn−1 − f(xn−1) = 0

where f is a smooth function of xn−1 which is not real analytic. This shows that
the assumption of real analyticity in the Cartan–Kähler theorem cannot be omitted
in general.

Example 3.7 (An equation with degenerate symbol). This example is a generaliza-
tion of Example 1.12. Let a vector field V be given in R3. Let λ be a fixed constant.
We wish to determine whether there exists a vector field U in R3 which satisfies
the system of 3 equations

curl U + λU = V.

Note that even though this is three equations for three unknowns, this set of equa-
tions cannot be put in Cauchy–Kowalevski form. In fact, computing the divergence
of both sides of the given equation, we see that U must satisfy a fourth equation

λdiv U = div V.

Of course, if λ = 0, then a necessary and sufficient condition for the existence of
such a vector field U is that div V = 0. If λ �= 0, then the situation is more subtle.

We shall set up a differential system whose 3-dimensional integrals correspond
to the solutions of our problem. Let R6 be given coordinates x1, x2, x3, u1, u2, u3.
We regard x1, x2, x3 as coordinates on R3. If the components of the vector field V
are (v1 , v2, v3), let us define the forms

α = u1dx1 + u2dx2 + u3dx3

β = u1dx2 ∧ dx3 + u2dx3 ∧ dx1 + u3dx1 ∧ dx2

γ = v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2.

Now let I be the differential system on R6 generated by the 2-form Θ = dα+λβ−
γ. Any 3-dimensional integral manifold of Θ on which the form Ω = dx1∧dx2∧dx3

does not vanish is locally a graph of the form (x, u(x)) where the components of
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u(x) determine a vector field U on R3 which satisfies the equation curl U +λU = V .
Conversely, any local solution of this P.D.E. gives rise to an integral of I by reversing
this process.

We now turn to an analysis of the integral elements of I. The pair of forms
Θ, dΘ clearly suffice to generate I algebraically. The cases where λ vanishes or
does not vanish are markedly different.

If λ = 0, then dΘ = −dγ = −(div V )Ω. Thus, if div V �= 0, then there cannot
be any integral of I on which Ω does not vanish.

On the other hand, suppose divV = 0. Then I is generated by Θ alone since
then dΘ ≡ 0. If E ∈ V3(I, Ω), then the annihilator of E is spanned by three 1-forms
of the form πi = dui −

∑
j Ai

jdxj for some numbers A. It follows that, at the base
point of E, the form Θ can be written in the form

Θ = π1 ∧ dx1 + π2 ∧ dx2 + π3 ∧ dx3.

Setting ωi = dxi, we may apply Proposition 1.15 to show that the characters of
the associated integral flag satisfy cp = p for all 0 ≤ p ≤ 3. On the other hand, it
is clear from this formula for Θ that there exists a 6-parameter family of integral
elements of Θ at each point of R6. By Theorem 1.11, it follows that all of the
elements of V3(I, Ω) are ordinary. The character sequence is given by s0 = 0 and
sp = 1 for p = 1, 2, 3. At this point, if we assumed that V were real analytic, we
could apply the Cartan–Kähler theorem to show that there exist local solutions to
our original problem. However, in this case, an application of the Poincaré lemma
will suffice even without the assumption of real analyticity.

Now let us turn to the case where λ �= 0. If, for any (i, j, k) which is an even
permutation of (1, 2, 3), we set

πi = dui + 1
2 [(λuj − vj)dxk − (λuk − vk)dxj]− λ−1∂iv

idxi;

then
Θ = π1 ∧ dx1 + π2 ∧ dx2 + π3 ∧ dx3

λ−1dΘ = π1 ∧ dx2 ∧ dx3 + π2 ∧ dx3 ∧ dx1 + π3 ∧ dx1 ∧ dx2.

It follows that any E ∈ V3(I, Ω) is annihilated by 1-forms of the form ϑi =
πi−

∑
j pijdxj where, in order to have ΘE = 0, we must have pij = pji and, in order

to ahve (dΘ)E = 0, we must have p11 + p22 + p33 = 0. Thus V3(I, Ω) is a smooth
manifold of codimension 4 in G3(TR6). On the other hand, by Proposition 1.15, it
follows that c0 = 0, c1 = 1, and c2 = 3 for the integral flag associated to the choice
ωi = dxi. Since c0 + c1 + c2 = 4, it follows that all of the elements of V3(I, Ω) are
ordinary.

By the Cartan–Kähler theorem, it follows that, if V is real analytic, then there
exist (analytic) local solutions to the equation curl U + λU = V for all non-zero
constants λ.

Example 3.8 (Isometric embedding). We now wish to consider the problem of lo-
cally isometrically embedding an n-dimensional manifold M with a given Riemann-
ian metric g into Euclidean space EN where N is some integer yet to be specified.
Note that the condition that a map u : M → EN be an isometric embedding
is a set of non-linear, first-order partial differential equations for u. Precisely, if
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x1, x2, . . . , xn is a set of local coordinates on M and g =
∑

gijdxi ◦ dxj, then the
equations that u must satisfy are gij = ∂iu·∂ju. This is 1

2n(n+1) for the N unknown
components of u. Thus, we do not expect to have any solution if N < 1

2n(n + 1).
It is the contention of the Cartan–Janet isometric embedding theorem (which we
prove below) that such a local isometric embedding is possible if the metric g is
real analytic and N = 1

2n(n + 1). Note that even though the isometric embedding
system is determined if N = 1

2n(n + 1), it cannot be put in Cauchy–Kowalevski
form for n > 1.

We begin by writing down the structure equations for g. Since our results will
be local, we may as well assume that we can choose an orthonormal coframing
η1, η2, . . . , ηn on M so that the equation g = (η1)2 + (η2)2 + · · ·+ (ηn)2 holds. By
the fundamental lemma of Riemannian geometry, there exist unique 1-forms on M ,
ηij = −ηji, so that the first structure equations of É. Cartan hold:

dηi = −
∑

j

ηij ∧ ηj.

The second structure equations of É. Cartan also hold:

dηij + −
∑

k

ηik ∧ ηkj + 1
2

∑
k,l

Rijkl ηk ∧ ηl.

Here, the functions Rijkl are the components of the Riemann curvature tensor and
satisfy the usual symmetries

Rijkl = −Rjikl = −Rijlk

Rijkl + Riklj + Riljk = 0.

Let Fn(EN) denote the bundle over EN whose elements consist of the (n + 1)-
tuples (x; e1, e2, . . . , en) where x ∈ EN and e1, e2, . . . , en are an orthonormal set of
vectors in EN . Note that Fn(EN) is diffeomorphic to EN×SO(N)/SO(N −n). For
several reasons, it is more convenient to work on Fn(EN) than on the full frame
bundle of EN . We shall adopt the index ranges 1 ≤ i, j, k, l ≤ n < a, b, c ≤ N .
Let U ⊂ Fn(EN) be an open set on which there exist real analytic vector-valued
functions ea : U → EN with the property that for all f = (x; e1, e2, . . . , en) ∈ U ,
the vectors e1, e2, . . . , en, en+1(f), . . . , eN(f) form an orthonormal basis of EN . We
also regard the components of f as giving vector-valued functions x, ei : U → EN .
It follows that we may define a set of 1-forms on U by the formulae

ωi = ei · dx

ωa = ea · dx

ωij = ei · dej = −ωji

ωia = ei · dea = −ωai = −ea · dei

ωab = ea · deb = −ωba.
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Of these forms, the set {ωi} ∪ {ωa} ∪ {ωij}i<j ∪ {ωai} forms a coframing of U . We
shall have need of the following structure equations

dωi = −
∑

j

ωij ∧ ωj −
∑

b

ωib ∧ ωb

dωa = −
∑

j

ωaj ∧ ωj −
∑

b

ωab ∧ ωb

dωij = −
∑

k

ωik ∧ ωkj −
∑

b

ωib ∧ ωbj.

Now, on M × U , consider the differential system I− generated by the 1-forms
{ωi − ηi}i≤n ∪ {ωa}a>n. Let Ω = ω1 ∧ ω2 ∧ · · · ∧ ωn.

Proposition 3.9. Any n-dimensional integral of I− on which Ω does not vanish
is locally the graph of a function f : M → U with the property that the composition
x ◦ f : M → EN is a local isometric embedding. Conversely, every local isometric
embedding u : M → EN arises in a unique way from this construction.

Proof. First suppose that we have an isometric embedding u : M → EN . Let {Ei}
be the orthonormal frame field on M which is dual to the coframing {ηi}. For
each z ∈ M , define f(z) = (u(z); du(E1(z)), . . . , du(En(z))). Now consider the
graph Γu = {(z, f(z)) | z ∈ M} ⊂ M × U . Clearly, Γu is an integral of I− if and
only if f satisfies f∗(ωi) = ηi and f∗(ωa) = 0. However, since ea(f(z)) is normal
to the vectors du(Ei(z)) by construction, we have f∗(ωa) = (ea ◦ f) · d(x ◦ f) =
(ea ◦ f) ·du = 0. Also, since u is an isometric embedding, we have, for all v ∈ TzM ,
f∗(ωi)(v) = (ei ◦ f) · du(v) = du(Ei(z)) · du(v) = Ei(z) · v = ηi(v). Note also that,
on Γu, we have Ω = ω1 ∧ ω2 ∧ · · · ∧ ωn = η1 ∧ η2 ∧ · · · ∧ ηn. Since the latter form is
non-zero when projected onto the factor M , it follows that Ω is non-zero on Γu.

Now suppose that X ⊂ M × U is an n-dimensional integral manifold of I−
on which Ω does not vanish. Then since ωi = ηi on X, it follows that the form
η1 ∧ η2 ∧ · · · ∧ ηn also does not vanish on X. It follows that the projection X →M
onto the first factor is a local diffeomorphism. Thus we may regard X locally as the
graph of a function f :M → U . Now let u = x ◦ f . We claim that u:M → EN is an
isometry and moreover that ei ◦ f = du(Ei). This will establish both parts of the
proposition. To see these claims, note that we have f∗(ωi) = ηi and f∗(ωa) = 0.
Since f∗(ωa) = f∗(ea · dx) = (ea ◦ f) · du = 0, it follows that (ea ◦ f)(z) is normal
to du(Ei(z)) for all i and a and z ∈ M . Thus, the vectors du(Ei(z)) are linear
combinations of the vectors {(ej ◦ f)(z)}j≤n. On the other hand, for any v ∈ TzM ,
we have Ei(z) · v = ηi(v) = f∗(ωi)(v) = f∗(ei · dx)(v) = (ei ◦ f)(z) · du(v). Using
the fact that {Ei(z)} is an orthonormal basis for TzM and that {(ei ◦ f)(z)} is
an orthonormal basis for du(TzM), we see that du must be an isometry and that
ei ◦ f = du(Ei), as claimed. �

We are now going to show that any integral of I− on which Ω does not vanish is
actually an integral of a larger system I (defined below). Suppose that X is such
an n-dimensional integral. Then let us compute, on X,

0 = d(ωi − ηi) = −
∑

j

(ωij − ηij) ∧ ηj.
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Since the forms ηi are linearly independent on X and since the forms ϑij = (ωij−ηij)
are skew-symmetric in their lower indices, this implies that the forms ϑij must
vanish on X. The geometric meaning of this fact is that the Levi–Civita connection
of a Riemannian metric is the same as the connection induced by any isometric
embedding into Euclidean space.

Let us now consider the differential system I on M × U which is generated by
the set of 1-forms {ωi− ηi}i≤n ∪ {ωa}n<a∪ {ωij− ηij}i<j<n. We are going to show
that if N ≥ 1

2n(n+1), then there is an ordinary integral element of I at every point
of M × U . We begin by describing a set of forms which generate I algebraically.
Let I denote the Pfaffian system generated by the 1-forms in I. We compute that

d(ωi − ηi) ≡ 0 mod I

dωa ≡ −
∑

i

ωai ∧ ωi mod I

d(ωij − ηij) ≡
∑

a

ωai ∧ ωaj − 1
2

∑
k,l

Rijkl ωk ∧ ωl mod I .

Thus, I is generated algebraically by the 1-forms in I and the 2-forms Θa =∑
i ωai ∧ ωi and Θij =

∑
a ωai ∧ωaj − 1

2

∑
k,l Rijkl ωk ∧ωl. Let E ⊂ T(x,f)(M ×U)

be an n-dimensional integral element of I on which the form Ω does not vanish.
Then, in addition to annihilating the 1-forms in I, E must annihilate some 1-
forms of the form πai = ωai −

∑
j haijωj for some numbers haij. The condition

that Θa vanish on E is the condition that haij = haji for all a, i, and j. Using
this information, the condition that Θij also vanish on E becomes the quadratic
equations on haij: ∑

a

(haikhajl − hailhajk) = Rijkl(x).

These equations represent the Gauss equations.
Let W be the Euclidean vector space of dimension r = N − n. We can interpret

the numbers haij = haji as a collection of
(
n+1

2

)
vectors hij = (haij) in W . In

fact, we may interpret h = (haij) as an element of the vector space W ⊗ S2(Rn)
in the obvious way. If we let Kn ⊂ Λ2(Rn)⊗ Λ2(Rn) denote the space of Riemann
curvature tensors in dimension n, then there is a well defined quadratic map γ :
W ⊗ S2(Rn)→ Kn defined for h = (haij) ∈ W ⊗ S2(Rn) by

γ(h)ijkl =
∑

a

(haikhajl − hailhajk).

We shall need the following algebraic lemma, whose proof we postpone until the
end of our discussion.

Lemma 3.10. Suppose that r = N − n ≥
(
n
2

)
. Let H ⊂ W ⊗ S2(Rn) be the open

set consisting of those elements h = (haij) so that the vectors {hij | i ≤ j < n}
are linearly independent as elements of W . Then γ : H → Kn is a surjective
submersion.

Assume this lemma for the moment, we now state our main result for local
isometric embedding.
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Theorem 3.11 (Cartan-Janet). Suppose that N ≥ 1
2n(n + 1). If the Riemannian

metric g on M is real analytic, then every point of M has a neighborhood which
has a real analytic isometric embedding into EN .

Proof. By virtue of the Cartan–Kähler theorem, it suffices to show that, for every
(x, f) ∈ M × U , there exists an ordinary integral element E ∈ Vn(I, Ω) based at
(x, f). Let Z ⊂ M × U ×H denote the set of triples (x, f, h) so that the equation
γ(h) = R(x) holds where R(x) = (Rijkl(x)) ∈ Kn is the Riemann curvature tensor
at x ∈ M . By Lemma 3.10 and the implicit function theorem, Z is a smooth
submanifold of M × U × H of codimension n2(n2 − 1)/12 (= dimKn) and the
projection onto the first two factors, Z →M × U is surjective. In particular, note
that the dimension of Z is

dimZ = dim(M × U) + (N − n) · 1
2n(n + 1)− n2(n2 − 1)/12.

We define a map ε : Z → Vn(I, Ω) by letting ε(x, f, h) be the n-plane based at
(x, f) which is annihilated by the 1-forms

{ωi − ηi}i≤n ∪ {ωa}n<a ∪ {ωij − ηij}i<j≤n ∪ {πai = ωai −
∑

j

haijωj}i≤n,n<a.

It is clear that the map ε is an embedding. By our previous discussion, it maps
onto an open submanifold of Vn(I, Ω). We are now going to show that the image
ε(Z) consists entirely of ordinary integral elements.

Let E = ε(x, f, h) with (x, f, h) ∈ Z. Let Ep ⊂ E be the subspace annihilated
by the 1-forms ωi where i > p. We want to compute the codimension of H(Ep) for
all p < n. To do this, we will apply Proposition 1.15. Of course, all of the 1-forms
in I lie in the polar equations of Ep for all p. We may express the 2-forms in terms
of {πai, ωi} as follows: ∑

i

ωai ∧ ωi ≡
∑

i

πai ∧ ωi

∑
a

ωai ∧ ωaj − 1
2

∑
k,l

Rijkl ωk ∧ ωl ≡
∑
a,k

(hajkπai − haikπai) ∧ ωk + Qij

where Qij is a 2-form whose terms are either quadratic in π or else vanish at the
base point (x, f). It follows by Proposition 1.15 that the polar equations of Ep are
spanned by the 1-forms

{ωi − ηi} for i ≤ n

{ωa} for a > n

{ωij − ηij} for i < j ≤ n

{πai} for i ≤ p and a > n

{(haikπaj − hajkπai)} for k ≤ p and i < j ≤ n.

The first 3 types of terms are the same for all p ≥ 0 so they contribute N + 1
2
n(n−1)

forms for all p ≥ 0. The fourth type of term contributes pr = p(N−n) terms which
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are clearly linearly independent from the previous terms. In the fifth type of term,
the cases where the i, j indices are both less than or equal to p are obviously linear
combinations of terms of the fourth kind. The remaining terms of the fifth kind can
be broken into the subcases where either 1) i ≤ p < j ≤ n or else 2) p < i < j ≤ n.

In case 1), in view of the terms of the fourth kind, we may replace these terms
by the simplified expressions {hik · πj | i, k ≤ p < j ≤ n} where we have written
πj = (πaj) and regard πj as a W -valued 1-form (all of whose components are
linearly independent). These terms are clearly linearly independent from the terms
of the fourth kind due to the assumption that the vectors {hij | i, j < n} are linearly
independent. They contribute (n−p) · 1

2p(p+1) more terms to the polar equations.
In case 2) the remaining expressions are given by the collection

{hik · πj − hjk · πi | k ≤ p < i < j ≤ n}. Again, the assumption that the vec-
tors {hij | i, j < n} are linearly independent shows that these 1

2
p(n− p)(n− p− 1)

terms are linearly independent from all of the previous terms. It follows that the
rank of the polar equations for Ep is equal to

cp = N + 1
2n(n − 1) + rp + (n − p) · 1

2p(p + 1) + 1
2p(n − p)(n− p− 1)

= N + 1
2
n(n − 1) + rp + 1

2
pn(n− p).

We may now compute

c0 + c1 + · · ·+ cn−1 = Nn(n + 1)/2 + n2(n2 − 1)/12.

However, this is precisely the codimension of ε(Z) in Gn(T (M×U)). It now follows
from Theorem 1.11 that E is ordinary. �
Proof of Lemma 3.10. Throughout this argument, whenever p < n, we identify
Rp with the subspace of Rn consisting of those elements of Rn whose last n − p
coordinates are zero. As above, we let Kp ⊂ Λ2(Rp) ⊗ Λ2(Rp) denote the space of
elements R = (Rijkl) which satisfy the relations

Rijkl = −Rjikl = −Rijlk

Rijkl + Riklj + Riljk = 0.

Note that if p < n then Kp ⊂ Kn. It is well known that the dimension of Kp is
p2(p2 − 1)/12 for all p ≥ 0. (Actually, our calculations will contain a proof of this
result.)

Let W be an Euclidean vector space of dimension r ≥ 1
2n(n − 1). Then, as we

defined γ before, note that γ(W⊗S2(Rp)) ⊂ Kp. We are going to prove Lemma 3.10
by induction on p between the values 1 and n. Fix an element R = (Rijkl) ∈ Kn.
For each p ≤ n, we let Rp denote the element of Kp got from R by setting all of
the components with an index greater than p equal to zero.

First note that since K1 = (0), the lemma is trivially true for p = 1. Suppose
now that, for some p < n, we have shown that there is an element hp = (hp

ij) in
W ⊗ S2(Rp) with γ(hp) = Rp and with all of the vectors {hp

ij ∈ W | i ≤ j ≤ p}
linearly independent and that the differential of the mapping γ : W ⊗S2(Rp)→ Kp

is surjective at any such hp. We now try to construct a corresponding extension
hp+1. Let v1, . . . , vp be p vectors in W . Consider the equations

hp
ik · vj − hp

ij · vk = R(p+1)ijk
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where i, j, k run over all choices of indices less than or equal to p. We want to
show that there exist vectors v1, . . . , vp so that these equations hold. To see this,
note that the tensor Lijk = R(p+1)ijk in Rp ⊗ Λ2(Rp) lies in the kernel of the
skew-symmetrizing map Rp⊗Λ2(Rp)→ Λ3(Rp) by the symmetries of the Riemann
curvature tensor. It follows, by the exactness of the sequence

0 → S3(Rp)→ S2(Rp)⊗ Rp → Rp ⊗ Λ2(Rp)→ Λ3(Rp)→ 0

that there exists an element r ∈ S2(Rp) ⊗ Rp so that rikj − rijk = Lijk. Thus, it
suffices to find the vectors vi so that hp

ij · vk = rijk = rjik. By the independence
assumption on hp, such vectors vi exist. If p < n − 1 then there is even room to
choose the vectors vi so that they and the vectors hp

ij are linearly independent.
Once the vi have been chosen, we choose a vector w so that the following equations
hold:

w · hp
ij − vi · vj = R(p+1)i(p+1)j.

Again, by the independence assumption on hp and the fact that the Riemann
curvature tensor has the well-known symmetry Rijkl = Rklij, this can be done.
Also, if p < n − 1, we have room to choose w so that the vectors hp

ij, vi, w are all
linearly independent in W .

We can now define an element hp+1 of W ⊗ S2(Rp+1) by letting

hp+1
ij = hp

ij when i, j ≤ p

hp+1
(p+1)i = hp+1

i(p+1) = vi when i ≤ p

hp+1
(p+1)(p+1) = w.

It is clear that γ(hp+1) = Rp+1. Moreover, using the assumption of surjectivity
of the differential of γ : W ⊗ S2(Rp) → Kp at hp, and the explicit formula for
the equations defining the extension, it is clear that the differential of γ : W ⊗
S2(Rp+1)→ Kp+1 is surjective at hp+1 . Finally, note that if hp+1 is any element of
W⊗S2(Rp+1) where the vectors hp+1

ij with i ≤ j ≤ p are linearly independent in W ,
then the induction hypothesis implies that the differential of γ : W⊗S2(Rp)→ Kp is
surjective at the corresponding restricted element hp. Thus, by the above argument,
the differential of γ : W ⊗ S2(Rp+1)→ Kp+1 is surjective at hp+1. �
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CHAPTER IV

LINEAR DIFFERENTIAL SYSTEMS

The goal of this chapter is to develop the formalism of linear Pfaffian differential
systems in a form that will facilitate the computation of examples.

Let I be a differential ideal on a manifold M . In practice we usually seek integral
manifolds of I that satisfy a transversality condition, and this then leads to the
concept of a differential system with independence condition (I, Ω) to be explained
in Section 1. There we also introduce the fundamental concept of involution for such
systems. Recall from the proof of the Cartan–Kähler theorem in Chapter III that
integral manifolds are constructed by solving a succession of Cauchy initial value
problems. Roughly speaking, to be involutive means, according to that proof, that
the solutions to the (k + 1)st initial value problem remain solutions to the family
of kth initial value problems depending on xk+1.1 On the other hand, intuitively a
system is involutive when all of the integrability conditions implicit in the system
are satisfied. It is not obvious that these two viewpoints coincide. Although it
is relatively simple to define, the concept of involution is subtle and gaining an
understanding of it will be one of the main goals of this chapter.

In Section 2 we introduce the important concept of linearity for a differential
system with independence condition. We also introduce the linearization of an
arbitrary differential system at an integral element. This is a linear differential
system with constant coefficients that, roughly speaking, corresponds to linearizing
and freezing the coefficients of an arbitrary P.D.E. system. Both of these concepts
play a fundamental role in developing the theory.

Section 3 introduces the purely algebraic concept of a tableau. The motivation
arises from trying to extend the concept of the symbol of a P.D.E. system to general
exterior differential systems. The purely algebraic notion of involutivity of a tableau
is also defined, and we explain how this arises naturally from the consideration of
involutive differential systems.

In Section 4 we introduce the definition of the tableau AE of a differential ideal
I at an integral element E. This tableau appears naturally both as the tangent
space to the variations of an integral element over a point and as the homogeneous
1-jets of integral manifolds to the linearization of I at E. A non-trivial theorem is
that AE is involutive in case E is an ordinary integral element.

Section 5 takes up the very important class of linear Pfaffian systems. These
include most examples and will be the systems mainly used throughout the rest
of Chapters V–VII. Associated to a linear Pfaffian system are two invariants, its
tableau and torsion (or integrability conditions). These are discussed in some detail,
and Cartan’s test for involution is seen to have a very simple and computable form
using the tableau and torsion.

In Section 6 we introduce the concept of the prolongation (I(1), Ω) of an exterior
differential system I. This is a linear Pfaffian system that is defined on the space
of integral elements of I. Intuitively, (I(1), Ω) is obtained by introducing the first

1In this regard we refer to the introduction to Chapter III. Involutivity implies that solutions
to (ii′) and (i′) are also solutions to (i) and (ii).
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derivatives as new variables, and its effect is to impose the first order integrability
conditions in the original system. This section is preparatory to Chapter VI, where
the main results will be proved; it is put here so that the concept of prolongation
is available for computation of examples.

In Section 7 we give a number of examples, including the conditions that a
pair of 2nd order P.D.E.’s for one unknown function be in involution. Finally, in
section 8 we give a non-trivial and natural example from surface geometry of an
overdetermined, non-involutive system requiring prolongation.

In this chapter we will let {�} denote the algebraic ideal in Ω∗M generated by
a set of differential forms � (for example, � may be the sections of a sub-bundle
I ⊂ T ∗M). We shall also denote by ϕE the restriction of a form ϕ on M to an
n-plane E ⊂ TxM . If I ⊂ Ω∗(M) is a differential ideal, we denote by I ⊂ T ∗M
the sub-bundle spanned by the values of the 1-forms in I (assuming, of course, the
obvious constant rank condition). Finally we will use the summation convention.

§1. Independence Condition and Involution.

We suppose we are given a closed differential system I on a manifold M . Many
problems require the existence of integral manifolds of I satisfying a transversality
condition given by the following:

Definition 1.1. A differential system with independence condition, denoted by (I, Ω),
is given by a closed differential ideal I together with an equivalence class of n-forms
Ω where the following conditions are satisfied:

(i) Ω and Ω′ are equivalent if

Ω ≡ fΩ′ modulo I

where f is a non-zero function;
(ii) locally Ω may be represented by a decomposable n-form

(1) Ω = ω1 ∧ · · · ∧ ωn

where the ωi are 1-forms; and
(iii) Ωx /∈ Ix for any x ∈M .
In intrinsic terms, under suitable constant rank assumptions the degree one

piece, I, of I is given by the sections of a sub-bundle I ⊂ T ∗M . There should be
an additional sub-bundle J ⊂ T ∗M with{

I ⊂ J ⊂ T ∗M

rank J/I = n.

The ωi above give local sections of J that induce a framing of J/I and Ω represents
a non-vanishing section of Λn(J/I). We shall usually work locally and write Ω =
ω1 ∧ · · · ∧ ωn as in (1) above.

Definition 1.2. (i) An integral element for (I, Ω) is an n-dimensional integral ele-
ment for I on which Ω is non-zero; and (ii) an integral manifold for (I, Ω) is given
by an n-dimensional integral manifold

f : N →M
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for I such that each f∗(TyN) is an integral element of (I, Ω).
Integral elements of (I, Ω) are thus given by the n-planes E ∈ Gn(TM) that

satisfy

(2)
{

ΘE = 0, for all Θ ∈ I
ΩE �= 0

,

where we recall our notation ϕE for the restriction of a differential form ϕ to E.
In intrinsic terms, the first equation in (2) implies that E ⊂ TxM lies in I⊥x ; thus
the restriction mapping Jx/Ix → E∗ is well-defined, and the second equation in (2)
says that this mapping should be an isomorphism. We denote by

G(I, Ω) ⊂ Gn(TM)

the set of integral elements of (I, Ω). If we think of the set Gn(I) of all n-
dimensional integral elements of I as being a subvariety of Gn(TM) (say, in the
real-analytic case), then for each irreducible component Z of Gn(I) the intersection
G(I, Ω)∩ Z is either empty or is a dense open subset.

Example 1.3. Any P.D.E. system

(3) F λ(xi, za, ∂za/∂xi, . . . , ∂kza/∂xI) = 0, ∂xI = ∂xi1 · · ·∂xik ,

may be written as a differential system with independence condition. For instance,
in the 2nd order case (k = 2) we introduce variables

pa
i , pa

ij = pa
ji

and then the system is defined on the space with coordinates (xi, za, pa
i , pa

ij) and is
generated by the equations ⎧⎪⎨

⎪⎩
F λ(xi, za, pa

i , pa
ij) = 0

dza − pa
i dxi = 0

dpa
i − pa

ijdxj = 0,

and their exterior derivatives, with the independence condition given by Ω =
dx1 ∧ · · · ∧ dxn. An integral manifold of the differential system with independence
condition is locally the same as a solution to the P.D.E. system.

This example may be expressed in coordinate free terms by thinking of a P.D.E.
system as defined by a submanifold M of a suitable jet manifold Jk(X, Y ) and by
restricting the contact system on Jk(X, Y ) to M (cf. Chapters I and IX, X).

It is clear that any P.D.E. system may be written as a differential system (I, Ω) on
a manifold M . However, the diffeomorphisms f of M that preserve the structure
(I, Ω) may be strictly larger than those induced by changes of dependent and
independent variables separately.2 In addition, we may utilize non-integrable co-
framings of M adapted to the structure of (I, Ω) in order to isolate the geometry of

2We have seen one instance of this given by the local normal form (i) and (ii) of an arbitrary
P.D.E. system in the introduction to Chapter III.
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the P.D.E. These points of view will be extensively illustrated by examples below
and in Chapters V and VII.

Example 1.4. Suppose we are given two manifolds X, Y and a set of geometric
conditions on immersions

f : X → Y

that are expressed in local coordinates by a P.D.E. system. An example is when X
and Y are Riemannian manifolds and f is an isometric immersion, as discussed in
Chapter III. We may then set up a differential system with independence condition
(I, Ω) on a suitable manifold M ⊂ Jk(X, Y ) whose integral manifolds are locally
k-jets of mappings f satisfying the given geometric conditions. The independence
or transversality condition simply reflects the fact that a submanifold N ⊂ X × Y
with dimN = dimX is locally the graph of an immersion f if, and only if, π∗Ω �= 0
where Ω is any volume form on X and π : N → X is the projection.

Example 1.5. Let M be a manifold and consider the Grassmann bundle

π : Gn(TM)→M

whose fiber Gn(TxM) over any point x ∈ M is the Grassmann manifold of all n-
planes in TxM . Given any n-dimensional manifold N and immersion f : N → M ,
there is a canonical lifting

(4)
Gn (TM)

f̂∗ ↗ ↓ π
N−→

f
M

where f̂∗(y) = f∗(TyN) ⊂ Tf(y)M . We will define a differential system with in-
dependence condition (L, Φ) on Gn(TM) whose integral manifolds are locally the
liftings f̂∗ in (4) above. L will be a Pfaffian system and we will define (L, Φ) by
giving the sub-bundles

I ⊂ J ⊂ T ∗Gn(TM)

as explained above.
Points of Gn(TM) will be written as (x, E) where E ⊂ TxM is an n-plane, and

we then set

I(x,E) = π∗(E⊥)

J(x,E) = π∗(T ∗
x M).

Let us see what this means in local coordinates. Setting dimM = m = n + s,
relative to a local coordinate system (x1, . . . , xn, y1, . . . , ys) on M an open set U in
Gn(TM) is given by tangent n-planes to M on which

(5) dx1 ∧ · · · ∧ dxn �= 0.

In this open set tangent planes are defined by equations

(6) dyσ − pσ
i dxi = 0 1 ≤ i ≤ n, 1 ≤ σ ≤ s,



92 IV. Linear Differential Systems

and (xi, yσ , pσ
i ) forms a local coordinate system on Gn(TM). The canonical system

(L, Φ) is locally generated by the tautological 1-forms

θσ = dyσ − pσ
i dxi

with the independence condition Φ = dx1 ∧ · · · ∧ dxn. Given an integral manifold

g : Y → Gn(TM)

satisfying the conditions (5) and (6), we set f = π◦g and then f∗(dx1∧· · ·∧dxn) �= 0.
We may then take x1, . . . , xn as local coordinates on Y in terms of which g is given
by

xi → (xi, yσ(x), pσ
i (x)).

From (6) we conclude that

pσ
i (x) =

∂yσ(x)
∂xi

as claimed.
This construction will be used below to define the prolongation of a differential

system I on the manifold M .

We now come to one of the main concepts in the theory:

Definition 1.6. The differential system with independence condition (I, Ω) is in
involution at x ∈ M if there exists an ordinary integral element E ⊂ TxM for
(I, Ω).

We sometimes say that (I, Ω) is involutive, and we shall usually drop reference
to the point x ∈ M , it being understood that the system is in involution at each
point of M .

When (I, Ω) is in involution and we are in the real analytic case, the Cartan–
Kähler theorem may be applied to conclude the existence of local integral manifolds
of (I, Ω) passing through x ∈ M . Conversely, the Cartan–Kuranishi prolongation
states roughly that any local integral manifold of (I, Ω) is an integral manifold
of a suitable involutive prolongation (I(q), Ω) of (I, Ω)—this will be explained in
section 6 below and more fully in Chapter VI.

Definition 1.7. A P.D.E. system (3) is involutive if the corresponding exterior dif-
ferential system with independence condition is involutive.

To make this precise, we should include reference to the point x on the manifold
M , but we shall omit this. Of course, the definition is valid for P.D.E. systems of
any order.

Example 1.8. On a 6-dimensional manifold with basis θ1 , θ2, ω1, ω2, π1, π2 for the
1-forms, we consider a Pfaffian system θ1 = θ2 = 0 with independence condition
ω1 ∧ ω2 �= 0 and structure equations

(7)
dθ1 ≡ π1 ∧ ω1 mod I

dθ2 ≡ π1 ∧ ω2 mod I.

We shall show that this system is not in involution.
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For this we denote by ∂/∂θ1 , ∂/∂θ2 , ∂/∂ω1, ∂/∂ω2 , ∂/∂π1, ∂/∂π2 the basis
of tangent vectors dual to the above basis of forms. A one-dimensional integral
element of I, i.e., a general vector in the space θ1 = θ2 = 0, is

(8) ξ = ξ0 ∂

∂π1
+ ξ1 ∂

∂π2
+ ξ2 ∂

∂ω1
+ ξ3 ∂

∂ω2
.

Using self-evident notation, the polar equations

〈dθ1, ξ ∧ ξ̃〉 = 0 = 〈dθ2, ξ ∧ ξ̃〉

of the vector ξ in (8) are

(9)
{

ξ0ξ̃2 − ξ2ξ̃0 = 0

ξ0ξ̃3 − ξ3ξ̃0 = 0.

This linear system has rank 2 if ξ0 �= 0. The latter is therefore the condition for ξ
to be regular.

On the other hand, any 2-plane E2 on which θ1 = θ2 = 0 and ω1 ∧ ω2 �= 0 is
given by linear equations in the tangent space{

π1 = p1
1ω

1 + p1
2ω

2

π2 = p2
1ω

1 + p2
2ω

2.

The condition that this 2-plane be integral is p1
1 = p1

2 = 0. Thus, any E1 ⊂ E2 will
have a basis vector

η = ξ1 ∂

∂π2
+ ξ2 ∂

∂ω1
+ ξ3 ∂

∂ω2
.

Comparing with the above remark, we see that E2 contains no regular one-dimensional
integral element, and is therefore not ordinary.

The situation can perhaps be explained more intuitively as follows: From (7) we
find, as a consequence of θ1 = θ2 = 0, that

π1 ∧ ω1 = 0, π1 ∧ ω2 = 0

an any integral manifold of I. Using the transversality condition ω1 ∧ ω2 �= 0, the
first equation says that π1 is a multiple of ω1 and the second equation says that
it is also a multiple of ω2 on any integral manifold of (I, Ω). Combining these
two conclusions, we get π1 = 0 on any integral manifold. This last equation and
its exterior derivative must be added to the system. Thus the integral manifolds
must satisfy additional equations which result through differentiations and not just
through algebraic operations. This is one of the simplest phenomena for “failure”
of involution.

We remark that with the independence condition given by π = π1 ∧ π2 �= 0 the
system (I, π) is in involution.

Although it is relatively simple to define, the concept of involution is one of
the most difficult in the theory. Gaining both a computational and a theoretical
understanding of it will be one of the main goals of this chapter.
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§2. Linear Differential Systems.

The concept of a linear exterior differential system with an independence con-
dition is an extremely useful one. In order to define it we will first show that the
set of n-planes in a fixed vector space that satisfy a set of linear equations with
a transversality condition has a natural affine linear structure. More precisely, we
will prove that:

On a vector space T for which we have a filtration(10)

I ⊂ J ⊂ T ∗ with dimJ/I = n, the n-planes E ⊂ T

which satisfy

E ⊂ I⊥

J/I ∼= E∗ (i.e. the restriction J/I → E∗ is
an isomorphism)

form a subset of Gn(T ) on which there is a natural
affine linear structure.

To establish (10) we shall first treat the case when I = 0. For this we use
coordinates (xi, yσ) in Rn+s ∼= Rn ⊕ Rs where 1 ≤ i, j ≤ n and 1 ≤ σ, ρ ≤ s. The
n-planes on which dx1 ∧ · · · ∧ dxn �= 0, i.e., n-planes that project isomorphically
onto the Rn factor, are given by equations

yσ = pσ
i xi.

Under an invertible linear change

x
′i = Ai

jx
j

y
′σ = Bσ

ρ yρ + Cσ
i xi

we have

(11) p
′σ
i Ai

j = Bσ
ρ pρ

j + Cρ
j

or, in obvious matrix notation,

p′ = BpA−1 + CA−1.

It follows that the p’s transform affine linearly.
To treat the general case when I �= 0, we consider Rh+n+s with coordinates

(ua, xi, yσ) where 1 ≤ a ≤ h. Then n-planes on which

dua = 0

dx1 ∧ · · · ∧ dxn �= 0

are given by linear equations

(12)

ua = pa
i xi

yσ = pσ
i xi

pa
i = 0.
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Under an invertible linear change

u
′a = Da

b ub

x
′i = Ai

jx
j + Ei

aua

y
′σ = Bσ

ρ yρ + Cσ
i xi + F σ

a ua

it is easy to check that the pa
i and pα

i defined by the first two equations in (12)
transform quadratically. However, when we impose the third equation the remaining
non-zero pσ

i ’s transform by (11). Taking I to be spanned by the ua’s and J/I by the
xi’s, by virtue of ua = 0 on E the map J/I → E∗ is well defined and the condition
that this be an isomorphism is dx1 ∧ · · · ∧ dxn �= 0 on E. From this we conclude
(10).

Now let (I, Ω) be a differential system with independence condition over a man-
ifold M . Applying this construction fibrewise where T = TxM , I = Ix, J = Jx we
conclude that

The subset G(I, Ω) of tangent n-planes E satisfying(13) {
θE = 0, for all θ ∈ I

ΩE �= 0

forms in a natural way a bundle of affine linear spaces
over M .

In the future we shall ususally write the above equations more simply as{
θ = 0, θ ∈ I

Ω �= 0
.

Clearly the set G(I, Ω) of integral elements of (I, Ω) is a subset of G(I, Ω).

Definition 2.1. The differential system (I, Ω) is linear if the fibres of G(I, Ω)→M
are affine linear subspaces of the fibres of G(I, Ω)→M .

Implicit in the above discussion is that the definition of linearity requires an
independence condition.

Roughly speaking, a partial differential equation system is linear when its solu-
tions may be linearly superimposed. For a differential system on a manifold the
concept of linearity only makes sense infinitesimally. The integral elements of (I, Ω)
are the infinitesimal solutions and the above definition is the corresponding con-
cept of linear. We will see that many but not all differential systems are linear.
Moreover, given any differential system I and an integral element E, we will define
its linearization (IE , ΩE) at E, which will correspond to linearizing an arbitrary
P.D.E. at a solution. Before doing this we need to develop conditions that will allow
us to recognize when (I, Ω) is linear. We mention that both these conditions and
the linearization (IE , ΩE) are implicit in the proofs of the results in Chapter III
above, (cf. Proposition 1.15 in that chapter).

We let (I, Ω) be a differential system with independence condition. Locally we
choose a coframe

θ1 , . . . , θh; ω1, . . . , ωn; π1, . . . , πs
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adapted to the filtration
I ⊂ J ⊂ T ∗(M).

Differential forms on M may then be locally written as

(14) ψ = fΣKAπΣ ∧ ωK ∧ θA

where Σ = (σ1, . . . , σl), K = (k1, . . . , kp) and A = (a1, . . . , aq) are increasing multi-
indices and πΣ = πσ1 ∧ · · · ∧ πσl , etc.

Definition 2.2. We will say that (I, Ω) is linearly generated if locally it is generated
algebraically by forms ψ which are of combined total degree one in the θa’s and
πσ ’s.

It follows that (I, Ω) is algebraically generated by forms

(15)
{

θa

ψ = fσKπσ ∧ ωK ,

and it is clear that this condition is intrinsic. Integral elements of (I, Ω) are then
defined by the equations

(16)

⎧⎪⎨
⎪⎩

θa = 0
πσ = pσ

i ωi where∑
σ,K fσKpσ

i ωi ∧ ωK = 0.

Since these equations are linear in the pσ
i ’s we conclude that:

If (I, Ω) is linearly generated, then it is linear.

We shall now give some examples of systems that are linearly generated. These
will all be generated in degrees p ≥ 2; the very important case of linear Pfaffian
systems will be treated below. In these examples we will denote by Ω∗,1(M) ⊂
Ω∗(M) the forms (14) that are at most linear in the πσ ’s, i.e., that have |Σ| ≤ 1.
The system (I, Ω) is then linearly generated if it is algebraically generated by
Ω∗,1(M) ∩ I.

Example 2.3 (The third fundamental theorem of Lie). Let Rn be endowed with a
Lie algebra structure [ , ] : Rn × Rn → Rn. One version of the third fundamental
theorem of Lie is that there exists a neighborhood U of 0 ∈ Rn and an Rn-valued
1-form η on U so that η|0 : T0Rn → Rn is an isomorphism and so that dη =
−1/2[η, η]. To establish this, let xi be linear coordinates on Rn and let (pi

j) be the
usual coordinates on GL(n, R). We are seeking functions pi

j(x) so that the forms
ηi = pi

j(x)dxj satisfy both det(pi
j(0)) �= 0 and the differential equation d(pdx) =

−1/2[pdx, pdx]. Thus, let M = GL(n, R)× Rn and let

θ = d(pdx) + 1/2[pdx, pdx].

Let I be the ideal in Ω∗(M) generated by the n 2-form components of θ. We easily
compute that

dθ = 1/2[θ, pdx]− 1/2[pdx, θ]− 1/2[[pdx, pdx], pdx]

≡ −1/2[[pdx, pdx], pdx] mod I

≡ 0 mod I
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since [[pdx, pdx], pdx] = 0 by the Jacobi identity. Thus I is differentially closed. As
independence condition, we take J so that its sections are spanned by dx1, . . . , dxn.
Clearly an integral manifold of (I, Ω) is locally of the form (xi, pi

j(x)) where η =
(ηi) = (pi

j(x)dxj) satisfies our conditions. Note that I is linearly generated: We
have θi = dpi

j ∧ dxj+ (terms quadratic in dxi) ∈ Ω∗,1(M). More explicitly, we may
write θi = dpi

j ∧ dxj + 1/2T i
jkdxk ∧ dxj = πi

j ∧ dxj where πi
j = dpi

j + 1/2T i
jkdxk,

and the {dxi, πi
j} form a coframing of M .

An integral element of (I, Ω) is obviously described by a set of equations of the
form πi

j − pi
jkdxk = 0 where pi

jk = pi
kj. Thus the dimension S of the space of

integral elements over a point is given by S = n

(
n + 1

2

)
= n2(n + 1)/2. On

the other hand, it may be easily seen that the characters sk are given by s0 = 0,
s1 = s2 = · · · = sn = n. Since s1+2s2 + · · ·+nsn = n(1+2+ · · ·+n) = n2(n+1)/2,
from Theorem 1.11 in Chapter III it follows that (I, Ω) is involutive. Since I is
clearly analytic, an application of the Cartan–Kähler theorem yields Lie’s theorem.

This proof is not the most elementary, of course, but it is perhaps the simplest
conceptually. Note that once existence is proved, the Frobenius theorem suffices
to prove that any two solutions η1 on U1 and η2 on U2 are locally equivalent via
diffeomorphism U1 � U2.

Example 2.4 (Closed self-dual forms on four-manifolds). Let X4 denote an oriented
Riemannian 4-manifold. Let M7 = Λ2

+(X) denote the bundle of self-dual 2-forms on
X. Let ϕ ∈ Ω2(M) denote the tautological 2-form on M which satisfies ϕ(v1, v2) =
α(π∗(v1), π∗(v2)) where vi ∈ TαM , and π : M → X is the projection. Thus
ϕ|TαM = π∗(α). This form ϕ has the “reproducing” property: If β = ∗β is a 2-form
on X, then when we regard β as a section β : X →M , we have β∗(ϕ) = β. Moreover
β∗(dϕ) = dβ. Let I be the system algebraically generated by dϕ ∈ Ω3(M). Clearly
I is differentially closed. Let Ω = π∗(vol) ∈ Ω4M . The integrals of (I, Ω) are
locally sections of M → X which are the graphs of local closed self-dual 2-forms
on X. We claim that (I, Ω) is linearly generated and involutive. To see this, it
suffices to work locally, so let ω1, ω2, ω3, ω4 be an oriented orthonormal coframing
on U ⊆ X. Of course M |U ∼= U × R3 and there exist unique (linear) coordinates
p2, p3, p4 on the R3 factor so that, on M |U , we have

ϕ = p2(ω1 ∧ ω2 + ω3 ∧ ω4) + p3(ω1 ∧ ω3 + ω4 ∧ ω2) + p4(ω1 ∧ ω4 + ω2 ∧ ω3).

Now Ω = ω1 ∧ ω2 ∧ ω3 ∧ ω4, and we have

dϕ = dp2 ∧ (ω1 ∧ ω2 + ω3 ∧ ω4) + dp3 ∧ (ω1 ∧ ω3 + ω4 ∧ ω2)
+dp4 ∧ (ω1 ∧ ω4 + ω2 ∧ ω3) + T

where T is a 3-form which is cubic in the {ωi}. Clearly dϕ ∈ Ω∗,1(M), so (I, Ω)
is linearly generated. It is not difficult to show that there exist forms π2, π3, π4 on
M |U so that

dϕ = π2 ∧ (ω1 ∧ω2 + ω3 ∧ω4) +π3 ∧ (ω1 ∧ω3 + ω4 ∧ω2) +π4 ∧ (ω1 ∧ω4 + ω2 ∧ω3)

where πi ≡ dpi mod ω1, . . . , ω4. Given this, and keeping the notations from the
proceeding example, we easily compute that S ≡ 8 on M , and that for any integral
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flag, we have s0 = s1 = 0, s2 = 1, s3 = 2, s4 = 0. Since 8 = s1 + 2s2 + 3s3 + 4s4,
from Proposition 1.15 in Chapter III we again see that Cartan’s Test is satisfied and
so the system is involutive. Applying the Cartan–Kähler theorem then yields the
following result: Suppose that X4 is an analytic 4-manifold with an orientation and
an analytic Riemannian metric. Let H3 ⊂ X4 be an analytic imbedded hypersurface
and let α ∈ Ω2(H3) be a closed analytic 2-form on H3. Then there exists an open
set U ⊃ H3 and a closed self-dual 2-form β on U so that β|H3 = α. We leave
details to the reader. This extension theorem is easily seen to be false if α is not
assumed to be analytic. We note in closing that, as a P.D.E. system, this is four
equations for the three unknown coefficients p2, p3, p4.

In order to further motivate our concept of linearity and for later use, we shall
define the linearization IE of an arbitrary differential system I at an n-dimensional
integral element E ⊂ Tx0M lying over x0 ∈ M . The linearization will have the
following properties:

i) it is a differential system (IE , ΩE) with independence condition defined on the
vector space ME = E ⊕Q where Q = Tx0M/E;

ii) (IE , ΩE) is a constant coefficient, linearly generated (and therefore linear)
exterior differential system.
(N.B.: A constant coefficient differential system is an exterior differential system de-
fined on a vector space and which is generated as a differential system by translation-
invariant differential forms. If there is an independence condition, then this should
also be translation invariant. Strictly speaking, in order to construct the full dif-
ferential system we should take the differential ideal in the set of all smooth (or
real-analytic) forms generated by our constant coefficient forms. However, this en-
largement will not affect the calculation of such quantities as polar equations or the
integral manifolds, and so we shall not insist on it.)

iii) if E is an ordinary integral element of I, then (IE , ΩE) is involutive and has
the same Cartan characters as does E.
(Implicit in (iii) is the assertion that all integral elements of (IE , ΩE) have the same
Cartan characters sk.)

To define IE , we let E⊥ ⊂ T ∗
x0

M be the space of 1-forms that annihilate E and
we denote by

{E⊥} ⊂ Λ∗(T ∗
x0

M)

the exterior ideal generated by E⊥. Then, because E is an integral element of I
we have Ix0 ⊂ {E⊥}. There is a canonical exact sequence

0→ {Λ2E⊥} → {E⊥} → E⊥ ⊗ Λ∗E∗ → 0

‖
Q∗ ⊗ Λ∗E∗.

We let PE ⊂ Q∗ ⊗ Λ∗E∗ ⊂ Λ∗(Q∗ ⊕ E∗) denote the image of Ix0 and define IE

to be the ideal in Λ∗(Q∗ ⊕ E∗) generated by PE . Then IE is an ideal of exterior
forms on E ⊕Q. We let ΩE be a volume form on E.

Definition 2.5. (IE , ΩE) is the linearization of I at E.

When expressed in a set of linear coordinates on E ⊕ Q, the elements of IE

have constant coefficients and hence are closed differential forms. Thus, (IE , ΩE)
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is a constant coefficient differential system with independence condition. In order
to see that it is linearly generated, it is instructive to see what this construc-
tion means in coordinates. For this we choose a local coframe ω1(x), . . . , ωn(x),
π1(x), . . . , πt(x) on M so that the forms πσ(x0) span E⊥. We then choose linear
coordinates x1, . . . , xn on E and y1, . . . , yt on Q such that ωi(x0)|E = dxi and
πσ(x0)|Q = dyσ . Finally, we set f = f(x0) for any locally defined function f(x) on
M . Let ψ ∈ I and write

ψ(x) = fI(x)ωI (x) + fσJ (x)πσ(x) ∧ ωJ(x) + fσρK (x)πσ(x)∧ πρ(x)∧ ωK(x) + . . . .

We note that, because of ψ|E = 0, fI = 0 and we define

(17)
ψ = fσJdyσ ∧ dxJ ∈ Q∗ ⊗ Λ∗E∗

∩
Λ∗(Q∗ ⊕E∗).

Intuitively, ψ is obtained by setting x = x0—i.e., by freezing coefficients—and by
ignoring quadratic terms in the πσ(x0)—i.e., terms that vanish to second order on
E. It is clear that

(18) PE = {ψ : ψ ∈ I}

is the above set of algebraic generators of IE. Thus (IE , ΩE) is linearly gener-
ated. Moreover, the following proposition is an immediate consequence of Proposi-
tion 1.13 of Chapter III.

Proposition 2.6. Let Ep ⊂ E be any p-plane, and let H(Ep) ⊂ Tx0M be the polar
space of Ep as an integral element of I. Then, as an integral element of IE the
polar space of Ep is E ⊕ (H(Ep)/E) ⊂ E ⊕Q.

We will establish the third property mentioned above of (IE , ΩE) following a
general discussion of the concept of tableau in the next section.

§3. Tableaux.

One of the most important concepts in the theory of exterior differential systems
is that of a tableau. This is a purely algebraic concept defined as follows:

Definition 3.1. A tableau is given by a linear subspace

A ⊂ Hom(V, W )

where V, W are vector spaces.
We let v1, . . . , vn and w1, . . . , ws be bases for V, W respectively and choose a

basis
Aε = Aa

εiwa ⊗ v∗i

for A (we have chosen to use v∗i instead of vi for the dual basis to vi). Then a
general element of A

A(ζ) = Aεζ
ε

= Aa
εiζ

εwa ⊗ v∗i
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may be thought of as a matrix

A(ζ) = ‖Aa
εiζ

ε‖

whose entries are linear functions of the coordinates ζε on A. Therefore, from a
linear algebra point of view, the study of tableaux is the same as studying matrices
whose entries are linear functions. This will be apparent when we introduce the
symbol associated to A.

Example 3.2. Let V and W be vector spaces with coordinates x1, . . . , xn and
y1, . . . , ys dual to bases v1, . . . , vn and w1, . . . , ws for V and W respectively. We
consider a first order linear homogeneous, constant coefficient P.D.E. system

(19) Bλi
a

∂ya(x)
∂xi

= 0 λ = 1, . . . , r.

The linear solutions
ya(x) = Aa

j xj

to (19) form a tableau A ⊂ Hom(V, W ). We shall call A the tableau associated to
P.D.E. system (19). It is clear, conversely, that every tableau is uniquely associated
to such a P.D.E. system.

Definition 3.3. Given a tableau A ⊂ Hom(V, W ) = W ⊗ V ∗, the associated symbol
is given by the annihilator

B = A⊥ ⊂W ∗ ⊗ V.

Example 3.2 (continued). Assuming that the forms

Bλ = Bλi
a w∗

a ⊗ vi ∈ W ∗ ⊗ V

are linearly independent, the classical definition of the symbol associated to (19)
assigns to each covector ξ = ξidxi ∈ V ∗ the matrix

(20) σ(ξ) = ‖Bλi
a ξi‖.

In coordinate-free terms

σ(ξ) : W →W ⊗ V ∗/A ∼= A⊥∗

is given by

(21) σ(ξ)(w) = w ⊗ ξ mod A.

From (20) it is clear that giving the symbol of the P.D.E. system (19) is equivalent
to giving the symbol B of the tableau A.

We now consider a tableau A ⊂ W ⊗ V ∗. The (q + 1)st symmetric product
Sq+1V ∗ may be considered as the space of homogeneous polynomials of degree
q + 1 on V , and we have the usual differentiation operators

∂

∂xi
: Sq+1V ∗ → SqV ∗.
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We extend ∂/∂xi to W ⊗Sq+1V ∗ by treating W as constants, so that by definition

∂/∂xi(wa ⊗ P a(x)) = wa ⊗
∂P a

∂xi

where the P a(x) are homogeneous polynomials in x1, . . . , xn.

Definition 3.4. Given a tableau A ⊂W ⊗ V ∗, the qth prolongation

A(q) ⊂W ⊗ Sq+1V ∗

is defined inductively by A(0) = A and, for q ≥ 1,

A(q) = {P :
∂P

∂xi
∈ A(q−1) for all i}.

It is clear that A(q) is the subspace consisting of all P ∈ W ⊗ Sq+1V ∗ satisfying

(22)
∂qP (x)

∂xi1 . . . ∂xiq
∈ A

for all i1, . . . , iq.
In case A is the tableau associated to the constant coefficient, linear homogeneous

P.D.E. system (19) it is clear that: A(q) is the set of homogeneous polynomial
solutions of degree q+1 to the P.D.E. system (19). What will turn out to be a more
profound interpretation of the first prolongation A(1) follows.

First, we consider the exterior differential system (IA, ΩA) associated to the
P.D.E. system (19) corresponding to the tableau A ⊂W⊗V ∗. To describe (IA, ΩA)
we consider as usual the space J1(V, W ) of 1-jets of mappings from V to W and let
(xi, ya, pa

i ) be the standard coordinates induced from the coordinate systems xi, ya

on V, W respectively. We then define

M ⊂ J1(V, W )

by the equations Bλi
a pa

i = 0. Then (IA, ΩA) is the exterior differential system
with independence condition ΩA = dx1 ∧ · · · ∧ dxn �= 0 obtained by restricting the
contact system on J1(V, W ) to M . We recall that the contact system is generated
algebraically by the differential forms

(23)
{

θa = dya − pa
i dxi

dθa = −dpa
i ∧ dxi.

The restrictions to M of the 1-forms dxi, θa, dpa
i span the cotangent spaces and

are subject to the relations

(24) Bλi
a dpa

i = 0 λ = 1, . . . , r

that define TqM ⊂ TqJ
1(V, W ) for q ∈M .

If E ⊂ TqM is any integral element of (IA, ΩA), then since dx1∧ · · ·∧dxn|E �= 0
it follows that the dxi|E form a basis for E∗, and consequently E is defined by a
set of linear equations

(25)
{

θa = 0
dpa

i = pa
ijdxj
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subject to the conditions that dθa|E = 0 and that the linear relations (24) are
satisfied on E. Substituting dpa

i from (25) into the second equation in (23) gives

pa
ij = pa

ji,

and then the linear relations (24) give

Bλi
a pa

ij = 0.

Taken together these two equations are equivalent to the condition that

P = pa
ijwa ⊗ xixj ∈ A(1).

In summary:

For the exterior differential system associated to the(26)

P.D.E. system (19), the space of integral elements over

any fixed point is naturally identified with the 1st

prolongation A(1) of the tableau associated to (19).

This result will be extended to general linear Pfaffian systems in section 5 below.

We now want to explain the concept of involutivity for a tableau A. Although it
is a purely algebraic concept, it will turn out to be equivalent to the condition that
the exterior differential system (IA, ΩA) associated to the P.D.E. system (19) with
tableau A should be involutive. From Theorem 1.11 of Chapter III we see that this
in turn is expressed by the condition that an inequality between the dimension of
the space of integral elements of (IA, ΩA) and an expression involving the ranks of
the polar equations should be an equality. This together with (26) above should
help to motivate the following discussion leading up to the definition of involutivity
for a tableau A.

First we need two definitions. If U ⊂W ⊗ SqV ∗ is any subspace we set

(27) Uk = {P ∈ U :
∂P

∂x1
= · · · = ∂P

∂xk
= 0}.

We note that
(A(1))k = (Ak)(1)

since both sides are equal to {P ∈ W ⊗ S2V ∗ : ∂P/∂xi ∈ A and ∂2P/∂xi∂xj = 0
for all i and 1 ≤ j ≤ k}. We denote either side of this equality by A

(1)
k . Clearly we

have

(28) ∂/∂xk : A
(1)
k−1 → Ak−1.

We observe that the subspaces Ak give a filtration

(29) 0 = An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ A0 = A,

and that the numbers dimAk are upper-semi-continuous and constant on a dense
open set of coordinate systems for V ∗.
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Definition 3.5. Let A ⊂W ⊗ V ∗ be a tableau and x1, . . . , xn ∈ V ∗ a generic coor-
dinate system for which the dimAk are a minimum. We then define the characters
s′1, . . . , s

′
n of the tableau A inductively by

(30) s′1 + · · ·+ s′k = dimA − dimAk.

Although it is not immediately obvious, it can be shown that

s′1 ≥ s′2 ≥ · · · ≥ s′n

(cf. the normal form (90) below).

The following gives an algebraic analogue of the inequality in Cartan’s test:

Proposition 3.6. We have

(31) dimA(1) ≤ s′1 + 2s′2 + · · ·+ ns′n

with equality holding if, and only if, the mappings (28) are surjective.

Proof. We note that

(32)
{

dimA = s′1 + · · ·+ s′n
dimAk = s′k+1 + · · ·+ s′n.

From the exact sequence

0→ A
(1)
k → A

(1)
k−1

∂/∂xk

−−−−→ Ak−1

we have
dimA

(1)
k−1 − dimA

(1)
k ≤ dimAk−1.

Adding these up and using A
(1)
0 = A(1) gives

dimA(1) ≤ dimA + dimA1 + · · ·+ dimAn−1.

Substituting (32) into the right hand side gives the result. �

Definition 3.7. The tableau A is involutive in case the equality

dimA(1) = s′1 + 2s′2 + · · ·+ ns′n

holds in (31).3

3This formulation of involutivity is due to Matsushima [1954-55]
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Proposition 3.8. The involutivity of the tableau A is equivalent to the involutivity
of the P.D.E. system (19) associated to A.

Proof. It follows from the discussion preceeding (26) that the space G(IA, ΩA) of
integral elements of (IA, ΩA) fibers over M with the fibres each being a linear space
naturally isomorphic to the first prolongation A(1). In order to apply Theorem 1.11
in Chapter III it will thus suffice to work in the space of integral elements lying
over the origin in M .

We next set

(33)
{

ωi = dxi|M
πa

i = −dpa
i |M

so that the structure equations (23) and (24) of (IA, ΩA) become

(34)
{

dθa = πa
i ∧ ωi

Bλi
a πa

i = 0.

A substitution {
πa

i → πa
i − pa

ijω
j

pa
ijwa ⊗ xixj ∈ A(1)

leaves these structure equations unchanged. By means of such a substitution the
integral element (25) in G(IA, ΩA) is now defined by the equations

(35)
{

θa = 0
πa

i = 0

and is subject to the requirement that the dθa = 0 on this n-plane. Calling this
n-plane E, we will determine the circumstances such that E satisfies the conditions
in Theorem 1.11 of Chapter III.

For this we let e1, . . . , en ∈ T0M be the basis for E defined by the equations{
θa(ek) = πa

i (ek) = 0
ωi(ek) = δi

k.

Then e1, . . . , ek spans a subspace Ek ⊂ E and we claim that:

The rank of the polar equations associated to Ek is(36)

s + s′1 + · · ·+ s′k where s = dimW .

Proof of (36). The cotangent space T ∗
0 M is spanned by the 1-forms ωi, θa, πa

i , of
which the ωi and θa are linearly independent and the πa

i are subject exactly to the
second equations in (34). If we define subspaces R, S of T0M by

R = {v ∈ T0M : πa
i (v) = 0}

S = {v ∈ T0M : ωi(v) = 0 = θa(v)},

then we have T0M = R⊕ S. Moreover, the mapping S →W ⊗ V ∗ defined by

(37) v → πa
i (v)wa ⊗ xi
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is injective, and by the second equation in (34) the image of this mapping is the
tableau A ⊂ W ⊗ V ∗. We shall identify S with A and denote by Sk the subspace
of S corresponding to Ak. Thus

Sk = {v ∈ S : πa
i (v) = 0 for 1 ≤ i ≤ k}.

We now shall show that the polar equations of Ek = span{e1, . . . , ek} are given
by

(38)
{

θa = 0
πa

i = 0 for 1 ≤ i ≤ k.

This is immediate from (34), since for v ∈ T0M and 1 ≤ i ≤ k

dθa(ei, v) = (πa
j ∧ ωj)(ei, v)

= −πa
i (v).

Since the rank of the equations πa
i (v) = 0 clearly depends only on the projection

of v ∈ R⊕ S to S, we see that the rank of the equations (38) is given by

s + dim(S/Sk) = s + dimA − dimAk

= s + s′1 + · · ·+ s′k.

by the definition (39). This completes the proof of (36).

We may now complete the proof of Proposition 3.8. In fact, using (32) and
(36) the inequality in Theorem 1.11 in Chapter III is just (31); moreover, the
condition for equality in (31) is just the condition that the integral element defined
by (35) be ordinary. In fact the inequality there is codim{Gn(I) ⊂ Gn(TM)} ≥
c0 + c1 + · · ·+ cn−1. We have shown that

ck = s + s′1 + · · ·+ s′k,

dimA(1) = dim Gn,x(I),

and combining these three relations and unwinding the arithmetic gives (31). �

æ

§4. Tableaux Associated to an Integral Element.

Let I be a differential system on a manifold M . Let E ⊂ Tx0M be an n-
dimensional integral element of I and set Q = Tx0M/E. We will canonically
associate to E a tableau

AE ⊂ Hom(E, Q)

that has a number of important properties.
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For this we use coordinates xi, yσ on E, Q as in the discussion following Def-
inition 2.5 of the linearization (IE , ΩE) of I at E. Recall that IE is defined on
ME = E⊕Q and is algebraically generated by constant coefficient differential forms

(39) ψ = fσJdyσ ∧ dxJ

that are linear in the dyσ ’s, and that the independence condition is given by ΩE =
dx1∧ · · ·∧dxn. It follows that integral elements Ẽ of (IE , ΩE) lying over the origin
are given by graphs of linear mappings

p : E → Q

satisfying the following conditions:

(40)
{

dyσ − pσ
i dxi = 0

fσJpσ
i dxi ∧ dxJ = 0.

Here the first equation expresses p in coordinates, and the second equation expresses
the condition that ψ|Ẽ = 0 for all ψ ∈ PE , where PE given by equation (18).

Definition 4.1. The tableau AE ⊂ Hom(E, Q) associated to E ∈ Gn(I) is the linear
subspace of Hom(E, Q) defined by the equations (40).

It is clear that AE is canonically associated to E. One geometric interpretation
is that by definition AE is canonically identified with the set of integral elements
lying over the origin of the linearization of I at E. Another geometric interpretation
of AE is as follows: We set T = Tx0M and consider the n-dimensional integral
elements of I lying over x0 as a subset

Gn,x0(I) ⊂ Gn(T ).

It is well known that there is a canonical isomorphism

TE(Gn(T )) ∼= Hom(E, Q),

and we will show that:

If E(t) ⊂ Gn(T ) is a smooth arc of integral elements(41)

of I lying over x0 with E(0) = E, then

E′(0) ∈ AE .

Proof. We let v1, . . . , vn, w1, . . . , ws be the basis for T dual to dx1, . . . , dxn, dy1, . . . , dys,
and we extend the vi to a smoothly varying basis vi(t) for E(t). Setting

v′i(0) = αj
ivj + βσ

i wσ,

then by definition
E′(0) = βσ

i [wσ]⊗ dxi ∈ Q⊗E∗
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where [wσ] ∈ Q is the equivalence class defined by wσ ∈ T . On the other hand, as
in the discussion following the Definition 2.3 of the linearization, we consider ψ ∈ I
of degree n and set

ψ(x0) = fσJdyσ ∧ dxJ + fσρKdyσ ∧ dyρ ∧ dxK + . . . .

Then, setting v(t) = v1(t) ∧ · · · ∧ vn(t) and using that E(t) ∈ Gn,x0(I), we have

0 = 〈ψ(x0), v(t)〉

= fσJ 〈dyσ ∧ dxJ , v(t)〉 + fσρK 〈dyσ ∧ dyρ ∧ dxK, v(t)〉 + . . . .

Taking the derivative of this equation at t = 0 gives

fσJβσ
i dxi ∧ dxJ = 0,

and comparing with (40) gives our assertion. �
When we defined the linearization (IE, ΩE) of a differential ideal I at E ∈

Gn,x0(I), we said that IE was obtained by setting x = x0 (freezing coefficients)
and by throwing out forms in I that vanish to second order or higher on E. This
is now explained by the proof of (41).

From (41) we have the following geometric interpretation of the tableau AE :

Proposition 4.2. If the set Gn,x0(I) of n-dimensional integral elements of I lying
over x0 ∈ M is a smooth manifold near E, then its tangent space is the tableau AE

associated to E.

In general, Gn,x0(I) is an algebraic subvariety of Gn(Tx0M) and AE is its Zariski
tangent space at E. This is because the Zariski tangent space to any algebraic
variety is the span of tangent vectors to smooth arcs lying in the variety.

Theorem 4.3. If E is an ordinary integral element of I, then the linearization
(IE , ΩE) is involutive and has the same Cartan characters.

Proof. Let 0 ⊂ E1 ⊂ . . .En = E be an ordinary integral flag of E ⊂ Tx0M as
an integral element of I. Let ck be the codimension of the polar space of Ek.
By Proposition 2.6 above, this number is the same whether we regard Ek as an
integral element of I or IE. By the proof of Theorem 1.11 of Chapter III, the fact
that E is ordinary implies that Gn,x0(I) is a smooth submanifold of Gn(Tx0M)
of codimension c0 + c1 + · · ·+ cn−1. By Proposition 4.2 above, the vector space
TE(Gn,x0(I)) is isomorphic to AE . Thus AE has codimension c0 + c1 + · · ·+ cn−1

in TE(Gn(E ⊕ Q)) ∼= Q ⊗ E∗. Since by the argument given above, G(IE, ΩE) ∼=
(E ⊕Q) × AE , it follows that G(IE, ΩE) is a smooth submanifold of codimension
c0 + c1 + · · ·+ cn−1 in the space of all n-dimensional tangent planes at points of
E ⊕Q. By Theorem 1.11 of Chapter III, it follows that E is an ordinary integral
element of IE. The equality of characters is now obvious. �

Another interpretation of the tableau arises by considering the constant co-
efficient, linear homogeneous P.D.E. system associated to the differential system
(IE , ΩE). By this we mean the following: Using the above notations, an integral
manifold of (IE , ΩE) is locally given by a graph

xi → (xi, yσ(x))
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on which all the generators of IE restrict to zero. This means that

(42) fσJ
∂yσ(x)

∂xi
dxi ∧ dxJ = 0.

It is then clear that: the space of homogeneous 1-jets of solutions to (42) is the
tableau AE; more generally, the space of degree q + 1 homogeneous polynomial
solutions to (42) is the qth prolongation A

(q)
E of the tableau AE (cf. the discussion

below Definition 3.4).
This observation leads to an interesting point. Suppose we clear out the exterior

algebra and write (42) as a constant coefficient, linear homogeneous P.D.E. system

(43) Bλi
σ

∂yσ(x)
∂xi

= 0.

As we have seen in Proposition 3.8 above, the condition that the tableau AE be
involutive is that the exterior differential system in (xi, yσ , pσ

i ) space

(44)

⎧⎪⎨
⎪⎩

dyσ − pσ
i dxi = 0

Bλi
σ pσ

i = 0
dx1 ∧ · · · ∧ dxn �= 0

associated to (43) be involutive. As we have also seen in section 3 above (cf. (26)
there), integral elements of this system are given by the equations

dpσ
i − pσ

ijdxj = 0

where p = pσ
ijwσ ⊗ xixj ∈ A

(1)
E . Thus, the following result, which by Theorem 4.3

relates a property of the integral elements of (IE , ΩE) lying over the origin (these
are just AE) to a property of the integral elements of (44) lying over the origin
(these are just the 1st prolongation A

(1)
E ) is by no means obvious:

Theorem 4.4. If E ∈ Gn(I) is an ordinary integral element, then the tableau AE

is involutive.

Proof. We retain the notations in §§2 and 3 above. We are given that E is an
ordinary integral element of I, and we want to show that equality holds in the
inequality for dimA

(1)
E in (31).

Now, by Theorem 4.3, the condition that E be ordinary for I implies that it is
ordinary for the linearization (IE , ΩE), and we shall prove that

(45)
{

E ordinary for
(IE, ΩE)

}
⇒ dimA

(1)
E = s′1 + 2s′2 + · · ·+ ns′n.

This is a purely algebraic statement, and although it is possible to give a purely
algebraic argument, here we will use the Cartan–Kähler theorem, which is an ana-
lytic result. Recalling that A

(1)
E may be identified with the homogeneous 2-jets of

integral manifolds of (IE, ΩE), in outline the analytic proof goes as follows:

(IE , ΩE) involutive ⇒
{

there are “enough” integral
manifolds for (IE , ΩE)

}
⇓

a lower bound on dimA
(1)
E
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Here is the formal argument.

Proof. As noted above, we may assume that E ∈ G(IE, ΩE) is an ordinary integral
element of IE . For the rest of the proof, we shall work with the differential system
IE on E ⊕ Q. We may assume that our linear coordinate systems x1, . . . , xn on
E and y1, y2, . . . , ys on Q have been chosen so that the subspaces Ep = {v ∈ E |
xj(v) = 0 for all j > p} form an ordinary flag, and so that H(Ep) = E ⊕ {w ∈ Q |
yσ(w) = 0 for all σ > s− cp} for p < n. Here we are using the notations from the
proof of Proposition 1.10 in Chapter III, and we recall our convention that cn = s
and c−1 = 0.

By definition, there exist r forms ϕ1, ϕ2, . . . , ϕr in I so that the forms ϕρ for
1 ≤ ρ ≤ r generate IE algebraically. Here, ϕρ refers to the construction given by
(17). These forms have expansions

ϕρ =
∑

σ,|J|=pρ

fρ
σJdyσ ∧ dxJ

for 1 ≤ ρ ≤ r where ϕρ has degree pρ + 1, and the fρ
σJ are some constants. Clearly,

IE is real analytic and moreover, as a differential form on E⊕Q each ϕρ is closed.
By Theorem 4.3, the Cartan–Kähler theorem applies.

We now refer to Chapter III. Recall that there we defined the level of an index
σ in the range 1 ≤ σ ≤ s to be the integer k (in the range 0 ≤ k ≤ n) so that
s− ck < σ ≤ s− ck−1. We also recall from these that the characters s0 , s2, . . . , sn

of I in a neighborhood of E are defined by

sk = number of σ’s of level k.

By the discussion following the proof of the Cartan–Kähler theorem, the real an-
alytic integral manifolds of (IE , ΩE) are given in a neighborhood of x = 0 by
equations of the form yσ = F σ(x1, x2, . . . , xn) where the F σ are real analytic and
moreover are uniquely specified by knowing the following data:

the s0 constants fσ = F σ(0, 0, . . . , 0) when σ has level 0
the s1 functions fσ(x1) = F σ(x1, 0, . . . , 0) when σ has level 1
the s2 functions fσ(x1, x2) = F σ(x1, x2, 0, . . . , 0) when σ has level 2

...
...

...
the sn functions fσ(x1, x2, . . . , xn) = F σ(x1, x2, . . . , xn) when σ has level n.

Note that due to the fact that the forms ϕρ have constant coefficients, it follows
that if yσ = F σ(x1, x2, . . . , xn) is a real analytic solution in a neighborhood of x = 0
and we let F σ

k be the homogeneous term of degree k in the power series expansion of
F σ, then yσ = F σ

k is also an integral manifold of IE. It follows also that if the fσ are
each chosen to be homogeneous polynomials of degree k in the appropriate variables,
then the corresponding F σ will also be homogeneous polynomials of degree k. If we
regard the collection Fk = (F σ

k ) as a Q-valued polynomial on E of degree k, then
we see that the subspace Sk ⊂ Q ⊗ Sk(E∗) consisting of those polynomial maps
of degree k whose graphs in E ⊕Q are integral manifolds of IE is a vector space
whose dimension is given, for k > 0, by the formula

dimSk = s1 + s2

(
k + 1

1

)
+ s3

(
k + 2

2

)
+ · · ·+ sn

(
k + n− 1

n − 1

)
.
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Note that S1 = AE by definition. Moreover, we plainly have that Sk = (AE)(k−1)

for all k ≥ 1.
We now claim that the characters s1, s2, . . . , sn of I in a neighborhood of E and

s′1, s
′
2, . . . , s

′
n of the tableau AE are related by

(∗) s′k = sk + · · ·+ sn.

Once we have established then we are done, since it follows that the dimension of
(AE)(1) ∼= S2 is given by

s1 + s2

(
3
1

)
+ s3

(
4
2

)
+ · · ·+ sn

(
n + 1
n− 1

)
= (s1 + · · ·+ sn) + 2(s2 + · · ·+ sn) + · · ·+ nsn

= s′1 + 2s′2 + · · ·+ ns′n

by (∗).
To establish (∗), we have from Definition 3.5 that

dim(AE)
k

= s′k+1 + · · ·+ s′n,

and we also have from the definition that (AE)k consists of the Q-valued linear
functions on E that lie in AE ⊂ Q⊗E∗ and that do not depend on x1, . . . , xk. Thus,
(AE)k is isomorphic to the space of linear integral manifolds yσ = F σ(xk+1, . . . , xn)
of (IE , ΩE) as described above and which do not depend on x1, . . . , xk. By the count
of the number of such solutions there are (starting from the top)

(n− k)sn − dimensions worth coming from an arbitrary
linear function fσ(xk+1, . . . , xn) where σ has
level n

(n− k − 1)sn−1 − dimensions worth coming from an arbitrary
linear function fσ(xk+1, . . . , xn−1) where σ has
level n− 1

...

sk+1 − dimensions worth coming from an arbitrary
linear function fσ(xk+1) where σ has level
k + 1.

Thus
dim(AE)

k
= sk+1 + 2sk+2 + · · ·+ (n− k)sn .

This gives the equations

s′k+1 + · · ·+ s′n = sk+1 + 2sk+2 + · · ·+ (n − k)sn for 0 ≤ k ≤ n − 1,

which may then be solved to give (∗). �
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§5. Linear Pfaffian Systems.

The general theory takes a concrete and simple form for Pfaffian systems.

Definition 5.1. A Pfaffian system is an exterior differential system with indepen-
dence condition (I, Ω) such that I is generated as an exterior differential system in
degrees zero and one.

Locally I is algebraically generated by a set f1, . . . , fr of functions and θ1 , . . . , θs0

of 1-forms together with the exterior derivatives df1, . . . , dfr and dθ1, . . . , dθs0 .
Equating the functions fi to zero effectively means restricting to submanifolds,
and we shall not carry this step along explicitly in our theoretical developments.
However, in practice it is obviously important; for example, in imposing integra-
bility conditions during the process of prolongation (cf. §6 below). Thus, unless
mentioned to the contrary, we shall assume that I is generated as a differential
ideal by the sections of a sub-bundle I ⊂ T ∗M .4 Moreover, as explained following
Definition 1.1 above, we shall assume that the independence condition corresponds
to a sub-bundle J ⊂ T ∗M with I ⊂ J . Denoting by {J} ⊂ Ω∗(M) the algebraic
ideal generated by the C∞ sections of J , we shall prove the following

Proposition 5.2. The necessary and sufficient condition that (I, Ω) be linear is
that

(46) dI ≡ 0 mod {J}.

Proof. We will use the proof as an opportunity to derive the local structure equa-
tions of a Pfaffian system (I, Ω). Choose a set of 1-forms

θ1, . . . , θs0 ; ω1, . . . , ωn; π1, . . . , πt

that is adapted to the filtration

I ⊂ J ⊂ T ∗M

and that gives a local coframing on M . Throughout this section we shall use the
ranges of indices

1 ≤ a, b ≤ s0

1 ≤ i, j ≤ n

1 ≤ ε, δ ≤ t.

The above local coframing is defined up to invertible linear substitutions

(47)

θ̃a = Aa
bθb

ω̃i = Bi
jω

j + Bi
aθa

π̃ε = Cε
δπδ + Cε

i ωi + Cε
aθa,

4Although it is somewhat cumbersome, we shall use s0 to denote the rank of I; this s0 is the
first of the Cartan characters s0, s1, . . . , sn.
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reflecting the filtration I ⊂ J ⊂ T ∗M .
The behavior of the 2-forms dθa is fundamental to the differential system. In

terms of them we will determine the conditions that (I, Ω) be linear. For this we
write

(48) dθa ≡ Aa
εiπ

ε ∧ ωi +
1
2
ca
ijω

i ∧ ωj +
1
2
ea
εδπ

ε ∧ πδ mod {I}

where we can suppose that

ca
ij + ca

ji = 0 = ea
εδ + ea

δε.

Here we recall our notation that {I} is the algebraic ideal generated by the θa’s.
Integral elements of (I, Ω) are defined by θa = 0 together with linear equations

(49) πε − pε
i ω

i = 0

where by (48)

(50) (Aa
εip

ε
j − Aa

εjp
ε
i ) + ca

ij + ea
εδ(p

ε
ip

δ
j − pε

jp
δ
i ) = 0.

These equations are linear in pε
i if, and only if,

ea
εδ = 0.

This is equivalent to

(51) dθa ≡ Aa
εiπ

ε ∧ ωi +
1
2
ca
ijω

i ∧ ωj mod {I},

which is also clearly the condition that (I, Ω) be linearly generated. It is also clear
that (51) is just (46) written out in terms of bases. �

The proof shows that a Pfaffian system is linear if, and only if, it is linearly
generated.

Definition 5.3. We shall say that the Pfaffian system (I, Ω) is linear if either of the
equivalent conditions (46) or (51) is satisfied.

We want to comment on the equation (51). Assume that (I, Ω) is linear and
write

(52) dθa ≡ πa
i ∧ ωi mod {I}

where the πa
i are 1-forms. It is clear from (47) that

the πa
i are well-defined as sections of T ∗M/J ,(53)

and under a change of coframe (47) the πa
i transform

like the components, relative to our chosen coframe, of

a section of I∗ ⊗ J/I.
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The relation between (51) and (52) is

(54) πa
i ≡ Aa

εiπ
ε mod {θa, ωi},

and the most general 1-forms πa
i satisfying (52) are given by

πa
i = Aa

εiπ
ε + ca

jiω
j + pa

jiω
j

where the Aa
εi and ca

ji are as above and the pa
ij are free subject to pa

ij = pa
ji.

In intrinsic terms, for linear Pfaffian systems the exterior derivative induces a
bundle mapping

(55) δ : I → (T ∗M/J) ⊗ J/I

given locally by

(56) δ(θa) = Aa
εiπ

ε ⊗ ωi

where the ωi are viewed as sections of J/I and the πε are viewed as sections of
T ∗M/J .5

Example 5.4. Referring to Example 1.3, we consider a partial differential equation
of second order

F (xi, z, ∂z/∂xi, ∂2z/∂xi∂xj) = 0.

This is equivalent to the Pfaffian differential system

(57)

⎧⎪⎨
⎪⎩

F (xi, z, pi, pij) = 0
θ = dz − pidxi = 0
θi = dpi − pijdxj = 0

with independence condition dx1∧· · ·∧dxn �= 0 in the space of variables xi, z, pi, pij =
pji.

The exterior derivatives of θ and θi are clearly in the algebraic ideal generated
by dxi, θ, θi. Hence the Pfaffian system is linear.

(58) Remark. In general, it is true that (i) the contact systems on the jet spaces
Jk(Rn, Rs0) are linear Pfaffian systems, and (ii) the restriction of a linear Pfaffian
system to a submanifold is again a linear Pfaffian system (assuming that the inde-
pendence form Ω is non-zero modulo the ideal I on the submanifold). Hence this
example is valid for a P.D.E. system of any order.

Example 5.5. Referring to Example 1.5, the canonical system (L, Φ) on Gn(TM)
is a linear Pfaffian system.

We next want to define the important concept of the tableau bundle associated
to a linear Pfaffian system (I, Ω) satisfying suitable constant rank conditions. This
will be a sub-bundle

A ⊂ I∗ ⊗ J/I

5This δ̄ is closely related to the maps δ = d modI encountered in the discussion of the derived
flag.
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given for each x ∈M by a tableau

Ax ⊂ I∗x ⊗ Jx/Ix

as defined in §3 above, and with the property we always assume that dimAx is
locally constant. To define Ax we let

J⊥
x ⊂ TxM

be given as usual by J⊥
x = {v ∈ TxM : η(v) = 0 for all η ∈ J} = {v ∈ TxM :

θa(v) = ωi(v) = 0}. Then, referring to (53) above, the quantities

πa
i (v) ∈ I∗x ⊗ Jx/Ix, v ∈ J⊥

x

are well defined, and we set

(59) Ax = {πa
i (v) : v ∈ J⊥

x }.

More precisely, the choice of framing θa for I and ωi for J/I induce bases wα and
xi for I∗x and Jx/Ix, respectively. Then Ax is spanned by the quantities

π(v) = πa
i (v)wa ⊗ xi

for v ∈ J⊥
x .

Definition 5.6. Assuming that dimAx is locally constant on M , we define the
tableau bundle A ⊂ I∗ ⊗ J/I by the condition that its fibres be given by (59).

Remark. We observe from (52) that the mapping

J⊥
x → I∗x ⊗ Jx/Ix

given by
v → ‖πa

i (v)‖

is injective if, and only if, there are no vectors v ∈ J⊥
x satisfying

v Ix ⊂ Ix.

In particular, this is the case if there are no Cauchy characteristic vectors for I,
and in this situation the tableau Ax has as basis the matrices

Aε = ‖Aa
εi‖, ε = 1, . . . , t.

In general, these matrices Aε span Ax but may not give a basis.
In intrinsic terms, by dualizing (55) with respect to T ∗M/J and I we have a

bundle mapping

(60) π : J⊥ → I∗ ⊗ J/I,

and with our constant rank assumption the tableau bundle is the image π(J⊥).
The mapping π is given in the above coordinates by π(v) = πa

i (v)wa ⊗ xi.
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From (51) it is clear that for linear Pfaffian systems the tableau bundle encodes
what we might call the “principal part” of the behavior of the 2-forms dθa mod {I}.
Here, principal part refers to the term Aa

εiπ
ε ∧ ωi; the other term 1

2ca
ijω

i ∧ ωj will
also be discussed below.

For each x ∈ M , the characters s′i(x) of the tableau Ax are defined; we shall
assume that these are locally constant and shall call them the reduced characters
of the linear Pfaffian system. In the discussion of examples it will frequently be
convenient to let x ∈M be a typical point, set⎧⎪⎨

⎪⎩
W = I∗x

V ∗ = Jx/Ix

A = Ax and s′i = s′i(x),

and speak of A ⊂W⊗V ∗ as the tableau of (I, Ω) without reference to the particular
point x ∈M .

In Definition 3.4 above, we introduced the prolongation of a tableau and in (26)
we gave an interpretation of the prolongation. This interpretation may be extended
as follows:

Proposition 5.7. Assume that (I, Ω) is a linear Pfaffian system and that the set
of integral elements Gx(I, Ω) of (I, Ω) lying over x ∈ M is non-empty. Then
Gx(I, Ω) is an affine linear space whose associated vector space may be naturally
identified with the prolongation A

(1)
x of Ax.

Proof. We work over a fixed point x ∈ M and omit reference to it. Referring to
the proof of Proposition 5.2, the equations of integral elements are

{
θa = 0
πε − pε

iω
i = 0

where
(Aa

εip
ε
j − Aa

εjp
ε
i ) + ca

ij = 0.

These equations define an affine linear space, and assuming that this is non-empty
(a point we shall take up next) the associated vector space is defined by the homo-
geneous linear equations

(61) Aa
εip

ε
j = Aa

εjp
ε
i .

Given a solution pε
j to these equations, then we set P a

ij = Aa
εip

ε
j = P a

ji and see that

P = P a
ijwa ⊗ xixj ∈ W ⊗ S2V ∗

satisfies the relations
Bλi

a P a
ij = 0

that define A; hence P ∈ A(1). Conversely, if

P = P a
ijwa ⊗ xixj ∈ A(1),
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then each ∂P/∂xj ∈ A and so is a linear combination

∂P/∂xj = Aa
εip

ε
jwa ⊗ xi

of a spanning set of matrices Aε = ‖Aa
εi‖ of A. The condition ∂2P/∂xi∂xj =

∂2P/∂xj∂xi is then equivalent to (61). �
In §3, we have defined the symbol associated to a tableau, and here we have the

corresponding

Definition 5.8. Let (I, Ω) be a linear Pfaffian system with tableau bundle A ⊂
I∗ ⊗ J/I. Then the symbol bundle is defined to be

B = A⊥ ⊂ I ⊗ (J/I)∗.

As explained above, we shall frequently omit reference to the point x ∈ M and
simply refer to B as the symbol of the Pfaffian differential system.

Example 5.9. We consider a 1st order P.D.E. system

(62) F λ(xi, ya, ∂ya/∂xi) = 0.

We write this as the Pfaffian differential system

(63)
{

θa = dya − pa
i dxi = 0

Ω = dx1 ∧ · · · ∧ dxn �= 0

in the submanifold M of (xi, ya, pa
i ) space defined by the equations

(64) F λ(xi, ya, pa
i ) = 0

(we assume that these define a submanifold). The structure equations of (63) are

dθa ≡ πa
i ∧ ωi mod (I)

where πa
i = −dpa

i |M and ωi = dxi|M . From (64) the πa
i are subject to the relations

∂F λ

∂pa
i

πa
i ≡ 0 mod {J}.

It follows from the above discussion that at each point q = (xi, ya, pa
i ) of M the

fibre of the symbol bundle is spanned by the matrices

Bλ = ‖(∂F λ/∂pa
i )(q)‖.

Thus, the symbol of the Pfaffian system (63) associated to the P.D.E. system (62)
agrees with the classical definition of the symbol of such a system.

In general, we have chosen our notations for a linear Pfaffian system so that their
structure equations look like the structure equations of the special system (63). In
this regard, we offer without proof the following easy
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Proposition 5.10. A linear Pfaffian system is locally equivalent to the Pfaffian
system (63) arising from a P.D.E. system (62) if, and only if, the Frobenius condi-
tion

dJ ≡ 0 mod {J}

is satisfied.

It is well known that a P.D.E. system may have compatibility conditions ob-
tained from the equality of mixed partials, and we shall find the expression of these
conditions for a general linear Pfaffian system. More specifically, we consider the
compatibility conditions for the affine linear equations

(65) (Aa
εi(x)pε

j − Aa
εj(x)pε

i ) + ca
ij(x) = 0

whose solutions give the integral elements Gx(I, Ω) lying over a point x ∈M . The
compatibility conditions for this system of linear equations in the pε

i may lead to
relations on the Aa

εi(x) and ca
ij(x). These are called integrability conditions. Their

presence means that the set G(I, Ω) of integral elements of (I, Ω) projects onto a
proper subset of M , and we should restrict our consideration to this subset.

As the following simple example shows, the presence of integrability conditions
is an important phenomenon for “over-determined” systems of partial differential
equations, and usually imposes strong restrictions on the solution.

Example 5.11. In the (x, y, z)-space consider the system of P.D.E.’s of the first
order:

zx = A(x, y, z), zy = B(x, y, z).

This is equivalent to the differential system

(66) θ = dz − Adx−Bdy = 0,

also in (x, y, z) space and with the independence condition

(67) dx∧ dy �= 0.

In the above notation we have rank I = 1, rank J = 3 and thus J = T ∗M , and at
each point of M there is a unique 2-plane (66) satisfying the independence condition
(67). The condition that this 2-plane be an integral element is that

dθ = −dA ∧ dx− dB ∧ dy

restrict to zero on it. Working this out gives

(68) Ay + AzB = Bx + BzA,

which is the usual integrability condition. If it is not identically satisfied, there are
two cases: a) The relation (68) does not involve z and is therefore a relation be-
tween x, y, so that the system has no integral manifold satisfying the independence
condition (67); b) The relation (68) gives z as a function of x, y, which is then the
only possible solution, and thus the equation has a solution or not depending on
whether it is satisfied or not by this function.
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Example 5.12. In an open set U ⊂ Rn(n ≥ 2) with coordinates x1, . . . , xn, we
assume given a smooth 2-form ϕ = 1

2ϕijdxi ∧ dxj, ϕij + ϕji = 0, and consider the
equation

dη + ϕ = 0

for a 1-form η. When written out, this equation becomes the P.D.E. system

∂ηi/∂xj − ∂ηj/∂xi + ϕij = 0.

The associated exterior differential system is defined on the submanifold M of
(xi, ηi, pij) space by the equations

(69)

⎧⎪⎨
⎪⎩

pij − pji + ϕij = 0
θi = dηi − pijdxj = 0
dx1 ∧ · · · ∧ dxn �= 0.

We seek an integral element E ⊂ TqM defined by

(70) dpij − pijkdxk = 0

together with {
dθi|E = 0
(dpij − dpji + dϕij)|E = 0.

The first of these equations gives

(71) pijk = pikj,

and using (70) the second equations give

(72) pijk − pjik + ∂ϕij/∂xk = 0.

It is an elementary consequence of (71) and (72) that dϕ = 0. In other words, the
necessary and sufficient condition that the Pfaffian system (69) have an integral
element lying over each point of M is that dϕ = 0.

This again illustrates our assertion that the compatibility conditions for the
equations (65) are integrability conditions; more precisely, they are first order in-
tegrability conditions.

We will now see how these integrability conditions are reflected in the struc-
ture equations of a linear Pfaffian differential system. Referring to the proof of
Proposition 5.2 above, we assume that θ1, . . . , θs0 , ω1, . . . , ωn, π1, . . . , πt is a local
coframe for M adapted to the filtration I ⊂ J ⊂ T ∗M . This coframe is defined up
to an invertible linear transformation (47). The linearity of the Pfaffian system is
expressed by the equation (51), i.e., by the absence of πδ ∧ πε terms in the dθa’s.
By abuse of notation we shall write the system as

(73)

⎧⎪⎨
⎪⎩

θa = 0
dθa ≡ Aa

εiπ
ε ∧ ωi + 1

2 ca
ijω

i ∧ ωj mod {I}
Ω = ω1 ∧ · · · ∧ ωn �= 0.
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Under a substitution (47) with only the diagonal blocks being non-zero—i.e., with
‖Cε

i ‖ = 0 (the θ-terms don’t matter because of the congruence in the 2nd equa-
tion above)—we see that ca

ij transforms like a section of I∗ ⊗ Λ2(J/I). Under a
substitution (47) with the diagonal blocks being the identity, i.e., given by

(74) πε → πε + pε
i ω

i,

we have that

(75) ca
ij → ca

ij + (Aa
εjp

ε
i −Aa

εip
ε
j).

In intrinsic terms, we have a mapping

(76) π : J⊥ ⊗ J/I → I∗ ⊗ Λ2(J/I)

induced by (60) and given in the above bases by

pε
i → (Aa

εjp
ε
i −Aa

εip
ε
j),

and the ca
ij give a section of I∗ ⊗Λ2(J/I)/image π, where we now assume that the

mapping (76) has locally constant rank.

Definition 5.13. We denote by [c] the section of the bundle I∗ ⊗Λ2(J/I)/image π,
given in bases by {ca

ij} modulo the equivalence relation (75). Then [c] is called the
torsion of the linear Pfaffian system (73).

From the proof of Proposition 5.7 we have the

Proposition 5.14. The necessary and sufficient condition that there exist an in-
tegral element of (73) over a point x ∈M is that the torsion [c](x) = 0.

By our discussion above, we see that the torsion reflects the 1st order integrability
conditions in the Pfaffian system (73). For this reason, we shall sometimes say that
the integrability conditions are satisfied rather than the torsion vanishes. On the
other hand, assuming always that the mapping (76) has constant rank, we see
that the vanishing of the torsion in an open neighborhood U of a point x ∈ M is
equivalent to being able to make a smooth substitution (74) in U such that the
ca
ij = 0 in (73). For this reason, we shall sometimes say that the torsion may be

absorbed (by a substitution (74)) rather than the torsion vanishes. In summary,
we have that the satisfaction of the integrability conditions for (73) is expressed by
being able to absorb the torsion.

There is an alternate way of writing (73), called the dual form, that is especially
useful in computing examples. To explain it we set

(77) πa
i = Aa

εiπ
ε + ca

jiω
j

so that the second equation in (73) becomes

(78) dθa ≡ πa
i ∧ ωi mod {I}.

The 1-forms πa
i are not linearly independent modulo J , but are subject to the

relations

(79) Bλi
a πa

i ≡ Cλ
j ωj mod {I},
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where by (77)

(80) Cλ
j = Bλi

a ca
ji.

Here, we are working over an open set U ⊂M and omitting reference to the point
x ∈M , and the Bλi

a give a basis for symbol bundle over U . Summarizing, the dual
form of the structure equations (73) is

(81)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θa = 0
dθa ≡ πa

i ∧ ωi mod {I}
Bλi

a πa
i ≡ Cλ

j ωj mod {I}
Ω = ω1 ∧ · · · ∧ ωn �= 0.

Proposition 5.15. Assuming that the operator π in (76) has constant rank, the
following are equivalent:

(i) the space G(I, Ω) of integral elements surjects onto M ;
(ii) locally, we may choose the πε so that ca

ij = 0 in (73);
(iii) locally, we may choose the πa

i so that Cλ
j = 0 in (81).

Proof. We have proved that (i) ⇒ (ii) ⇒ (iii) above (see (80) for (ii) ⇒ (iii)).
Assuming (iii), we consider the family of n-planes{

θa = 0
πa

i = 0.

By the third equation in (81), these n-planes are well-defined, and by the first and
second equations there they are integral elements. �

If any of the equivalent conditions in the proposition are satisfied, we shall say
that the integrability conditions are satisfied or that the torsion may be absorbed.

Suppose that (i) in the proposition is satisfied. Then we may choose our coframe
θ1, . . . , θs0 , ω1, . . . , ωn, π1, . . . , πt so that the structure equations (73), (81) became
respectively

(82)

⎧⎪⎨
⎪⎩

θa = 0
dθa ≡ Aa

εiπ
ε ∧ ωi mod {I}

Ω = ω1 ∧ · · · ∧ ωn �= 0

(83)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θa = 0
dθa ≡ πa

i ∧ ωi mod {I}
Bλi

a πa
i ≡ 0 mod {I}

Ω = ω1 ∧ · · · ∧ ωn �= 0.

These are the forms of the structure equations that we shall use in examples where
the torsion is absorbed.

Referring to structure equations (73), we have discussed the tableau and torsion
of a linear Pfaffian system. We will now express Cartan’s test for involution in
terms of these invariants. For this we work in a neighborhood U of a point x ∈ M

and assume that the quantities dimAx, s′i(x), dimA
(1)
x , and rank πx in (76) all are

constant.
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Theorem 5.16. The linear Pfaffian system (I, Ω) is involutive at x ∈ M if, and
only if,

(i) the torsion vanishes in U
(ii) the tableau Ax is involutive.

Proof. We may replace U by M , and then by Proposition 5.14 the vanishing of
the torsion is equivalent to the surjectivity of the mapping G(I, Ω) → M . By
Proposition 5.7 we then have that

dim G(I, Ω) = dimM + dimA(1)
x .

On the other hand, using the structure equations (83) we see first that the equations

{
θa(x) = 0
πa

i (x) = 0

define an integral element E ⊂ TxM having a basis ei where 〈ωj(x), ei〉 = δj
i ,

and secondly the proof of (36) in section 3 above shows that the rank of the polar
equations of Ek = span{e1, . . . , ek} is given by

s0 + s′1 + · · ·+ s′k.

On the other hand, the Cartan characters rk and sk associated to E in terms of
the dimensions of the polar spaces H(Ek) are given for k ≥ 0 by the relations

(84)
{

dimH(Ek) = rk+1 + k + 1
sk = rk − rk+1 − 1 ≥ 0.

We set r0 = m = dim M , reflecting the assumption that there are integral elements
over each point. Then r0 − r1 − 1 = rank Ix = s0, so that our notations are
consistent. From (84) we infer that, for 1 ≤ k ≤ n− 1,

(85) rk+1 + k + 1 = n + t− (s0 + s′1 + · · ·+ s′k).

Subtracting these equations for k and k − 1 and using the second equation in (84)
gives

(86) sk = s′k

for k = 1, . . . , n − 1. This proves: For any integral element E, the characters
sk = sk(E) are equal to the reduced characters s′k. In particular, the sk are the
same for all integral elements E lying over a fixed point x ∈ M . The inequality in
Cartan’s test given by Theorem 1.11 in Chapter III is then

(87) dimA(1)
x ≤ s′1 + 2s′2 + · · ·+ ns′n,

and, by the Definition 3.7 above, equality holds if, and only if, Ax is involutive.
�
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To conclude this section, we want to give a practical method for computing the
s′i so that one can, with relative ease, check for equality in (87). For a 1-form ϕ we
set

ϕ = ϕ(x) modulo Jx

= ϕ(x) modulo {θa(x), ωi(x)},

and we shall omit reference to the point x ∈M . We define the tableau matrix by

(88) π =

⎡
⎢⎣ π1

1 . . . π1
n

...
...

πs0
1 . . . πs0

n

⎤
⎥⎦ .

Then, assuming that the ωi are chosen generically, we have again from the proof of
Proposition 3.8 above that

(89) s′1 + · · ·+ s′k =
{

number of independent 1-forms πa
i

in the first k columns of π

}
.

In practice, this equality will allow us to determine the s′i by “eyeballing” the
tableau matrix (88).

For an illustration of the use of the tableau matrix, we shall put it in a normal
form and use this to give an especially transparent proof of Cartan’s test.

We assume that the torsion has been absorbed so that the structure equations
(83) and relations (86), (89) hold. Then, amongst the 1-forms πa

1 exactly s′1 are
linearly independent. (We remind the reader that we are omitting reference to
the point x.) We may then assume that θ1, . . . , θs0 are chosen so that π1

1, . . . , π
s′
1

1

are independent. Then all of the forms πa
i for a > s′1 are linear combinations

of π1
1, . . . , π

s′
1

1 , since otherwise we could choose ω1, . . . , ωn so that at least s′1 + 1
of the forms πa

1 were linearly independent in contradiction to (89). Having said
this, among the forms π1

2, . . . , π
s′
1

2 exactly s′2 are independent modulo π1
1, . . . , π

s′
1

1 .
We may assume that θ1, . . . , θs′

1 have been chosen so that π1
2, . . . , π

s′
2

2 are linearly
independent modulo π1

1, . . . , π
s′
1

1 . We note that s′2 ≤ s′1, since otherwise s′1 would
not be the number of independent πa

1 for a generic choice of ω1, . . . , ωn. Continuing
in this way, we may choose θ1 , . . . , θs0 so that the tableau matrix looks like

(90)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

π1
1 π1

2 . . . π1
n

...
... π

s′
n

n
... π

s′
2

2 ∗
π

s′
1

1 ∗ ∗
∗ ∗ ∗
∗ ∗ . . . ∗

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
with the property that: for b > s′k the form πb

k is a linear combination of the forms
πa

i where i ≤ k, a ≤ s′i.
6 We also note that s′1 ≥ s′2 ≥ · · · ≥ s′n.

6Actually, we have proved that the πb
k for b > s′1 are linear combinations of π1

1, . . . , π
s′1
1 ; the

πb
k for s′2 < b ≤ s′1 are linear combinations of π1

1, . . . , π
s′1
1 , π1

2, . . . , π
s′2
2 ; the πb

k for s3 < b ≤ s′2 are

linear combinations of π1
1, . . . , π

s′1
1 , π1

2, . . . , π
s′2
2 , π1

3, . . . , π
s′3
3 ; and so forth.
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Definition 5.17. The forms πa
i where a ≤ s′i are called the principal components.

Thus the principal components are independent and span the space of the πa
i ’s.

We will now derive Cartan’s test. Integral elements are defined by linear equa-
tions

θa = 0
πa

i − pa
ijω

j = 0

where pa
ij = pa

ji and Bλi
a pa

ij = 0 by (83). Clearly it suffices to consider only those
linear equations

(91) πa
i − pa

ijω
j = 0, a ≤ s′i

corresponding to the principal components, as the remaining linear equations are
consequences of these by writing

πb
k =

{
linear combination of the πa

i for i ≤ k and a ≤ s′i
together with the ωj and θb.

}

Since pa
ij = pa

ji the integral element (46) is determined by the quantities

pa
ij, a ≤ min s′i, s

′
j

or equivalently by the quantities

(92) pa
ij, i ≤ j, a ≤ s′j .

For j = 1 we have the pa
11 for a ≤ s′1 . For j = 2 we have the pa

12 and pa
22 for a ≤ s′2.

For j = 3 we have the pa
13, pa

23, and pa
33 for a ≤ s′3. Continuing in this way, we see

that there are at most

(93) s′1 + 2s′2 + 3s′3 + · · ·+ ns′n

independent quantities (92), and this is the inequality in Cartan’s test.
Suppose that equality holds, and consider integral elements of dimension p that

satisfy the additional equations ωp+1 = · · · = ωn = 0. These integral elements are
given by equations (91) where we set ωp+1 = · · · = ωn = 0, from which it follows
that they are uniquely determined by the quantities (92) where j ≤ p. If the space
of integral elements is of dimension equal to (93), the pa

ij in (92) can be freely
specified. From this it follows that every p-dimensional integral element given by
ωp+1 = · · · = ωn = 0 extends to a (p + 1)-dimensional integral element given by
ωp+2 = · · · = ωn = 0, and in fact does so in (p + 1)s′p-dimensional ways. Thus, we
have a C-regular flag, which means that the system is involutive. �
Remark. To understand the relation between this discussion and the proof of Car-
tan’s test in Chapter III, we assume as above that En is defined by the equations
θa = πb

i = 0 and Ek ⊂ En by the additional equations ωk+1 = · · · = ωn = 0. In
the filtration

(94)
E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ H(En) ⊂ . . .

⊂ H(E2) ⊂ H(E1) ⊂ H(E0) ⊂ T
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we have

H(E0) = {θb = 0}

H(E1) = {θb = 0, πa
1 = 0 for a ≤ s′1}

H(E2) = {θb = 0, πa
1 = 0 for a ≤ s′1 and πb

2 = 0 for b ≤ s′2}

...
...

H(En) = {θb = 0, πa
i = 0 for a ≤ s′i}.

From this it is clear that the normal form (90) is simply the implication on the
tableau of chosing the πa

i adapted to the filtration (94) in the manner just explained.
A very useful insight into involutivity is to express its consequences on the symbol

relations when the tableau matrix is in the normal form (90). The general case
is called the Guillemin normal form, which will be further discussed at the end
of Chapter VIII. Here we will first take up the special case when the system is
involutive and

(95) s′1 = s0, s′2 = · · · = s′n = 0.

Thus the principal components are the πa
1 , and using the additional index range

2 ≤ ρ, σ ≤ n

we will have relations

(96) πa
ρ ≡ Ca

ρbπ
b
1,

where the congruence is modulo the θa’s and ωi’s. These are a complete set of
symbol relations, and setting

Cρ = ‖Ca
ρb‖

we will prove that:

A tableau satisfying (95) with symbol relations (96) is(97)
involutive if, and only if, the commutation relations

[Cρ, Cσ] = 0(98)

are satisfied.

Proof. Among the equations
πa

i − pa
ijω

j = 0

that define integral elements, by (95) those for i ≥ 2 are consequences of those for
i = 1. Thus, by Cartan’s test the pa

11 may be freely specified and then the

(99)
pa

i1 = pa
1j

pa
ρσ = pa

σρ
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are determined. From (96) we have

pa
ρi = Ca

ρbp
b
1i.

Thus

(100) pa
ρ1 = Ca

ρbp
b
11

and

(101) pa
ρσ = Ca

ρbp
b
1σ.

Using the first equation in (99) and (100) in (101) gives

pa
ρσ = Ca

ρbC
b
σcp

c
11,

and then the second equation in (99) gives

(Ca
ρbC

b
σc − Ca

σbC
b
ρc)p

c
11 = 0.

Since the pc
11 may be freely specified, we conclude (98). Reversing the argument

gives our assertion. �
A slightly more general case arises when we assume that

(102) s′1 = · · · = s′l = s0, s′l+1 = · · · = s′n = 0.

With the ranges of indices

1 ≤ λ ≤ l, l + 1 ≤ ρ ≤ n

the complete symbol relations are

πa
ρ ≡ Cλa

ρb πb
λ.

For any ξ = (ξ1, . . . , ξl) we define

Cρ(ξ) = ‖Cλa
ρb ξλ‖,

and the the same proof gives:

A tableau satisfying (102) is involutive if, and(103)
only if, for all ξ, the commutation relations

[Cρ(ξ), Cσ(ξ)] = 0,(104)

are satisfied.

Although we shall not completely write out the Guillemin normal form here, we
will refine the normal form (90) and indicate how this in fact leads to a generaliza-
tion of Guillemin’s result.
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We first claim that:

In the involutive case, we may choose θ1, . . . , θs0 so that(∗)

πa
i = 0 for a > s′1 , 1 ≤ i ≤ n.

Proof. We may assume that the torsion is absorbed, i.e. that (83) holds, and then
the 1-forms

θa, ωi, πa
i where a ≤ s′i

are linearly independent. In the tableau matrix ‖πa
i ‖ without reducing modulo J ,

even though this is not intrinsic, we have

s′1 = number of linearly independent 1-forms πa
1 .

Moreover, if we then set all
πa

1 = 0

and denote by ϕ̃ the restriction of any 1-form ϕ to this space, the tableau with
matrix

‖π̃a
ρ‖, 2 ≤ ρ ≤ n and 1 ≤ a ≤ s0

is again involutive.
We choose θ1, . . . , θs0 so that

πa
1 = 0, a > s′1,

and will show that, as a consequence of involutivity, all the remaining

πa
ρ = 0, a > s′1 and 2 ≤ ρ ≤ n.

For this we recall from the argument for Cartan’s test given below Definition 5.12
that integral elements are defined by equations

(i) πa
i − pa

ijω
j = 0, pa

ij = pa
ji,

and that the pa
11, a ≤ s′1, may be freely specified. We now use the additional range

of indices 1 ≤ λ ≤ s′1. Then we have equations

πa
ρ = Ba

ρλπλ
1 , 2 ≤ ρ ≤ n.

Using (i) these give equations

pa
ρjω

j = Ba
ρλpλ

1jω
j

⇒pa
ρ1 = Ba

ρλpλ
11.

But πa
1 = 0 for a > s′1 gives

0 = pa
1ρ = pa

ρ1 = Ba
ρλpλ

11,

and the only way the pλ
11 can be freely specified is if all Ba

ρλ = 0. �
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We now may repeat (i) for the involutive tableau ‖π̃a
ρ‖ to conclude that, with a

suitable choice of θ1 , . . . , θs′
1 , all π̃a

ρ = 0 for s′2 < a ≤ s′1. This is equivalent to

πa
ρ ≡ 0 mod {πb

1}, s′2 < a ≤ s′1.

Continuing in this way we may assume that the tableau matrix has the following
form

(ii)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

π1
1 π1

2 π1
3 . . .

...
...

...
...

... π
s′
3

3

... π
s′
2

2 Ψ2

π
s′
1

1 Ψ1

Ψ0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
where ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ0 = 0
Ψ1 ≡ 0 mod {π1

1 , . . . , π
1
s′
1
}

Ψ2 ≡ 0 mod {π1
1 , . . . , π

1
s′
1
, π2

1 , . . . , π
2
s′
2
}

...

The Guillemin normal form arises by writing

(iii)

⎧⎪⎨
⎪⎩

Ψ1 = C11π1

Ψ2 = C21π1 + C22π2

...

where π1, π2, . . . are the columns in the tableau matrix. We may then repeat the
argument that gave (98) to deduce a set of quadratic conditions on the symbol rela-
tions (iii) that are necessary and sufficient in order that the tableau be involutive.7

We shall not pursue this further here.

§6. Prolongation.

Let I be an exterior differential system on a manifold M . The first prolongation
will be a linear Pfaffian system (I(1), Ω) with independence condition on a manifold
M (1). Roughly speaking, the first prolongation is obtained by imposing the first

7Actually, (ii) is a slight refinement of the Guillemin normal form, which more closely corre-
sponds to the normal form (90). The way to understand (ii) is as follows: Given a generic flag

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ V , dimVi = i, this determines a flag W ⊃ W1 ⊃ W2 ⊃ · · · ⊃ Wn−1,
dimWi = s′i together with a set of matrices Cij , i ≥ j, where Cij is an (s′i − s′i+1) × (s′j − s′j+1)

matrix and where a set of quadratic relations is imposed on the Cij . Counting the number of inde-

pendent equations would allow one to compute the dimension of the space of involutive tableaux
with fixed characters, which to our knowledge has never been done.
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order integrability conditions on the original system. The prolongation (I(1), Ω)
of an exterior differential system (I, Ω) with independence condition will also be
defined, and then the higher prolongations are defined inductively by I(0) = I and

(I(q+1), Ω) = 1st-prolongation of (I(q), Ω).

The three basic properties of prolongation may be informally and imprecisely stated
as follows:

The integral manifolds of (I, Ω) and (I(1), Ω) are(105)
locally in one-to-one correspondence.

If (I, Ω) is involutive, then so is (I(1), Ω).(106)

There exists a q0 such that, for q ≥ q0,(107)

(I(q), Ω) is involutive.

This last property includes the possibility that the manifolds M (q) are empty—
this is the case when there are no integral manifolds of (I, Ω). As a consequence
of (105) and (107) we may (again imprecisely) say that every integral manifold of
a differential system is an integral manifold of an involutive exterior differential
system.

We will now give the definition of (I(1), Ω) in a special case; the general definition
will be taken up in Chapter VI. For this we assume that the variety Gn(I) of n-
dimensional integral elements is a smooth submanifold of Gn(TM) whose defining
equations are derived from I as explained in Chapter III (cf. Proposition 1.4 and
Definition 1.7 there). Thus

(108) Gn(I) = {E ∈ Gn(TM) : ϕ|E = 0 for all ϕ ∈ I}

should be a regularly defined submanifold of Gn(TM).

Definition 6.1. The first prolongation (I(1), Ω) is defined to be the restriction to
Gn(I) of the canonical system (L, Φ) on Gn(TM).

To see what prolongation looks like in coordinates, we suppose that (x1, . . . , xn, y1, . . . , ys)
is a coordinate system on M and we consider the open set U ⊂ Gn(TM) given by
tangent planes E such that dx1∧ · · ·∧dxn|E �= 0. These tangent planes are defined
by equations (see the discussion in Example 5.4 above)

(109) θσ = dyσ − pσ
i dxi = 0,

and then (xi, yσ, pσ
i ) forms a local coordinate system on Gn(TM). In this open

set, the canonical system L is generated by the 1-forms θσ together with their
exterior derivatives and the independence condition is given by Φ = dx1∧· · ·∧dxn.
When written out in this coordinate system, the equations (108) become a system
of equations

(110) Fϕ(x, y, p) = 0, ϕ ∈ I,
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where ϕ|E = Fϕ(x, y, p)Φ for E given by (109). Our assumption is that these
equations regularly define a submanifold in (x, y, p) space, and then (I(1), Ω) is the
restriction to this submanifold of the canonical system. It is clear that

The first prolongation is a linear Pfaffian differential(111)
system with independence condition.

Moreover, property (105) above is also clear from the fact (cf. example 1.5) that the
integral manifolds of (L, Φ) are locally the canonical liftings of smooth mappings
f : N →M . Properties (106) and (107) are more subtle and will be taken up later.

If we begin with a differential system (I, Ω) with independence condition, then
assuming as above that G(I, Ω) is a smooth submanifold, (I(1), Ω) is defined to be
the restriction to G(I, Ω) of the canonical system on Gn(TM).

Example 6.2. We will work out the structure equations for the first prolongation
of a linear Pfaffian system for which the torsion vanishes. First we make a general
observation.

Using the above notation, suppose that

ϕ = fσ(x, y)dyσ − gi(x, y)dxi

is a 1-form in I where some fσ �= 0. The condition that ϕ vanish on the integral
element (109) is

(112) fσ(x, y)pσ
i = gi(x, y).

We let π : M (1) →M be the projection, and on M (1) we consider the 1-form

π∗ϕ = fσ(x, y)dyσ − gi(x, y)dxi

= fσ(x, y)(dyσ − pσ
i dxi)

by (112)

= fσθσ

by (109). In summary:

Let π : M (1) →M be the canonical projection, and(113)
let I1 denote the differential ideal generated by
the 1-forms in I. Then

π∗I1 ⊆ I(1).

In particular, if I is a Pfaffian system then

π∗I ⊂ I(1).

From now on we will usually omit the π∗’s.
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Returning to our example, we suppose I to locally have the structure equations
(83) above. Then M (1) → M is a bundle of affine linear spaces whose associated
vector bundle has fibre A

(1)
x over x ∈M . Integral elements of (I, Ω) are defined by

(114)
{

θa = 0
θa
i = πa

i − pa
ijω

j = 0

where the equations

(115)

{
pa

ij = pa
ji

Bλi
a (x)pa

ij = 0

are satisfied. From (113) it follows that I(1) is generated as a differential ideal by
the 1-forms θa, θa

i (recall that we are omitting the π∗’s). For the structure equations
of I(1) we let I(1) ⊂ T ∗M (1) be the sub-bundle whose sections are the 1-forms in
I(1), so that locally I(1) = span{θa, θa

i }. We shall prove that:

(116) dθa ≡ 0 mod {I(1)}

(117) dθa
i ≡ πa

ij ∧ ωj mod {I(1)}

where

(118)

{
πa

ij ≡ πa
ji mod {I(1)}

Bλi
a πa

ij ≡ Cλ
jkω

k mod {I(1)}.

Proof of (116). From (83) and (114) above

(119)

dθa ≡ πa
i ∧ ωi mod {I}

≡ θa
i ∧ ωi mod {I}

≡ 0 mod {I(1)}.

Proof of (117). We shall use the following variant of the Cartan lemma to be proved
in Chapter VIII (cf. Proposition 2.1 and its corollaries in Chapter VIII): Let ω̃i be
linearly independent vectors in a vector space U and let ηi ∈ Λ2U satisfy the
exterior equation

(120) ηi ∧ ω̃i = 0.

Then it follows that

(121)
{

ηi = ηij ∧ ω̃j where
ηij = ηji ∈ U.
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To apply this, we take the exterior derivative of (119) and use (116) and (114) to
obtain

0 ≡ dπa
i ∧ ωi − πa

j ∧ dωj mod {I(1)}

≡ (dπa
i − pa

ijdωj) ∧ ωi mod {I(1)}.

We take U to be a typical fibre of T ∗M (1)/I(1) and ω̃i = ωi mod {I(1)}. Then
from (120) and (121) we conclude that

(122) dπa
i − pa

ijdωj ≡ ηa
ij ∧ ωj mod {I(1)}

where
ηa

ij ≡ ηa
ij mod {I(1)}.

Now we have from the definition (114) and (122),

dθa
i = dπa

i − pa
ijdωj − dpa

ij ∧ ωj

≡ πa
ij ∧ ωj mod {I(1)}

where

(123)

{
πa

ij = −dpa
ij + ηa

ij

πa
ij ≡ πa

ji mod {I(1)}.

This gives (117) where the 1st equation in (118) is satisfied. To verify the second
equation in (118) we let J (1) ⊂ T ∗M (1) be the sub-bundle generated by I(1) and the
values of the ωi(x). Then exterior differentiation of the second equation in (115)
gives

Bλi
a (x)dpa

ij ≡ 0 mod {J (1)}

since dBλi
a (x) ∈ T ∗

x M and the θa(x), πa
i (x), ωi(x) span T ∗

x M . From this and the
1st equation in (123) we have (dropping reference to x)

Bλi
a πa

ij ≡ 0 mod {J (1)}

since ηa
ij ≡ 0 mod {J (1)}. This implies the 2nd-equation in (118). �

Using (116)–(118) the structure equations of (I(1), Ω) may be summarized as
follows:

(124)

(i) θa = 0
(ii) θa

i = 0

(iii) dθa ≡ 0 mod {I(1)}
(iv) dθa

i ≡ πa
ij ∧ ωj mod {I(1)}

(v) πa
ij = πa

ji

(vi) Bλi
a πa

ij ≡ Cλ
jk ωk mod {I(1)}
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with the independence condition Ω = ω1 ∧ · · · ∧ ωn �= 0. From this we conclude
that

(I(1), Ω) is a linear Pfaffian system whose tableau(125)

over a point y ∈M (1) is the 1st prolongation

A(1)
x of the tableau of (I, Ω) over x = π(y).

In other words, the tableau of the prolongation is the prolongation of the tableau.
It follows also that the integral elements of (I(1), Ω) over a point y ∈M (1) form

an affine linear space whose associated vector space is the 2nd prolongation A
(2)
x

where x = π(y). In fact, referring to (124) there integral elements are given by

πa
ij − pa

ijkω
k = 0

where
pa

ijk = pa
jik = pa

ikj (by (iv) and (v))

Bλi
a pa

ijk = Cλ
jk(y) (by (vi)).

The homogeneous linear equations associated to the second of these equations define
A

(2)
x ⊂W ⊗ S3V ∗. We will return to these matters in Chapters V and VI.
Finally, for use in Chapter VIII we want to prove the relation

(126) Cλ
jkω

j ∧ ωk ≡ 0 mod {I(1)}.

Proof. From the equations ⎧⎪⎨
⎪⎩

Bλi
a πa

i ≡ 0 mod I1

Bλi
a pa

ij = 0

θa
i = πa

i − pa
ijω

j

together with (113) above, we infer that

Bλi
a θa

i ≡ 0 mod I1

Bλi
a dθa

i ≡ 0 mod I(1).

Plugging this into equation (iv) in (124) above and using (vi) there gives (126).
�

Example 6.3. We consider a 1st order P.D.E. system

(127) F λ(xi, za, ∂za/∂xi) = constant

(we do not specify what the constant is). On M = J1(Rn, Rs0) with coordinates
(xi, za, pa

i ) this P.D.E. system corresponds to the exterior differential system (I, Ω)
generated by the 1-forms

(128)
{

(i) dF λ(x, z, p)
(ii) θa = dza − pa

i dxi
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and with independence condition Ω = dx1 ∧ · · ·∧dxn. We want to see what, if any,
P.D.E. system corresponds to the first prolongation (I(1), Ω).

In fact, the prolongation of the P.D.E. system (127) is usually defined by in-
troducing new variables pa

i for the derivatives ∂za/∂xi and differentiating (127).
Explicitly, it is the 1st order P.D.E. system for unknown functions za, pa

i

(1271)

⎧⎨
⎩

pa
i = ∂za/∂xi

∂F λ

∂xi
+

∂F λ

∂za
pa

i +
∂F λ

∂pa
j

∂

∂xi
(pa

j ) = 0, i = 1, . . . , n

where F λ = F λ(x, z, p). Clearly the solutions of (127) and (1271) are in one-to-one
correspondence (this is the reason for the constant in (127)), and we shall check
that:

(I(1), Ω) is the exterior differential system(129)

corresponding to the P.D.E. system (1271).

Proof. By definition, the exterior differential system corresponding to (1271) occurs
on a submanifold M̃ of a jet space with coordinates (xi, za, pa

i , qa
i , pa

ij), where M̃
has defining equations

(130)

⎧⎨
⎩

pa
i = qa

i

∂F λ

∂xi
+

∂F λ

∂za
qa
i +

∂F λ

∂pa
j

pa
ji = 0,

where F λ = F λ(x, z, p). The differential ideal Ĩ is generated by the restrictions to
M̃ of the 1-forms {

θa = dza − qa
i dxi

θa
i = dpa

i − pa
ijdxj.

Imposing the first equations in (130), we may think of M̃ as being defined in
(xi, za, pa

i , pa
ij = pa

ji) space by the equations

(131)
∂F λ

∂xi
+

∂F λ

∂za
pa

i +
∂F λ

∂pa
j

pa
ij = 0

and the ideal Ĩ is generated by the restrictions to M̃ of the 1-forms

(132)
{

θa = dza − pa
i dxi

θa
i = dpa

i − pa
ijdxj.

On the other hand, integral elements to (128) are defined by

dpa
i − pa

ijdxj = 0

subject to the conditions (from (ii) in (128))

−dpa
i ∧ dxi = −pa

ijdxj ∧ dxi = 0,

which implies that pa
ij = pa

ji, and (from (i) in (128))

∂F λ

∂xi
dxi +

∂F λ

∂za
pa

i dxi +
∂F λ

∂pa
j

pa
ijdxi = 0.

Comparing with (131) we see that we may identify M̃ with M (1) and that, when
this is done, Ĩ = I(1). �
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§7. Examples.

We will give some examples of differential systems in involution.

Example 7.1 (Cauchy–Riemann equations). Let w = u+ iv be a holomorphic func-
tion in the n complex variables

zi = xi +
√
−1 yi, 1 ≤ i ≤ n.

The Cauchy–Riemann equations can be written as the differential system

θ1 = du− (pidxi + qidyi) = 0

θ2 = dv − (−qidxi + pidyi) = 0

in the space (xi, yi, u, v, pi, qi) of 4n + 2 dimensions, the independence condition
being

Λidxi ∧ dyi �= 0.

We have

−dθ1 = dpi ∧ dxi + dqi ∧ dyi,

−dθ2 = −dqi ∧ dxi + dpi ∧ dyi.

To prove that the system is involutive we can proceed in one of the following two
ways:

1) We search for a regular integral flag

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · ⊂ E2n

such that E2n is defined by

dpi = (hijdxj + kijdyj)

dqi = (lijdxj + mijdyj), 1 ≤ i, j ≤ n,

and Ej, En+j respectively by the further equations

dxj+1 = · · · = dxn = 0, dy1 = · · · = dyn = 0,

dyj+1 = · · · = dyn = 0.

The conditions for Ej to be integral are

hij = hji, lij = lji, i ≤ j.

The conditions for En+j to be integral are

−kij + lji = 0, mij + hji = 0,

kij = kji, mij = mji.
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In both cases the equations are compatible, taking account of earlier equations
expressing respectively, the conditions that E1 ⊂ · · · ⊂ Ej−1 and E1 ⊂ · · · ⊂
Ej−1+n are integral flags. Hence the system is in involution.

2) We apply Cartan’s test. The tableau matrix given by (88) in the previous
section is (we omit the bars over the πa

i )

Π =
(

dp1 . . . dpn dq1 . . . dqn

−dq1 −dqn dp1 . . . dpn

)
.

It is easily checked that

s′1 = · · · = s′n = 2, s′n+1 = · · · = s′2n−1 = r′2n = 0.

Both sides of the inequality (87) are equal to n(n + 1), and the system is in invo-
lution.

Example 7.2 (Partial differential equations of the second order). As discussed above,
the basis of second-order P.D.E.’s is the differential system

θ = dz − pidxi = 0

θi = dpi − pijdxj = 0; pij = pji, 1 ≤ i, j ≤ n

in the space (xi, z, pi, pij) of dimension

2n + 1 +
1
2
n(n + 1).

We have

−dθ = dpi ∧ dxi ≡ 0, mod θi,

−dθi = dpij ∧ dxj.

To illustrate the scope of our concept of involutiveness, we wish to remark that
the system is involutive, if there is no relation between the variables. In fact, define
the admissible integral elements by

dpij = pijkdxk, 1 ≤ i, j, k, l ≤ n.

Then we have pijk = pikj, and therefore pijk is symmetric in any two of its indices.
Thus dimGx(I, Ω) = n(n + 1)(n + 2)/6. On the other hand, consider the tableau
matrix (where we again omit the bars)

π =

⎛
⎝ dp11 . . . dp1n

. . .
dpn1 . . . dpnn

⎞
⎠ .

We find
s′1 = n, s′2 = n− 1, . . . , s′n−1 = 2, r′n = s′n = 1.
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The involutiveness follows from the identity

∑
1≤i≤n

i(n − i + 1) =
1
6
n(n + 1)(n + 2).

Suppose now there is one equation

F (xi, z, pi, pij) = 0.

Then its differential gives

∑ ∂F

∂pij
dpij + · · · = 0,

and the dpij are linearly dependent. An advantage in using differential forms is
that we can choose a basis to write this equation in a simple form. We put

ωi = dxi,

and apply the substitution

ω̃i = ui
jω

j, ωj = vj
i ω̃

i,

θ̃i = vj
i θj , θj = ui

j θ̃i,

where (uj
i ), (vj

i ) are inverse matrices to each other so that

θi ∧ ωi = θ̃i ∧ ω̃i.

Then we have
dθ̃i ≡ π̃il ∧ ω̃l mod {θ, θj}

where
π̃il = π̃li = −

∑
dpjkvj

i v
k
l ,

or
−dpjk =

∑
ui

ju
l
kπ̃il.

Suppose we make the non-degeneracy assumption det(∂F/∂pjk) �= 0. Then we can
choose ui

j so that ∑ ∂F

∂pjk
ui

ju
l
k =

{
εi = ±1, i = l,

0, i �= l.

This gives ∑
εiπ̃ii +

∑
Ckω̃k ≡ 0 mod {θ, θj}

we put
≈
πii = π̃ii + εiCiω̃

k,
≈
πij = π̃ij, i �= j,

and we absorb θ, θj into
≈
πij . By dropping the tildes, we arrive at the normal form

(133)
dθi ≡ πij ∧ ωj mod {θ, θj},∑

εiπii = 0.
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From this the involutiveness of the system follows immediately.
In fact, we put

π =

⎛
⎝ π11 . . . π1n

. . .
πn1 . . . πnn

⎞
⎠

where
πij = πji,

∑
εiπii = 0.

We find
s′1 = n, s′2 = n− 1, . . . , s′n−1 = 2, s′n = 0

so that

s′1 + 2s′2 + · · ·+ (n− 1)s′n−1 + ns′n =
1
6
n(n + 1)(n + 2)− n.

On the other hand, the admissible n-dimensional integral elements on which
θ = θj = 0 are given by

(134) πij = lijkωk

where
lijk = ljik = likj,

∑
εiliik = 0.

Its space has the dimension 1
6
n(n+1)(n+2)−n. Hence the system is in involution.

However, such a result, that the system arising from a non-degenerate second-
order P.D.E. is in involution, does not seem to be exciting. To get an idea of the
meaning of involutiveness, we will study a system of q equations

(135) F λ(xi, z, pi, pij) = 0, 1 ≤ λ, µ ≤ q.

For q > 1, the system is “over-determined”, and we should expect strong conditions
for it to be involutive.

First the integrability conditions have to be satisfied. These can be expressed in
terms of the functions F λ. We suppose this to be the case and proceed to study
the conditions for involutivity in terms of the tableau. By the structure equation
(83) in the previous section there exist πij such that

(136)

dθi ≡ πij ∧ ωj mod {θj},

πij = πji,∑
Bλ

ijπij = 0 mod {θj}, Bλ
ij = Bλ

ji.

In the matrix π we have

s′1 ≤ n, s′2 ≤ n − 1, . . . , s′n−2 ≤ 3, s′1 + · · ·+ s′n−1 ≤ 1
2
n(n + 1)− q,

s′1 + · · ·+ s′n−1 + s′n = 1
2
n(n + 1)− q.
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For the system to be in involution we must have

dimGx(I, Ω) = s′1 + 2s′2 + · · ·+ (n − 1)s′n−1 + ns′n

= n

{
1
2
n(n + 1)− q

}
− (n− 2)s′1 − · · · − s′n−2 − s′1 − · · · − s′n−1

≥ (n− 1)
{

1
2
n(n + 1)− q

}
− (n − 2)n− · · · − 1 · 3

=
1
6
(n − 1)(n2 + 4n + 6)− (n− 1)q.

On the other hand, for (134) to be an integral element we have

(137)
lijk = ljik = likj,∑

Bλ
ij lijk = 0.

The lijk, being symmetric, has 1
6n(n+1)(n+2) components. Hence, in the involutive

case, the number of linearly independent equations in the system (137) is
1
6
n(n + 1)(n + 2)− dimGx(I, Ω) ≤ (n− 1)q + 1.

This condition can be reformulated as follows: We introduce the quadratic forms

Bλ = Bλ
ijξ

iξj .

The nq cubic forms
ξkBλ

satisfy a linear relation ∑
mkλξkBλ = 0,

if and only if

(138)
∑

λ

(Bλ
ijmkλ + Bλ

jkmiλ + Bλ
kimjλ) = 0.

The quantities defined by

Bλ
ijk,l = Bλ

ijδkl + Bλ
jkδil + Bλ

kiδjl

are the elements of an 1
6n(n+1)(n+2)×nq matrix and are the coefficients of each of

the systems (137) and (138). Hence the two systems have the same rank. It follows
that the cubic forms ξkBλ satisfy at least q − 1 independent linear relations.8

Consider the case q = 2. The above conclusion implies that

l1(ξ)B1 + l2(ξ)B2 = 0,

where l1(ξ) and l2(ξ) are linear forms. Hence B1 and B2 have a common linear
factor. By a change of coordinates we have two cases:

a) B1 = ξ1ξ2, B2 = ξ1ξ3;
b) B1 = (ξ1)2, B2 = ξ1ξ2.

For the corresponding differential systems we have the normal forms:
a) π12 = π13 = 0;
b) π11 = π12 = 0.

We state our results as a proposition following from Theorem 5.16:
8In §7 of Chapter VIII this will be generalized to P.D.E. systems of any order—cf. (146)–(152)

there.
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Proposition 7.3. For a system of two second-order P.D.E.’s to be in involution it
is necessary and sufficient that:

1) The integrability conditions be satisfied;
2) The symbols, as quadratic forms B1 and B2, have a common linear factor.

Proof. The sufficiency follows from verifying the involutiveness conditions when the
system is in the normal forms a) or b). We leave this to the reader.

Example 7.4. Consider the following equations which play a role in the old theory
of matter and gravitation (see Cartan and Einstein [1979], p. 33):

∂Xi

∂xj
− ∂Xj

∂xi
= 0,

∑ ∂Xi

∂xi
= −4πρ

∂ρ

∂t
+
∑ ∂(ρui)

∂xi
= 0

∂ui

∂t
+
∑

uj
∂ui

∂xj
= Xi, 1 ≤ i, j ≤ 3.

Here xi are the space coordinates, t is time, and ui and Xi are components re-
spectively of the velocity and acceleration vectors, while ρ is the density of matter.
This is a system of 8 equations in 4 independent variables xi, t, and 7 dependent
variables ui, Xi, ρ. It is thus an overdetermined system. This system is involutive.

To make the ideas more clear we will consider the simpler system

(139)
∂Xi

∂xj
− ∂Xj

∂xi
= 0,

∑
i

∂Xi

∂xi
= −4πρ, 1 ≤ i, j, k ≤ 3,

where Xi, ρ are functions of x1, x2, x3, and ρ is given. We shall show that the
system (139) is involutive. For this purpose we write it as a Pfaffian system

(140)
dXi =

∑
Xijdxj

Xij = Xji,
∑

Xii = −4πρ,

with the six Xij as new variables. The exterior derivatives of these equations give∑
dXij ∧ dxj = 0∑
dXii = −4πdρ.

Consider admissible integral elements E3 defined by

dXij =
∑

Xijkdxk, Xijk = Xjik.

To show the involutivity of the system it suffices to find in E3 a regular integral
flag E1 ⊂ E2 ⊂ E3, such that E1 and E2 are defined respectively by

dx2 = dx3 = 0 and dx3 = 0.

The condition for E1 to be integral is

(141a)
∑

Xii1 = −4π
∂ρ

∂x1
.
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The condition for E2 to be integral are, in addition to (141a),

(141b) Xi12 = Xi21,
∑

Xii2 = −4π
∂ρ

∂x2
, 1 ≤ i ≤ 3.

These equations can be solved in terms of Xij2, so that E1 is regular.
To see whether E2 is regular we consider the conditions for E3 to be integral,

which are

(141c) Xi13 = Xi31, Xi23 = Xi32,
∑

Xii3 = −4π
∂ρ

∂x3
.

The first two equations imply
X231 = X132.

But this is the first equation of (141b), with i = 3. Hence it is satisfied, and we see
that (141c) are compatible as linear equations in Xij3. Thus E2 is regular, and so
is the integral flag E1 ⊂ E2 ⊂ E3. This proves the involutivity of the system (139)
or (140).

The proof of the involutivity of the original system is exactly the same. It is
only suggested that one take as the starting one-dimensional integral element the
one defined by

dx1 = dx2 = dx3 = 0, dt �= 0.

In [1953] Cartan proved that Einstein’s field equations for a unified field theory
based on distant parallelism are involutive.9 They are a highly overdetermined
system.

§8. Families of Isometric Surfaces in Euclidean Space.

In Chapter III we gave a proof of the Cartan–Janet isometric imbedding the-
orem. For two dimensions it says that an analytic Riemannian manifold of two
dimensions can be locally isometrically imbedded in the 3-dimensional space E3.
By the discussion in that chapter, the imbedding is not unique. The data needed
to specify it uniquely will be discussed in the next chapter. In any case, we can
say that it is not rigid, meaning that there is a surface isometric without being
congruent to it.

We therefore try to impose further conditions. The two natural conditions are:
A) preservation of the lines of curvature;
B) preservation of the principal curvatures.

In each case we are led to an over-determined system, where the number of equations
exceeds the number of unknown functions. Prolongation leads to new conditions
and, in these two cases of geometrical significance, to very remarkable conditions.
We shall state the two main results in this section. They are local results dealing
with non-trivial families of isometric surfaces containing no umbilics, where a non-
trivial family means a family which is not obtained from a given surface by a family
of rigid motions.

9The specific references are Part III, Vol. 2, p. 1167–1185 and Part II, Vol. 2, p. 1199–1229.
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Theorem 8.1. A non-trivial family of isometric surfaces of non-zero Gaussian
curvature, preserving the lines of curvature, is a family of cylindrical molding sur-
faces.

The cylindrical molding surfaces can be kinematically described as follows: Take
a cylinder Z and a curve C on one of its tangent planes. A cylindrical molding
surface is the locus described by C as the tangent plane rolls about Z.

Theorem 8.2. A non-trivial family of isometric surfaces preserving the principal
curvatures is one of the following:

α) (the general case) a family of surfaces of constant mean curvature;
β) (The exceptional case) a family of surfaces of non-constant mean curvature.

They depend on six arbitrary constants and have the properties:
β1) they are W -surfaces;
β2) the metric

(142) dŝ2 = (gradH)2dx2/(H2 −K),

where ds2 is the metric of the surface and H and K are its mean curvature and
Gaussian curvature respectively, has Gaussian curvature equal to −1.

Our discussions in Chapter III contain the essence of a surface theory in E3, and
we will summarize it in a form convenient for the present discussion as follows:

We begin with the diagram

(143)
P0

F ↗ ↓ π
M−→

f
E3

,

where P0 is the space of all orthonormal frames xe1e2e3 in E3, π(xe1e2e3) = x ∈ E3

is the projection, f is the imbedding where we identify both the original and image
point as x, F (x) = xe1e2e3 is a “lifting” of f satisfying the condition that e3 is the
oriented unit normal at x, M being supposed to be oriented.

The lifting F defines a family of frames over M which satisfy the equations

(144)

dx = ω1e1 + ω2e2,

de1 = ω12e2 + ω13e3

de2 = −ω12e1 + ω23e3

de3 = −ω13e1 − ω23e2.

Denoting by ( , ) the inner product in E3, the first and second fundamental forms
of the surface M are

(145)

I = ds2 = (dx, dx) = ω2
1 + ω2

2 ,

II = −(dx, de3) = ω1ω13 + ω2ω23

= l11ω
2
1 + 2l12ω1ω2 + l22ω

2
2 .

These depend only on the imbedding f , and are independent of the lifting F . The
mean curvature and Gaussian curvature of M are respectively

(146) H =
1
2
(l11 + l22), K = l11l22 − l212.
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The eigenvalues of II with respect to I are the principal curvatures, and the
eigen-directions, which are perpendicular, are the principal directions. If the lifting
F is such that e1, e2 are in the principal directions, II is diagonalized, i.e. l12 = 0.
The point x is umbilic if the principal curvatures are equal; i.e., if H2 −K = 0.

We restrict ourselves to a neighborhood of M without umbilics, and choose e1, e2

to be tangent vectors along the principal directions. Then the ω’s in (144) are all
linear combinations of ω1, ω2 and we set

(147)
ω13 = aω1, ω23 = cω2

ω12 = hω1 + kω2

Here a and c are the two principal curvatures; the mean curvature and the Gaussian
curvature are now given by

(148) H =
1
2
(a + c), K = ac,

and the absence of umbilics is expressed by the condition a �= c.
Exterior differentiation of (144) gives the structure equations

(149)

dω1 = ω12 ∧ ω2, dω2 = ω1 ∧ ω12

dωij =
∑

k

ωik ∧ ωkj, 1 ≤ i, j, k ≤ 3.

The last equation, when written explicitly gives

(150) dω13 = ω12 ∧ ω23, dω23 = ω13 ∧ ω12

(151) dω12 = −Kω1 ∧ ω2.

Equations (150) are called the Codazzi equations and equation (151) the Gaussian
equation.

We will use ω1, ω2 to express the differential of any function on M , thus

(152) df = f1ω1 + f2ω2,

so that f1, f2 are the “directional derivatives” of f . Using this notation and sub-
stituting the expressions in the first equations of (147) into (150), we get

(153)
a2 = (a − c)h,

c1 = (a − c)k.

We will use this formalism to study our isometry problems.
To study problem A, let M∗ be a surface isometric to M such that the isometry

preserves the lines of curvature. Using asterisks to denote the quantities pertaining
to M∗, we have

(154)
ω∗

1 = ω1, ω∗
2 = ω2, ω3 = ω∗

3 = 0, ω∗
12 = ω12,

ω∗
13 = taω1, ω∗

23 =
c

t
ω2.
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The last two equations follow from the fact that M∗ has the same Gaussian curva-
ture as M at corresponding points. Equation (153) gives, when applied to M∗,

(155)
(ta)2 = (ta − c

t
)h,

(
1
t
c)1 = (ta − c

t
)k.

Comparison of (153) and (155) gives

(156)
t1 = t(1− t2)ac−1k,

t2 = −t−1(1− t2)a−1ch

or

(156a)
tdt

1− t2
= t2ac−1kω1 − a−1chω2.

In fact, from now on we suppose t2 �= 1, discarding the trivial case that M∗ is
congruent or symmetric to M . We set

(157) m = a−1h, n = c−1k,

so that

(158) ω12 = mω13 + nω23

and define

(159) π1 = nω13, π2 = mω23.

Then (156a) can be written

(156b)
tdt

1− t2
= t2π1 − π2.

Its exterior differentiation gives

(160) t2(dπ1 − 2π1 ∧ π2) = dπ2 − 2π1 ∧ π2.

This equation, if not satisfied identically, completely determines t2. On substituting
into (156), we get conditions on the surfaces M , to which there exist isometric but
not congruent or symmetric surfaces preserving the lines of curvature. The later
are uniquely determined up to position in space.

The most interesting case is when the equation (160) is identically satisfied, i.e.,

(161) dπ1 = dπ2 = 2π1 ∧ π2.

This leads to a non-trivial family of isometric surfaces preserving the lines of cur-
vature.
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In fact, substitution of (159) into (161) gives

(162)
(dm−mnω13) ∧ ω23 = 0

(dn + mnω23) ∧ ω13 = 0.

We shall show that these equations imply mn = 0 or equivalently hk = 0.
Equations (162) allow us to set

(163)
dm = mnω13 + qω23,

dn = pω13 −mnω23.

by (150) and (158) we have

(164)
dω13 = ω12 ∧ ω23 = mω13 ∧ ω23,

dω23 = −ω12 ∧ ω13 = nω13 ∧ ω23.

Taking the exterior derivative of (158) and using (163), (164), we get

(165) p− q + 1 + m2 + n2 = 0.

If m and n are considered as unknown functions, equations (163) and (165) give
three relations between their derivatives. This primitive counting shows that the
differential system is over-determined. To study our problem there is no other way
but to examine the integrability conditions through differentiation of (163), (165).
In this case the integrability conditions give a very simple conclusion.

Exterior differentiation of (163) gives

(166)
(dq + 2m2nω13) ∧ ω23 = 0,

(dp + 2mn2ω23) ∧ ω13 = 0,

which allow us to set

(167)
dp = rω13 − 2mn2ω23,

dq = −2m2nω13 + sω23.

Differentiation of (165) then gives

(168)
r = 2n(−2m2 − p),

s = 2m(−2n2 + q).

As a result the prolongation “stabilizes” with

(169)
dp = 2n(−2m2 − p)ω13 − 2mn2ω23,

dq = −2m2nω13 + 2m(−2n2 + q)ω23.

Exterior differentiation of this equation and use of (163), (164), (169) gives

mn(p− q + m2 + n2) = 0.
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Comparing with (165), we get mn = 0, or equivalently hk = 0, as claimed above.
We wish to describe these surfaces geometrically. Suppose k = 0. Then, by

(163), (165),
p = 0, q = 1 + m2.

It follows that the surfaces in question satisfy the equations

(170)

ω3 = 0, ω13 = aω1, ω23 = cω2, ω12 = hω1,

d

(
h

a

)
= c

(
1 +

h2

a2

)
ω2,

ω1 ∧ da− h(a− c)ω1 ∧ ω2 = 0,

ω2 ∧ dc = 0.

The last three equations are obtained by exterior differentiation of the three equa-
tions before them. Hence the differential system (170) is closed.

To describe these surfaces observe that

ω1 = 0, (resp. ω2 = 0)

defines a family of lines of curvature, to be denoted by Γ2 (resp. Γ1). Along a curve
of Γ2, we have ω12 = 0, so that these curves are geodesics. Writing ω2 = ds, we
have, along a curve of Γ2,

dx

ds
= e2,

de2

ds
= ce3,

de3

ds
= −ce2,

de1

ds
= 0.

Hence it is a plane curve with curvature c, the plane having the normal e1. The last
equation of (170) says that dc is a multiple of ω2, which means that all the curves
of Γ2 have the same Frenet equations and hence are congruent to each other.

Since
de1 = ω12e2 + ω13e3 = (he2 + ae3)ω1,

the intersection of two neighboring planes of the curves of Γ2 is a line in the direction

e1 × (he2 + ae3) = −ae2 + he3.

By (144) and (170), we have

d(−e2 +
h

a
e3) = +

h

a
ω23(−e2 +

h

a
e3).

Hence this direction is fixed. It follows that the planes of the lines of curvature in
Γ2 are the tangent planes of a cylinder Z.

The curves of Γ1, being tangent to e1, are the orthogonal trajectories of the
tangent planes of Z. Each line of curvature of Γ1 is thus the locus of a point in a
tangent plane of Z as the latter rolls about Z. The curves of Γ2 are the orthogonal
trajectories of those of Γ1. Each of them is therefore the position taken by a fixed
curve on a tangent plane through the rolling.

The surfaces defined by (170) can be kinematically described as follows: Take
a cylinder Z and a curve C on one of its tangent planes. The surface M is the
locus described by C as the tangent plane rolls about Z. Such a surface is called a
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cylindrical molding surface. It depends on two arbitrary functions in one variable,
one defining the base curve of Z and the other the plane curve C.

On our molding surface the equation (156b) is completely integrable and has a
solution t which depends on an arbitrary constant. We get in this way all non-trivial
families of isometric surfaces preserving the lines of curvature.

We observe that among the molding surfaces are the surfaces of revolution.
The above discussion can be summarized as follows:
In the three-dimensional euclidean space E3 consider two pieces of surfaces

M, M∗, such that: (a) their Gaussian curvature �= 0 and they have no umbilics;
(b) they are connected by an isometry f : M → M∗ preserving the lines of curva-
ture. Then M and M∗ are in general congruent or symmetric. There are surfaces
M , for which the corresponding M∗ is distinct relative to rigid motions. The cylin-
drical molding surfaces, and only these, are such surfaces belonging to a continuous
family of distinct surfaces, which are connected by isometries preserving the lines
of curvature.

In particular, we have proved Theorem 8.1.
This is an example of an elaborate nature of a non-involutive differential system

whose solutions are studied through successive prolongations. If the surface is
considered as a map M → E3, then the first and second fundamental forms involve
respectively the first and second order jets, h, k, m, n those of the third order, and
p, q those of the fourth order. Hence the surface M must be of class C5 for our
proof to be valid.

Problem B also leads to an over-determined differential system. Its treatment is
more involved. We refer to Chern [1985] for details, and for a proof of Theorem 8.2.
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CHAPTER V

THE CHARACTERISTIC VARIETY

In this chapter we will define the characteristic variety Ξ associated to a dif-
ferential ideal (satisfying one non-essential restriction). This variety plays at least
as important a role in the theory of differential systems as that played by the
usual characteristic variety in classical P.D.E. theory. We shall give a number of
examples of characteristic varieties, discuss some of their elementary properties,
and shall state a number of remarkable theorems concerning characteristic vari-
eties of involutive differential systems. The proofs of most of the results rely on
certain commutative algebra properties of involutive tableaux and will be given in
Chapter VIII.

In Section 1 we define and give examples of the characteristic variety of a differ-
ential ideal having no Cauchy characteristics. Roughly speaking, it is given by all
hyperplanes in n-dimensional integral elements whose extension fails to be unique.
This is an infinitesimal analogue of saying that an initial value problem fails to have
a unique solution, and as such is parallel to the classical meaning of characteristic.

In Section 2 we define the characteristic variety of a linear Pfaffian differential
system. This definition, which is the one we shall use throughout the remainder
of the book, is modelled on the P.D.E. definition using the symbol. After show-
ing that this symbol definition coincides with the previous one in the absence of
Cauchy characteristics, we go ahead and explain in general the characteristics and
the characteristic variety. Then we give a number of examples, including a local
existence theorem for determined elliptic Pfaffian systems and the local isometric
embedding of surfaces in E3. This latter example illustrates in a non-trivial manner
essentially all the basic concepts—prolongation, involution, torsion, Cauchy char-
acteristics, characteristic variety—in the theory of exterior differential systems. It
will be carried as a running example in this chapter.

In Section 3 we give some properties of the characteristic variety. The first
few of these, such as the relation between the characteristic variety of a Pfaffian
system and that of its prolongation, are elementary. Following this we turn to
deeper properties, all of which require the use of the complex characteristic variety
and require that the system be involutive. The first of these, Theorem 3.6, tells
us “how many” local integral manifolds there are in terms of the dimension and
degree of the complex characteristic variety. The second of these, Theorem 3.15,
deals with the overdetermined case and relates the characteristic hyperplanes to
the singular integral elements in dimension l where l is the character of the system
(Definition 3.4). The third of these, Theorem 3.20, which is a differential system
analogue of the theorem of Guillemin, Quillen and Sternberg [1970], states that
the characteristic variety induces an involutive system in the cotangent bundle
of integral manifolds. Here we shall only prove the result when the characteristic
variety is smooth and consists only of isolated points, a case already found in Cartan
(see Subsection (vi)), and a case that is simpler from a technical point of view. A
number of examples illustrating this result will be given in Chapter VII.

In this chapter, I will denote a differential ideal, i.e., a homogeneous ideal in
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Ω∗(M) that is closed under exterior differentiation. Sometimes we shall refer to I
as a differential system. We will denote by I ⊂ Ω1(M) the degree one piece of I,
and we shall assume that I is given by the sections of a sub-bundle of T ∗M that
we also denote by I. When there is an independence condition it will be denoted
by Ω, where Ω is a decomposable n-form defined up to non-zero scalar factors and
up to adding n-forms from I; as in Chapter IV, Ω is given by a non-zero section of
Λn(J/I) where J is a sub-bundle of T ∗M with I ⊂ J ⊂ T ∗M . For a submanifold
N ⊂M and differential form α ∈ Ω∗(M), we will denote the restriction α|N by αN .
Thus a n-dimensional submanifold N ⊂M is an integral manifold of the differential
system with independence condition (I, Ω) if{

αN = 0 for all α ∈ I
ΩN �= 0

.

Finally, we will use the summation convention.

§1. Definition of the Characteristic Variety of a Differential
System.

Let M be a manifold and Gn(TM) → M the Grassmann bundle of n-planes
in the tangent spaces to M . Points of Gn(TM) will usually be denoted by (x, E)
where x ∈ M and E ⊂ TxM is an n-plane.1 Over Gn(TM) we have the universal
n-plane bundle

U → Gn(TM)

whose fibre over (x, E) is just E. We shall consider the projectivization PU∗ of the
dual bundle U∗. A point in the fibre PU∗

E of PU∗ over E ∈ Gn(TM) will be written
as [ξ] where ξ ∈ E∗\{0} is a non-zero vector and [ξ] ⊂ E∗ is the corresponding line
(the brackets are supposed to suggest homogeneous coordinates). By projective
duality [ξ] determines a hyperplane [ξ]⊥ in E, and geometrically we may think of
PU∗

E as being the set of hyperplanes in E ⊂ TxM .
Let I be a differential ideal and assume that I has no Cauchy characteristics,

i.e., we assume that there are no vector fields v �= 0 satisfying

v I ⊂ I.

This non-essential assumption is put here for convenience of exposition; it will
be eliminated below. Let Gn(I) ⊂ Gn(TM) be the set of n-dimensional integral
elements of I. Associated to each hyperplane [ξ]⊥ ⊂ E is the polar space

H(ξ) = {v ∈ TxM : span{v, [ξ]⊥} is an integral element},

that we may think of as all ways of enlarging [ξ]⊥ to an n-dimensional integral
element.

Definition 1.1. The characteristic variety is the subset Ξ of PU∗ defined by

Ξ = ∪E∈Gn(I)ΞE

1We shall sometimes use the abbreviatednotationE when the base point x ∈ M is unimportant.
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where ΞE = Ξ ∩ PU∗
E and

ΞE = {[ξ] : H(ξ) � E}.

Thus, Ξ consists of all hyperplanes in n-dimensional integral elements whose ex-
tension to an n-dimensional integral element fails to be unique. To the extent that
we think of integral elements as infinitesimal solutions to a differential system, the
characteristic variety corresponds to non-uniqueness of an initial value problem, in
close analogy to the classical notion. There is a commutative diagram of mappings

Ξ ⊂ PU∗

↓ ↓
Gn(I) ⊂ Gn(TM)

and we shall denote by ΞE the fibre of Ξ → Gn(I) lying over E.
The condition that [ξ] be characteristic is

dimH(ξ) > n.

Therefore, it does not depend on the particular E with [ξ]⊥ ⊂ E (so long as there
is at least one such). Thus, we may give the following

Definition 1.2. An (n − 1)-plane En−1 ∈ Gn−1(I) is non-characteristic in case
dimH(En−1) = n.

From the proof of the Cartan–Kähler theorem we have the result: Let I be a
real-analytic differential system and N ⊂ M an (n − 1)-dimensional real-analytic
integral manifold whose tangent planes are K-regular and non-characteristic. Then
there is locally a unique extension of N to an n-dimensional integral manifold of I.

It is easy to see that the fibre ΞE of the projection

Ξ → Gn(I)

is an algebraic subvariety of PE∗, i.e., it is defined by polynomial equations. This
is because the polar equations are linear in vectors v ∈ TxM , and ΞE consists of
hyperplanes [ξ] for which the ranks of these equations jump suitably; this condition
is expressed by homogeneous polynomial equations in ξ. Of importance will be
the complex characteristic variety ΞC, defined as the complex solutions to these
same polynomial equations. Equivalently, for a complex integral element E we
may consider complex hyperplanes [ξ]⊥ in the complex vector space E, and then

ΞC,E = {[ξ] ∈ PE∗ : H(ξ) � E}

where the polar space H(ξ) = {v ∈ TC,xM : span{v, [ξ]⊥} is a complex integral
element}.2 Of course, it may well happen that Ξ is empty but ΞC is not.

The reason we assumed no Cauchy characteristics is that v ∈ H(ξ) for any
Cauchy characteristic vector v. Thus, the characteristic variety should only be
defined for integral elements that contain all Cauchy characteristic vectors. Equiv-
alently, we may consider the differential system obtained by “foliating out” the

2An n-plane E ⊂ Tx,�M is a complex integral element if αE = 0 for all α ∈ I; E need not be
the complexification of a real integral element.
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Cauchy characteristics and define the characteristic variety on this reduced system.
For linear Pfaffian systems this annoyance will be circumvented.

Before turning to more substantive examples, we mention these two:
i) A Frobenius system when I is generated by dy1, . . . , dys in Rn+s with coor-

dinates (x1, . . . , xn, y1, . . . , ys). Then ΞC = ∅. A converse of this for involutive
systems will be discussed below.

ii) A Darboux system when I is generated by Θ =
∑

i dxi ∧ dyi in R2n with
coordinates (x1, . . . , xn, y1, . . . , yn). In this case, ΞE = PE∗ is everything.

Example 1.3 (Triply orthogonal systems, cf. DeTurck and Yang [1984]). Let X be
a 3-dimensional Riemannian manifold and consider the following

Problem. Determine the triples of foliations in X that intersect pairwise orthog-
onally.

This problem was discussed in n-dimensions and in the real analytic case in
Chapter III. Here we shall restrict to 3-dimensions and shall discuss the character-
istic variety, which is the first step towards a C∞ result. To set the problem up we
let M6 = F(X) be the bundle of orthonormal frames, on which we have the canon-
ical parallelism given by the 1-forms ω1, ω2, ω3, ω12, ω13, ω23 satisfying the usual
structure equations (here 1 ≤ i, j ≤ 3)

(1) dωi =
∑

j

ωj ∧ ωji, ωij + ωji = 0,

that uniquely determine the connection matrix ‖ωij‖. On M we let I be the
differential ideal generated by the 3-forms

Θi = ωi ∧ dωi

As explained in Chapter III, the solutions to our problem are given by sections
s : X → F(X) = M satisfying s∗Θi = 0. Locally then we look for integral
manifolds N3 ⊂M of I such that

ΩN �= 0

where Ω = ω1 ∧ ω2 ∧ ω3.
We shall denote p-planes in TM by Ep (i.e., we don’t worry about the foot of Ep,

which is the point x ∈ M such that Ep ⊂ TxM). When p = n we shall generally
just write E. In case Ep is an integral element of I we set

r(Ep) = dim H(Ep)− p− 1.

Thus, r(Ep) = 0 is the condition that Ep extend to a unique integral Ep+1.
Using (1), it is a nice little exercise to show that I is algebraically generated by

the forms

(2)

ω1 ∧ ω2 ∧ ω12

ω1 ∧ ω3 ∧ ω13

ω2 ∧ ω3 ∧ ω23.
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An integral E3 on which Ω �= 0 is therefore given by linear equations

(3)

⎛
⎝ω23

ω13

ω12

⎞
⎠ =

⎛
⎝ 0 a12 a13

a21 0 a23

a31 a32 0

⎞
⎠

⎛
⎝ω1

ω2

ω3

⎞
⎠ = 0

where the aij are arbitrary. Thus, over each point of M the integral 3-planes on
which Ω �= 0 form an R6. For E given by (3) with basis for E∗ given by the
restrictions (ω1)E , (ω2)E , (ω3)E , a point ξ = [ξ1, ξ2, ξ3] ∈ PE∗ corresponds to the
hyperplane [ξ]⊥ ⊂ E defined by the additional equation

(4) ξ1ω1 + ξ2ω2 + ξ3ω3 = 0.

Lemma 1.4. Setting r(ξ) = r([ξ]⊥), we have

r(ξ) =

⎧⎪⎨
⎪⎩

0 if all ξi �= 0
1 if one ξi = 0
2 if two ξi = 0.

Proof. We shall check the results when all the aij = 0; the general case is similar.
By symmetry we may assume that ξ1 �= 0 in (4); multiplying by a constant we may
then assume that (4) is

(5) ω1 − αω2 − βω3 = 0.

Letting {ei, eij} be the dual frame to {ωi, ωij}, the integral E2 given by ωij = 0
and (5) has basis

v1 = αe1 + e2

v2 = βe1 + e3.

For v =
∑

λiei +
∑

i<j λijeij we want to count the number of solutions of

(6) 〈Θi, v1 ∧ v2 ∧ v〉 = 0

with the transversality condition 〈Ω, v1∧v2∧v〉 �= 0. By subtracting from v a linear
combination of v1, v2 and multiplying by a constant we may assume that

v = e3 +
∑
i<j

λijeij .

Then
v1 ∧ v2 ∧ v = e1 ∧ e2 ∧ e3 + e1 ∧ e2 ∧ (

∑
i<j

λijeij)

−αe2 ∧ e3 ∧ (
∑
i<j

λijeij) + βe1 ∧ e3 ∧ (
∑
i<j

λijeij).
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Using (2) the equations (6) are

λ12 = 0

αλ23 = 0

βλ13 = 0,

from which the lemma (in the case aij = 0) is clear. �
Since a hyperplane is characteristic exactly when r(ξ) > 0, we see that ΞE

consists of the union of the three coordinate lines in PE∗ ∼= P2; i.e., it is the usual
coordinate triangle encountered in plane projective geometry. The singular points
of ΞE are clearly just the vertices of this coordinate triangle.

If N ⊂M is a local integral manifold, then N may be identified with X together
with a framing, and a surface N2 ⊂ N is characteristic if one leg of the framing
is tangent to N2; it is doubly characteristic (i.e., has tangent planes given by an
intersection point of two branches in Ξ) if two legs of the framing are tangent to
N2, which is equivalent to one leg being normal to N2.

Example 1.5 (Linear Weingarten surfaces). Let X be an oriented Riemannian 3-
manifold and set

M5 = {(x, e3) ∈ TX : ‖e3‖ = 1}.
Thinking of e3 ∈ TxX as corresponding to the oriented 2-plane e⊥3 ⊂ TxX we may
picture M as the manifold of oriented contact elements lying over X. We shall use
the fibering picture

π F(X)
↙

M ↓
↘

X

π(x, e1, e2, e3) = (x, e3),

and for computational purposes shall pull all forms back to F(X). Among the
forms that are well-defined on M are

(7)

ω3 = e3 · dx

dω3 = ω1 ∧ ω13 + ω2 ∧ ω23

Ω0 = ω1 ∧ ω2

Ω1 = ω1 ∧ ω23 − ω2 ∧ ω13

Ω2 = ω13 ∧ ω23.

If N2 ⊂ X is any oriented surface we have its canonical lift (Gauss map)

γ : N →M

where γ(y) = unit normal to N at the point y. The pull-backs of the forms (7) are

γ∗(ω3) = 0 = γ∗(dω3)

γ∗(Ω0) = induced area form dA

γ∗(Ω1) = (Trace II)dA

γ∗(Ω2) = (det II)dA
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where II is the 2nd fundamental form of N ⊂ X. Conversely, a smooth surface
γ : N2 →M is the canonical lift of an immersed oriented surface in X if

(i) γ∗(ω3) = 0
(ii) γ∗(Ω0) �= 0.

If only (i) is satisfied, then we shall speak of γ : N → M as being a generalized
surface; these are special cases of Legendre manifolds (see the following remark).
Note that

ω3 ∧ (dω3)2 �= 0

on M , so that the differential ideal generated by ω3 has the Pfaff–Darboux local
normal form.

Remark. Given a differential ideal on a (2n+1)-dimensional manifold generated by
a 1-form satisfying θ ∧ (dθ)n �= 0, the Pfaff–Darboux local normal form shows that
the maximal integral manifolds N , called Legendre manifolds, are of dimension
n and are given by one arbitrary function of n-variables. Here we may think of
θ = dz −

∑
i yidxi and N given by (xi, yi = ∂z(x)

∂xi
) where z = z(x) is an arbitrary

function. In particular, the generalized surfaces are described locally by 1 arbitrary
function of 2 variables.

Definition 1.6. Let A, B, C be constants not all zero. The differential ideal

I = {ω3, Θ = AΩ2 + BΩ1 + CΩ0}

generated by ω3 and Θ will be called a linear Weingarten system.
Remark that by the structure equations (1) together with dωij + ωik ∧ ωkj =

1
2Rijklω

k ∧ ωl, it is easy to see that I is generated algebraically by

ω3, dω3, Θ.

The study of the integral elements thus leads us to the following linear algebra data:

T is 5-dimensional vector space (= TxM)
ω ∈ T ∗ is a 1-form (= ω3 ∈ T ∗

x M)
Θ1, Θ2 ∈ Λ2T ∗ are 2-forms (= dω3, Θ ∈ Λ2T ∗

x M).

The integral 1-planes are E1 = Rv1 where 〈ω, v1〉 = 0. Given E1 its polar equations
are

(i) 〈ω, v〉 = 0
(ii) 〈v1 Θ1, v〉 = 0
(iii) 〈v1 Θ2, v〉 = 0.

In general the rank of these equations is 3, i.e.,

r(E1) = 0.

Geometrically, we expect (locally and in the real-analytic case) to be able to find a
unique linear Weingarten surface of type (A, B, C) passing through a general curve
Γ ⊂ X.
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To compute the characteristics, we observe that these occur when equations (i)–
(iii) become dependent. More precisely, for an integral 2-plane E ∼= R2 we have
PE∗ ∼= P1, and each [v1] ∈ PE∗ such that the equations (i)–(iii) are dependent is
characteristic. Since Θ1 and Θ2 do not contain ω, this is equivalent to equations
(ii) and (iii) becoming dependent, i.e., when

(8) v1 (λ1Θ1 + λ2Θ2) = 0

for some (λ1, λ2) �= (0, 0). Note that if we restrict to integral elements E2 on which
Ω0 �= 0 we must have λ2 �= 0. Now it is easy to see that (8) is equivalent to

(λ1Θ1 + λ2Θ2)2 = 0.

Setting λ = λ1/λ2 it follows from (7) that this is the same as

(9) λ2 + B2 − AC = 0.

Let λ± be the two roots of this equation (we allow complex values). Since dω3

and Θ are linearly independent, the two roots of (9) are the values for which the
2-form

λdω3 + Θ �= 0

becomes decomposable in the space of complex valued differential forms. We assume
that λ+ �= λ− and write

λ+dω3 + Θ = α+ ∧ β+

λ−dω3 + Θ = α− ∧ β−.

Then it follows that
ω3, α+, β+, α−, β−

are pointwise linearly independent over C and that I is generated algebraically over
C by

ω3, α+ ∧ β+, α− ∧ β−.

Proof. Since λ+ �= λ−, we have

0 �= ω3 ∧ (dω3)2 =
1

λ+ − λ−
(ω3 ∧ α+ ∧ β+ ∧ α− ∧ β−).

Thus, over the complex numbers

span{α+ ∧ β+, α− ∧ β−} = span{dω3, Θ},
which proves our claim that I = {ω3, α+ ∧ β+, α− ∧ β−}.

Now, for any integral 2-plane E

α+ ∧ β+|E = 0 = α− ∧ β−|E.

Moreover, we do not have α+|E = β+|E = 0 nor α−|E = β−|E = 0, since for
example if the former holds then E is defined by

ω3 = α+ = β+ = 0

and consequently α− ∧ β−|E �= 0. Thus the restrictions to E of each of α+, β+ and
α−, β− spans a line in E∗, and these two lines are the characteristics. That is

ΞE = [v+] ∪ [v−]

where v± �= 0 and α±(v±) = β±(v±) = 0.
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§2. The Characteristic Variety for Linear Pfaffian Systems; Examples.

In Chapter IV we have defined the class of linear Pfaffian systems. Associated to
such a system are its tableau and symbol, and we shall now show how to compute
the characteristic variety in terms of the symbol by a process that is formally
analogous to that for P.D.E.’s. We begin by recalling some notation.

From Chapter IV we recall that linear Pfaffian systems are given by sub-bundles

I ⊂ J ⊂ T ∗M

satisfying

(10) dI ⊂ {J}

where {J} ⊂ Ω∗(M) is the algebraic ideal generated by the sections of J .3 We set
L = J/I, so that the exterior derivative induces a bundle mapping

(11) δ : I → (T ∗M/J) ⊗ L

given in terms of bases by equation (56) in Chapter IV. Dualizing and using that
(T ∗M/J)∗ ∼= J⊥ ⊂ TM , giving δ is equivalent to giving the tableau mapping (cf.
equation (60) in Chapter IV):

(12) π : J⊥ → I∗ ⊗ L.

The relations on the image of π are given by setting

Q = I∗ ⊗ L/image π

and defining the symbol mapping σ to be the quotient mapping

σ : I∗ ⊗ L→ Q.

Then image π = kernel σ.
æ We now define the characteristic variety

Ξ ⊂ PL

of a linear Pfaffian system. For 0 �= ξ ⊂ Lx we let [ξ] ⊂ PLx be the corresponding
line and define

σξ : I∗x → Qx

by
σξ(w) = σ(w ⊗ ξ).

Definition 2.1. The characteristic variety Ξ ⊂ PL is given by Ξ = ∪x∈MΞx where

Ξx = {[ξ] ∈ PLx : σξ fails to be injective}.

3As usual, we shall use I and J to denote both a sub-bundle of T ∗M and the C∞ sections of
that bundle—the context will make clear which use is intended.
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Equivalently,

Ξx = {[ξ] ∈ PLx : there exists 0 �= w ∈ I∗x such that w ⊗ ξ ∈ Ax}

where Ax is the tableau of (I, Ω) at x.
We will now see how this definition looks in coordinates. Following the notations

in §5 of Chapter IV, locally we choose 1-forms θa, ωi so that

I = span{θa}
J = span{θa, ωi}

and then

L ∼= span{ωi}.

Here “span” means all linear combinations with smooth functions as coefficients.
The condition (10) that the Pfaffian system be linear is

dθa ≡ 0 mod {J}

where {θa, ωi} = {J} is the algebraic ideal generated by the θa and ωi. This means
that we have

dθa ≡ πa
i ∧ ωi mod {I}

where {I} = {θa} is the algebraic ideal generated by the θa’s, and the πa
i are

then 1-forms well-defined modulo J , and they give the tableau mapping (12) in
coordinates. We may thus think of π as given by the tableau matrix

π =

⎡
⎢⎣ π1

1 . . . π1
n

...
...

πs0
1 . . . πs0

n

⎤
⎥⎦ mod J.

A basis for the relations on the image of π will be written as

Bλi
a πa

i ≡ 0 mod J.

Summarizing, the structure equations of a linear Pfaffian system are

(13)

(i) θa = 0
(ii) dθa ≡ πa

i ∧ ωi mod {I}
(iii) Bλi

a πa
i ≡ 0 mod J

(iv) Ω = ω1 ∧ · · · ∧ ωn �= 0.

The symbol mapping σ is given in coordinates by the Bλi
a . More precisely, for

ξ = ξiω
i(x) ∈ Lx as above, σξ is given by the matrix

σξ = ‖Bλi
a (x)ξi‖ ∈ Hom(I∗x , Qx).
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Then

Ξx = {[ξ] : Bλi
a (x)ξiw

a = 0 for some w �= 0}

= {[ξ] : rank ‖Bλi
a (x)ξi‖ < s0}

where rank I = s0. It is clear that Ξx is defined by homogeneous polynomial equa-
tions in the ξi, so that Ξ = ∪x∈MΞx is a family of algebraic varieties parameterized
by M .

The way to remember this definition is as follows: Associated to a P.D.E. system

F λ(yi, za, ∂za/∂yi) = 0

is the linear Pfaffian differential system

θa = dza − pa
i dyi = 0

dθa ≡ −dpa
i ∧ dyi mod {I}

Ω = dy1 ∧ · · · ∧ dyn �= 0

on the manifold
M = {(yi, za, pa

i ) : F λ(yi, za, pa
i ) = 0}.

Differentiation of the defining equations of M gives the symbol relations

∂F λ

∂pa
i

dpa
i ≡ 0 mod J

where J = span{θa, dyi}. Comparing with equation (iii) in (13), we find that our
definition of symbol relations for a linear Pfaffian differential system is a natural
extension of the usual definition for a P.D.E. system. Correspondingly, our defi-
nition of the characteristic variety is the natural extension of the usual one for a
P.D.E. system.

We now want to compare the more general definition in the preceeding section
with this one. Recall that the Cauchy characteristics are the vector fields v satis-
fying

v θa = 0

v dθa = 0 mod I.

If the 1-forms θa, ωi, πa
i fail to span T ∗

x M for some x, then by our constant rank
assumptions this will be true in a neighborhood and we can find a vector field v
satisfying

v θa = v ωi = v πa
i = 0.

By the structure equations (13) this vector field will be a Cauchy characteristic.
Thus, under the assumption of no Cauchy characteristics we have

(14) span{θa(x), ωi(x), πa
i (x)} = T ∗

x M.
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For any integral element (x, E) of (I, Ω), the independence condition

ΩE �= 0

implies that the restriction mapping

Lx → E∗

is an isomorphism. We will show that:

Under this isomorphism, Ξx ⊂ PLx corresponds to ΞE ⊂ PE∗.

In particular, in this case the characteristic variety ΞE depends only on the point
x and not on the particular E lying over x.

Proof. We omit reference to the point x. By (14), the integral element E will be
given by linear equations

πa
i − pa

ijω
j = 0,

where
pa

ij = pa
ji

by (ii) in (13). By a substitution πa
i → πa

i − pa
ijω

j we may assume that E is given
by

(15)
{

θa = 0
πa

i = 0.

Additionally, by (iii) in Proposition 5.15 in Chapter IV we may assume that the
symbol relations are given by

(16) Bλi
a πa

i ≡ 0 mod I.

Finally, we may assume that
ξ = ωn.

The polar equations of [ξ]⊥ are then easily seen to be

(17)
{

θa = 0
πa

1 = · · · = πa
n−1 = 0.

It follows that E �= H(ξ) if, and only if, the equations (15) are not consequences of
the equations (17), equivalently,

some πb
n is not a linear combination of the 1-forms(18)

{θa, πa
1 , . . . , πa

n−1}.

We choose a vector v such that some v πb
n �= 0 but where v θa = 0 and v πa

i = 0
for i = 1, . . . , n− 1 and all a. Contracting the symbol relations with v gives

Bλn
a (v πa

n) = 0,
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so that ‖Bλn
a ‖ is not injective.

Conversely, suppose that ‖Bλn
a ‖ is not injective. We may assume that the kernel

contains the vector (1, 0, . . . , 0), i.e., that all Bλn
1 = 0. But then π1

n does not appear
in any of the symbol relations (13), (iii); in particular, it is not a linear combina-
tion of the {θa, πa

1 , . . . , πa
n−1}. Thus, the condition that ξ = ωn be characteristic

according to either Definition 1.1 or Definition 2.1 is equivalent to (18). �
There is a very simple relation between the Cauchy characteristics and charac-

teristic variety of a linear Pfaffian differential systems. Let

A(I) ⊂ TM

denote the Cauchy characteristic sub-bundle. Since A(I) ⊂ I⊥ the mapping

A(I)→ L∗

given in coordinates by
v → (ω1(v), . . . , ωn(v))

is well-defined, and we denote its image by S ⊂ L∗. Then

S⊥ ⊂ L

and we shall show that:

(19) The characteristic variety
Ξ ⊂ PS⊥ .

In particular, if S �= 0 then it follows that the fibres Ξx of the characteristic variety
lie in the proper linear subspaces PS⊥

x ⊂ PLx.
Clearly, (19) also remains valid when we complexify. In the involutive case, there

is a converse to the complex version of (19).

Proof. Choose a basis ω1, . . . , ωn for L so that ω1, . . . , ωk is a basis for S⊥. Then
for k + 1 ≤ ρ ≤ n there is a Cauchy characteristic vector field vρ satisfying

vρ ωσ = δσ
ρ , k + 1 ≤ ρ, σ ≤ n.

From
vρ dθa ≡ 0 mod I

we infer that
πa

ρ ≡ 0 mod J.

Thus the tableau matrix looks like

(20)

⎡
⎢⎣ π1

1 . . . π1
k 0 . . . 0

...
...

...
πs0

1 . . . πs0
k 0 . . . 0

⎤
⎥⎦ mod J.

In particular, among the symbol relations we have

πa
ρ ≡ 0 mod J, k + 1 ≤ ρ ≤ n.
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From this it is easy to see that a characteristic vector ξ = ξiω
i must have ξk+1 =

· · · = ξn = 0. �
We remark that whenever we may choose bases so that the tableau matrix has

the block form (20), then the zeroes correspond to the image S ⊂ L∗ of Cauchy
characteristics as described above.

We also remark that the mapping

A(I)→ S

may not be injective; using (ii) in (13) it is easy to see that this is the case exactly
when the θa, ωi, πa

i fail to span T ∗M . Examples of this arise by adding extra
variables to any Pfaffian differential system.

Example 2.2. We shall set up a linear Pfaffian differential system whose integral
manifolds are the Darboux framings of immersed surfaces S ⊂ E3. For this we de-
note by F(E3)→ E3 to the bundle of orthonormal frames (x, e1, e2, e3) in Euclidean
3-space. On F(E3) we have the equations of a moving frame (here 1 ≤ i, j ≤ 3)

(21)

(i) dx =
∑

i

ωiei

(ii) dei =
∑

j

ωijej , ωij + ωji = 0

and structure equations

(22)

(i) dωi =
∑

j

ωj ∧ ωji

(ii) dωij =
∑

k

ωik ∧ ωkj.

We consider the Pfaffian differential system on M = F(E3)

(23)
(i) ω3 = 0
(ii) ω1 ∧ ω2 ∧ ω12 �= 0.

An integral manifold of this system is given by an immersion f in the diagram

(24)
N

f−→ F(E3)
xf ↘ ↓ x

E3

where dimN = 3, f∗(ω3) = 0, and f∗(ω1 ∧ ω2 ∧ ω12) �= 0. From f∗(ω3) = 0 we
have

dxf = f∗(ω1)e1 + f∗(ω2)e2,

and it follows first that the image xf(N) = S is an immersed surface in E3, and
secondly that f(N) consists of all Darboux frames (xf (y), e1, e2, e3) to S; here
y ∈ N and e1, e2 ∈ Txf (y)(S).

The structure equations of the Pfaffian differential system (23) are

(25) dω3 = −ω13 ∧ ω1 − ω23 ∧ ω2
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from which it follows that (23) is a linear Pfaffian differential system.
The tableau matrix is

‖ω13 ω23 0‖.
To compute the Cauchy characteristic system of the Pfaffian differential system (23)
we denote by ∂/∂ω1, ∂/∂ω2, . . . the tangent frame dual to the coframe ω1, ω2, . . .
on F(E3). Then using (25) it is easy to verify that: the Cauchy characteristic
system of (23) is spanned by ∂/∂ω12. This is an example of the block form (20).

We now claim that ∂/∂ω12 is tangent to any integral manifold of (23). For this
it will suffice to show that ∂/∂ω12 lies in any integral element of the system. Recall
that an integral element is given by a 3-plane E ⊂ TF(E3) satisfying the conditions

(ω3)E = 0, (dω3)E = 0
(ω1 ∧ ω2 ∧ ω12)E �= 0.

It follows after a short computation that E is given by linear equations

ω13 − aω1 − bω2 = 0

ω23 − bω1 − cω2 = 0,

and therefore ∂/∂ω12 ∈ E as claimed.
The conclusion concerning integral manifolds (24) that we may draw is this:

The fibering xf : N → S is given by the integral curves of the Cauchy characteristic
foliation. Moreover, the equality Ξ = PS⊥ holds in (19) above. Geometrically,
the Cauchy characteristic curves correspond to spinning the tangent frame of S.
The reason that Ξ equals all of PS⊥ is that no conditions are being put on the
immersed surfaces xf (N) ⊂ E3; thus we do not expect to be able to uniquely
determine integral manifolds by data along a curve.

We note that the pullbacks to N of the 1st and 2nd fundamental forms of S are
given by the quadratic differential forms

I = (ω1)2 + (ω2)2

II = a(ω1)2 + b(ω1ω2) + c(ω2)2.

Remark finally that this discussion generalizes to Darboux framings associated
to submanifolds Y n ⊂ XN where X is any Riemannian manifold and n, N are
arbitrary. The Cauchy characteristics give the spinning of the tangential and normal
frames to Y .

We shall now give two further types of examples of characteristic varieties. For
the first, following standard terminology we give the following

Definition 2.3. The linear Pfaffian differential system (I, Ω) is said to be elliptic in
case its real characteristic variety is empty

Ξ = ∅.

Example 2.4. In R2m = Cm we consider the Cauchy–Riemann system

(26)

∂u

∂xi
− ∂v

∂yi
= 0

∂u

∂yi
+

∂v

∂xi
= 0

i = 1, . . . , m.
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As previously remarked, the symbol matrix of the Pfaffian differential system cor-
responding to (26) is given by its symbol matrix as a partial differential equation
system, i.e., by the matrix

(27)
(

ξ1 ξ2 ξ3 ξ4 . . . ξ2m−1 ξ2m

−ξ2 ξ1 −ξ4 ξ3 . . . −ξ2m ξ2m−1

)
.

The real characteristic variety is, as expected, empty. However, for each z ∈ Cm

the complex characteristic variety ΞC,z is given by the vanishing of all 2× 2 minors
of (27). It is easy to then verify that

(28) ΞC,z = CP m−1
+ ∪ CP m−1

− ⊂ CP 2m−1

where
CP m−1

± = {ξ2 = ±
√
−1 ξ1, . . . , ξ2m = ±

√
−1 ξ2m−1}.

For example, when m = 2 we may picture ΞC,z as two purely imaginary and con-
jugate skew lines in CP 3.

Example 2.5. We now consider a linear Pfaffian differential system (I, Ω) with
square symbol matrices (in this case we say that the system is determined). Follow-
ing the notation in (23), (iii) above we write the symbol relations of a determined
system as

Bbi
a πa

i ≡ 0 mod J, 4

so that the symbol matrix is
σξ = ‖Bbi

a ξi‖.

We shall show that the system is involutive if for some ξ

det σξ �≡ 0;

i.e., if the complex characteristic variety is not everything, then the system is invo-
lutive.

Proof. We may assume that det ‖Bbn
a ‖ �= 0, and then by a basis change in the space

of relations that
Bbn

a = −δb
a.

When this is done the symbol relations are

πa
n ≡ Baρ

b πb
ρ mod J

where 1 ≤ ρ, σ ≤ n − 1. It follows that the characters of the tableau matrix are
given by

s′1 = s0, . . . , s
′
n−1 = s0, s

′
n = 0.

Now write the symbol relations out as

πa
n ≡ Baρ

b πb
ρ + Ba

i ωi mod I.

4This notation is slightly misleading, since the symbol matrices σξ = ‖Bbi
a ξi‖ are elements of

Hom(W1,W2) where W1, W2 are different vector spaces of the same dimension. Thus we may
pre- and post-multiply σξ by different invertible matrices.
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Integral elements are given by linear equations

θa = 0
πa

i − pa
ijω

j = 0

where
(i) pa

ij = pa
ji

(ii) pa
nj = Baρ

b pb
ρj + Ba

j .

Choose pa
ρσ = pa

σρ arbitrarily and use (ii) for 1 ≤ j ≤ n− 1 to determine the pa
nσ =

pa
σn. Then use (ii) when j = n to determine pa

nn. It follows that the s0n(n − 1)/2
quantities pa

ρσ may be freely specified and that each set of these quantities uniquely
determines an integral element; thus the space of integral elements is non-empty
(the integrability conditions are satisfied) and has dimension equal to

s0n(n− 1)/2 = s′1 + 2s′2 + · · ·+ ns′n.

By Cartan’s test the system is involutive. �
We will say that the Pfaffian differential system (I, Ω) is locally embeddable in

case it is locally induced from the canonical system on J1(Rn, Rs0). It is easy
to show that this is equivalent to J = span{θa, ωi} being a Frobenius system (cf.
Proposition 5.10 in Chapter IV). Under this circumstance (I, Ω) is locally equivalent
to a determined P.D.E. system

(29) F b(yi, za, ∂za/∂yi) = 0,

and known results from P.D.E. theory may be applied to construct integral mani-
folds.

We shall now prove that

If the linear system (I, Ω) is determined and elliptic,(30)

and if n = rank(L) ≥ 4, then it is locally embeddable.

As a corollary of (30) we have the following result:

Under the conditions of (30) there exist local integral(31)

manifolds of the Pfaffian system (I, Ω).

Proof of (31). We may locally realize (I, Ω) as the Pfaffian differential system as-
sociated to a determined 1st order elliptic P.D.E. system (29). Appealing to a
standard result in elliptic equation theory (see Nirenberg [1973]), we infer that (29)
has local solutions. �
Proof of (30). As noted above, the system (I, Ω) is involutive, and by the proof of
that result we may write it as

(32)

(i) θa = 0
(ii) dθa = πa

i ∧ ωi + ηa
b ∧ θb

(iii) πa
n = Baρ

b πb
ρ mod J



164 V. The Characteristic Variety

where 1 ≤ ρ, σ ≤ n− 1 and where

(33) the 1-forms πa
ρ are linearly independent mod J = span{θb, ωi}.

The exterior derivative of (ii) in (32) gives

(34) 0 ≡ πa
i ∧ dωi mod J.

We must show that, if n ≥ 3, this implies conversely that

(35) dωi ≡ 0 mod J.

For this we set

ϕa
1 = πa

1 , . . . , ϕa
n−1 = πa

n−1, ϕa
n = Baρ

b πb
ρ,

and using (iii) in (32) write (34) as

(36) ϕa
i ∧ dωi ≡ 0 mod J

for each a.

Lemma 2.6. Assume that the system (I, Ω) is elliptic. Then (i) for each a the
1-forms ϕa

1 , . . . , ϕ
a
n are linearly independent mod J ; (ii) if n ≥ 3, then for each

a �= b the 1-forms {ϕa
i }, {ϕb

i} are linearly independent mod J ; and (iii) in general,
for a1 < · · · < am and m ≤ n − 1 the 1-forms ϕaa

1 , . . . , ϕa1
n , . . . , ϕam

1 , . . . , ϕam
n are

linearly independent mod J .

Proof. (i) Suppose there is a linear relation

ζρπa
ρ + ζBaσ

b πb
σ ≡ 0 mod J.

Then ζ �= 0 by (33); by homogeneity we may take ζ = −1 and then

(δa
b ζρ −Baρ

b )πb
ρ ≡ 0 mod J.

By (33) this implies

(37) δa
b ζρ −Baρ

b = 0 for all ρ, b.

Taking 0 �= ξ = (ξ1, . . . , ξn) with ξn = ξρζρ, (37) gives

δa
b ξn −Bap

b ξρ = 0.

But this says that the ath row of the symbol matrix σξ is zero, which contradicts
ellipticity.

(ii) Given a linear relation

(38) (δa
c ζρ + ζBaρ

c )πc
ρ + (δb

cη
ρ + ηBbρ

c )πc
ρ ≡ 0 mod J
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we choose ξ �= 0 with ζρξρ = ξnζ and ηρξρ = ξnη. This is possible since n ≥ 3, and
(33) now gives as before

ζ(δa
c ξn + Baρ

c ξρ) + η(δb
cξn + Bbρ

c ξρ) = 0.

But this implies that the ath and bth rows of the symbol matrix are dependent (it
is easy to see that we don’t have ζ = η = 0); again this contradicts ellipticity.

(iii) The proof just given applies to the general case, provided we can find a
vector ξ �= 0 that is orthogonal to m given vectors; under the conditions of the
lemma, this is always possible. �

By (36), the above lemma and the usual Cartan lemma we have for each a

(39) dωi ≡ A(a)ij ∧ ϕa
j mod J

where the A(a)ij = A(a)ji are 1-forms. By ellipticity, the symbol gives a linear
mapping

Rn → s0 × s0 matrices,

denoted by ξ → σξ, such that

ξ �= 0⇒ detσξ �= 0.

Thus s0 must be even, and since n ≥ 4 we cannot have s0 = 2, i.e.,

(40) s0 ≥ 4.

We take a �= b and use (39) for a and b to obtain

(41) A(a)ij ∧ ϕa
j −A(b)ij ∧ ϕb

j ≡ 0 mod J.

Again by Cartan’s lemma this implies that

A(a)ij ∈ span{ϕa
k, ϕb

k} mod J.

Taking c �= a, b and applying this also for a, c we infer that

A(a)ij ∈ span{ϕa
k, ϕc

k} mod J.

But then (40) and the lemma together imply that

A(a)ij ∧ ϕa
j ≡ 0 mod J

which by (39) is our desired statement (35).

Example 2.7. We shall study in some detail the isometric embedding system for an
abstract Riemannian surface S mapping isometrically to E3. The notation S will
denote the abstract surface, and S → S ⊂ E3 will denote the isometric embedding.

Although the study of this example for general dimensions and codimensions has
been initiated in Chapter III and will be resumed in Chapter VII, we shall set it up
somewhat differently. One motivation is that the characteristic variety will appear
in a simple manner. Moreover, although we restrict here to the case of surfaces, all
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aspects of the general theory already appear in this special case and the extension to
higher dimensions basically involves more elaborate algebra. Finally, this example
illustrates in a substantial way most of the aspects of the general theory of the
characteristic variety.

The general theory will be discussed further in Chapter VII below. Additional
references are the original sources, Berger, Bryant and Griffiths [1983] and Bryant,
Griffiths and Yang [1983], and the detailed exposition given in Griffiths and Jensen
[1987] of these papers.

In discussing this example, we shall make use of certain concepts such as pro-
longation, that was introduced in Chapter IV and will be discussed in Chapter VI
below, and elementary results such as the relationship between the characteristic
variety of a Pfaffian system and the characteristic variety of its 1st derived system,
that also will be discussed below. These concepts and elementary results should be
pretty much self-evident in our example.

We begin by setting up the system and computing its structure equations and
1st prolongation. Geometrically the idea is to map the principal frame bundle of
S to the Darboux frames of the image surface. In this regard, it may be helpful to
keep in mind Example 2.2 above.

We denote by π : P → S the principal frame bundle whose points are (y, e1 , e2)
with y ∈ S and e1, e2 an orthonormal basis of Ty(S) and where π(y, e1, e2) = y.
On P there is the canonical parallelism given by 1-forms ω1, ω2, ω12 satisfying the
structure equations

(42)

dω1 = −ω2 ∧ ω12

dω2 = ω1 ∧ ω12

dω12 = Kω1 ∧ ω2

where K is the Gaussian curvature of S.
Now we set M = P ×F(E3) and on M consider the Pfaffian differential system

given by

(43)
(i) θi = ωi − ωi = 0, i = 1, 2,

(ii) θ3 = ω3 = 0
(iii) ω1 ∧ ω2 ∧ ω12 �= 0.

Throughout this example we shall use the index range i, j = 1, 2 and a = 1, 2, 3.
We shall see below that the integrals of this system are locally graphs of maps
f : P → F(E3) where

(i) f(P ) is the set F(S) of Darboux frames associated to an immersed surface
S ⊂ E3 and

(ii) there is a commutative diagram

(44)

P
f−−−−→ F(S)

π

⏐⏐" ⏐⏐"π

S
xf−−−−→ S

where xf is an isometric immersion. One difference between this method and that
in Chapter III is that here we make no a priori choice of frame field on S. Using the
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equations (21) and (22) above of a moving frame and (42), the structure equations
of (43) are

(45)
(i) dθ1 ≡ (ω12 − ω12) ∧ ω2 mod {θa}
(ii) dθ2 ≡ −(ω12 − ω12) ∧ ω1 mod {θa}
(iii) dθ3 ≡ −ω13 ∧ ω1 − ω23 ∧ ω2 mod {θa}.

It follows that (43) is a linear Pfaffian differential system.
Any 3-plane E ⊂ T (M) on which all the 1-forms θa = 0 and ω1 ∧ ω2 ∧ ω12 �= 0

is given by linear equations

(46)

ω12 = p121ω1 + p122ω2 + p123ω12

ω13 = p11ω1 + p12ω2 + p1ω12

ω23 = p21ω1 + p22ω2 + p2ω12.

Using (i) in (43) we may replace ωi by ωi in these equations. The conditions that
(46) be an integral element is that all 2-forms dθa restrict to zero on E. By (45)
this is

p121 = p122 = 0, p123 = 1

p1 = p2 = 0

p12 = p21.

Setting p11 = a, p12 = p21 = b, p22 = c it follows that the space M (1) of integral
elements of the system (43) is M × R3, where (a, b, c) ∈ R3 and where the integral
elements are given by

ω12 − ω12 = 0

ω13 − aω1 − bω2 = 0

ω23 − bω1 − cω2 = 0.

By definition, the 1st prolongation of (43) is the Pfaffian differential system on M (1)

given by

(47)

(i) θi = ωi − ωi = 0
(ii) θ3 = ω3 = 0
(iii) θ12 = ω12 − ω12 = 0
(iv) θ13 = ω13 − aω1 − bω2 = 0
(v) θ23 = ω23 − bω1 − cω2 = 0

together with the independence condition ω1 ∧ ω2 ∧ ω12 �= 0.5 We note that the
1st prolongation (47) contains two parts: the original system (i) and (ii), and the
equations (iii), (iv), (v) of integral elements of the original system. As discussed in
Chapter IV, this is a completely general fact. We also note that equation (iii) is

5Later on, we shall see that M (1) should be taken to be M × (�3\{0}).
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defined on M but did not appear in our original system, which was thus “incom-
plete”. More precisely, we will shortly see that this means that the original system
fails to be involutive.

Next we shall compute the Cauchy characteristic system of (43). For this we
note first that the 1-forms appearing in (43) and (45) span all of T ∗M , so that by
our remarks following the proof of (19) above the mapping A(I) → S is injective.
Setting θ12 = ω12 − ω12, by (45) the tableau matrix of (43) is

(48)

⎡
⎣ 0 −θ12 0

θ12 0 0
ω13 ω23 0

⎤
⎦ mod {θa, ωi, ωij}.

Referring to (20) above we see that there is, up to non-zero multiples, one Cauchy
characteristic vector field. In fact, it is

v = ∂/∂ω12 + ∂/∂ω12.

Geometrically it corresponds to spinning the tangent frames to S and S at the same
rate. More precisely, as in example 3 above we may see that v lies in any integral
element of (43), and therefore any integral manifold of this system is fibered by
the circle group action whose infinitesimal generator is v. Using this observation
it is easy to see that the integral manifolds of (43) are locally graphs of maps
f : P → F(E3) for which there is a commutative diagram (44) where xf is an
isometric immersion.

Now we observe that (43) fails to be involutive, essentially due to the fact that
equation (iii) in (47)

ω12 − ω12 = 0,

which is implied by (i) and (ii) in (45) (uniqueness of the Levi–Civita connection),
is missing. Referring to (48) the reduced characters are

s′1 = 2, s′2 = 1, s′3 = 0

⇒s′1 + 2s′2 = 4,

while as previously noted the space of integral elements is an R3. Thus, Cartan’s
test is not satisfied and (43) fails to be involutive.

It is for this reason that we went ahead and wrote down the 1st prolongation
(47) of (43). The next step is to compute the integrability condition and tableau
for (47), and for this some additional notation will be helpful (we want to eliminate
the indices—this is especially useful in the higher dimensional case). We introduce
a vector space V ∼= R2 and consider the following vector-valued differential forms

ω = t(ω1, ω2) and ω = t(ω1, ω2) are V -valued 1-forms

ψ =
[

0 ω12

−ω12 0

]
and ψ =

[
0 ω12

−ω12 0

]
are V ⊗ V ∗-valued 1-forms

η = (ω13, ω23) is a V ∗-valued 1-form

ω ∧ ω =
[

0 ω1 ∧ ω2

−ω1 ∧ ω2 0

]
is a V ⊗ V ∗-valued 2-form.
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ϕ = ω3 is a scalar 1-form.

The structure equations of a moving frame now appear as

(49)
(i) dω = −ψ ∧ ω + tη ∧ ϕ

(ii) dψ = tη ∧ η

(iii) dη + η ∧ ψ = 0.

Here, for example, ψ ∧ ω is the natural pairing

(V ⊗ V ∗-valued 1-form) ⊗ (V -valued 1-form) → V -valued 2-form.

The structure equations (42) on the frame bundle P of S are

(50)
(i) dω = −ψ ∧ ω

(ii) dψ = Kω ∧ ω

where ω ∧ ω is the obvious analogue of ω ∧ ω and K is the Gaussian curvature.

The Pfaffian differential system (43) is now

(51)
(i) θ = ω − ω = 0
(ii) ϕ = 0

together with the independence condition (iii) in (43). The structure equations (45)
of (51) are

(52)
(i) dθ ≡ −(ψ − ψ) ∧ ω mod {θ, ϕ}
(ii) dϕ ≡ −η ∧ ω mod {θ, ϕ}.

The integral elements (46) for this system are given by

ψ − ψ = 0

η −Bω = 0

where B is the S2V ∗-valued function corresponding to the symmetric matrix
[

a b
b c

]
.

The 1st prolongation (47) of (51) is given on M (1) = P × F(E3) × S2V ∗ by the
Pfaffian differential system

(53)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) θ = ω − ω = 0
(ii) ϕ = 0

(iii) ψ − ψ = 0
(iv) η − Bω = 0

with the independence condition ω1 ∧ ω2 ∧ ω12 �= 0. We want now to compute the
integrability condition, tableau, and involutive prolongation of this system.

For this we let
γ : S2V ∗ × S2V ∗ → R
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be the symmetric bilinear function obtained by polarizing the quadratic function

γ(B, B) = detB = ac− b2.

Then letting ≡ denote congruence modulo the algebraic ideal generated by the
system (53), we obtain from (49) and (50) that

(54)

(i) dθ ≡ 0
(ii) dϕ ≡ 0

(iii) d(ψ − ψ) ≡ −{γ(B, B) −K}ω ∧ ω

(iv) d(η − Bω) ≡ −DB ∧ ω.

To explain equation (iv) we have

(55)

d(η − Bω) = −η ∧ ψ − dB ∧ ω + Bψ ∧ ω − Btη ∧ ϕ

≡ −Bω ∧ ψ − dB ∧ ω + Bψ ∧ ω modulo (53)

= −DB ∧ ω

where DB is the S2V ∗-valued 1-form defined by the coefficient of ∧ω in the right
hand side of the middle equation in (55). From (54) we may draw two important
conclusions:

(56) The integrability conditions of (53) are given by
τ = γ(B, B) −K = 0.

Since this equation is not identically satisfied, the system is not involutive.

(57) The tableau of (53) is given by the S2V ∗-valued 1-form DB.

We may picture it as the symmetric matrix

(58) π =
[

π11 π12

π21 π22

]

where π11 ≡ da mod (53), π12 ≡ db mod (53), π22 ≡ dc mod (53). The symbol
relations are given by

(59) π21 − π12 ≡ 0 mod (53).

Actually the tableau matrix of (54) should be

(60)

⎡
⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

π11 π12 0
π21 π22 0

⎤
⎥⎥⎥⎦ =

[
0 0
π 0

]
.

The top two rows of zeros correspond to the original system (43), which as reflected
by (i) and (ii) in (54) has gone into the 1st derived system of (53). (As noted in §6
of Chapter IV, this also is a general property of prolongation.) The third row of



§2. The Characteristic Variety for Linear Pfaffian Systems; Examples 171

zeros corresponds to (iii) in (54), where we recall that the tableau matrix is always
considered modulo J = span{θa, ωi} where the θa span the system (53). The last
column of zeros reflects the Cauchy characteristic vector field. It is an easily verified
fact that the involutivity of a tableau (60) is equivalent to the involutivity of the
non-zero block (58). In other words, in testing for involutivity of a tableau we may
throw out the first derived system and Cauchy characteristic system.

According to the general prolongation scheme, as explained more fully in Chap-
ter VI below, we must set the integrability conditions equal to zero. This gives the
Gauss equations

(61) γ(B, B) = K.

It is easy to see that these equations always have solutions, and that the subset
of M (1) defined by (61) and B �= 0 is a smooth manifold Y . We therefore restrict
the Pfaffian differential system (53) to Y ; in effect this means that we impose the
condition (61) and the exterior derivative of this equation. To compute the latter
we have the easy

Lemma 2.8. dγ(B, B) = 2γ(B, DB) where DB is defined by (55).

It follows that on Y we must add to (59) the additional symbol relation (here ≡
denotes congruence modulo the system (53))

(62) γ(B, π) ≡ dK

where π is the S2V ∗-valued 1-form 2DB.

Definition 2.9. We shall call the restriction of (53) to Y , as defined by the Gauss
equation (61) and B �= 0, the involutive prolongation of the isometric embedding
system (51).

This terminology will be justified in a moment. Remark that the involutive
prolongation is given by the system (53) on Y where the structure equations are
now

(63)

(i) dθ ≡ 0
(ii) dϕ ≡ 0

(iii) d(ψ − ψ) ≡ 0
(iv) d(η −Bω) ≡ −π ∧ ω

with

π =
[

π11 π12

π21 π22

]
and where the symbol relations are

(64)
(i) π12 − π21 ≡ 0
(ii) γ(B, π) ≡ dK.6

6We recall our notation that ≡ denotes congruence modulo the algebraic ideal generated by
the 1-forms in (53).
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Summarizing, the procedure is this:
(i) Begin with the naive isometric system (43) = (51). The tableau of this

system is not involutive and so we must prolong. In effect, prolonging means that
we equate the connection forms and add all candidates aω2

1 + 2bω1ω2 + cω2
2 for the

2nd fundamental form as new variables. (ii) For the prolonged system (47) = (53)
the integrability condition is given by the Gauss equations (61). So it also fails
to be involutive, and we adjoin the Gauss equations together with their exterior
derivatives. We shall now prove that the resulting system (63) is involutive.

By the remarks above we may restrict our attention to the essential piece

π =
[

π11 π12

π21 π22

]

of the tableau, whose symbol relations (64) are

(65)
(i) π12 − π21 ≡ 0
(ii) aπ22 − bπ12 − bπ21 + cπ11 ≡ dK

where B =
[

a b
b c

]
. Remark that

(66) dK ≡ 0 mod {ω1, ω2}.

Since B �= 0, by choosing a general basis for V we may assume that a �= 0 (this
will correspond to choosing a regular flag). It follows that π11, π21, may be as-
signed arbitrarily, and then π12 is determined by (i) in (65) and π22 by (ii) in (65).
Moreover, by (66) we may choose π22 to annihilate the integrability condition. The
characters are

s′1 = 2, s′2 = 0.

Integral elements are given by linear equations

πij − pijkωk = 0

where, upon setting dK = Kjωj,

(i) pijk = pikj

(ii) p12j = p21j

(ii) ap22j − 2bp12j + cp11j = Kj .

From (i) and (ii) it follows that pijk is symmetric in all indices, and from (iii) it
follows that pijk is determined by p111 and p112. Thus the integral elements lying
over a point of Y have dimension equal to

2 = s′1 + 2s′2,

and so by Cartan’s test the system is involutive.
Finally, we want to compute the characteristic variety of the involutive prolon-

gation of the isometric embedding system. We have noted above that if the tableau
matrix looks like

π =
[

0
π̃

]
,
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then as is easily verified the characteristic variety for π is the same as that for π̃.
Thus we must compute the characteristic variety Ξ for a tableau matrix

[
π11 π12 0
π21 π22 0

]

with symbol relations (65) where we have absorbed dK into π22. Recall from (19)
above that for, y ∈ Y , the Cauchy characteristics as reflected in the last column of
zeros, give

Ξy ⊂ P1 ⊂ P2.

The determination of Ξy ⊂ P1 is consequently the same as that of determining the
characteristic variety of the tableau matrix

[
π11 π12

π21 π22

]

The symbol matrix at ξ = [ξ1, ξ2] ∈ P1 is

σξ =
[

ξ2 −ξ1

(cξ1 − bξ2) (aξ2 − bξ1)

]
.

Then

detσξ = a(ξ2)2 − 2bξ1ξ2 + c(ξ1)2

is a quadratic form with discriminant ∆(σξ) given by

∆(σξ) = ac− b2 = K

where K is the Gaussian curvature. Thus:

If K(y) < 0 then Ξy ⊂ P2 consists of two distinct points.(67)

If K(y) = 0 then Ξy consists of one point counted twice.

Finally, if K(y) > 0 then Ξy = ∅ but ΞC,y ⊂ CP 1 consists
of a pair of distinct conjugate points.

Following the usual P.D.E. terminology we may say that in the cases K < 0,
K = 0, K > 0 the involutive prolongation of the isometric embedding system is
respectively hyperbolic, parabolic and elliptic.

For a surface S ⊂ E3 with K < 0, at each point p ∈ S the two characteristic
lines in Tp(S) are the asymptotic directions.

A striking fact is that the isometric embedding system for Mn ⊂ En(n+1)/2, is
never elliptic when n ≥ 3 (cf. Bryant, Griffiths and Yang [1983] and the references
cited there).
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§3. Properties of the Characteristic Variety.

In this section we shall state a number of properties of the characteristic variety
of a linear Pfaffian differential system (I, Ω). The proofs of the more substantial of
these will be given in Chapter VIII.

(i) The 1st derived system and Ξ. We consider a Pfaffian differential system
given by a filtration I ⊂ J ⊂ T ∗X and with 1st derived system (cf. Chapter I)

I1 = ker{δ : I → Λ2T ∗M mod {I}}.

For an adapted basis {θ1, . . . , θp; θp+1, . . . , θs0} = {θρ, θε} for I1 ⊂ I (here 1 ≤
ρ, σ ≤ p and p + 1 ≤ ε, δ ≤ s0) we have

(i) dθρ ≡ 0 mod {I}
(ii) dθε ≡ πε

i ∧ ωi mod {I}.

Here we recall that {I} is the algebraic ideal generated by the sections of I. The
symbol relations are of the form

(i) πρ
i ≡ 0 mod J

(ii) Bλi
ε πε

i ≡ 0 mod J,

and the tableau matrix is [
0
πε

i

]
.

To put this in an intrinsic algebraic settting, a sub-bundle I1 ⊂ I gives a quotient
dual bundle, i.e., we have

0→ (I/I1)∗ → I∗ → I∗1 → 0.

The tableau corresponding to the above matrix is given by a sub-bundle A ⊂ I∗⊗L
with the property that A projects to zero in I∗1 ⊗ L, i.e.,

A ⊂ (I/I1)∗ ⊗ L ⊂ I∗ ⊗ L.

For 0 �= ξ ∈ L the symbol mapping

σξ : I∗ → Q

restricts to
σ1,ξ : (I/I1)∗ → Q,

and it follows directly from the definitions that

ker σξ = kerσ1,ξ.

Thus the characteristic variety is the same as if we consider only the bottom non-
zero block in the tableau matrix, i.e., we consider only the “smaller” symbol ma-
trices

‖Bλi
ε ξi‖.
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Informally, we may rephrase this as:

In computing the characteristic variety, we may(68)

ignore the 1st derived system.

This property of characteristic varieties may be viewed as a generalization of the
fact that the characteristic variety of a P.D.E. system depends only on its highest
order terms.

As was discussed in §6 of Chapter IV, if we prolong a Pfaffian differential system
the original system appears in the 1st derived system of its prolongation. We have
already encountered this phenomenon in Example 2.7 above (compare (51), (53),
and (54)), where property (68) was in fact used.

(ii) 2nd order systems and Ξ. We begin with a Pfaffian differential system that
“looks like” the system associated to a 2nd order P.D.E. system. Rather than giving
an involved intrinsic formulation of this we shall use indices. Thus we assume the
system to be given by

(69)

θa = 0

θa
i = 0

dθa ≡ 0 mod {I}

dθa
i ≡ πa

ij ∧ ωj mod {I}

where {I} = {θa, θa
i } and the symbol relations are

(70)
(i) πa

ij ≡ πa
ji mod J

(ii) Bλij
a πa

ij ≡ 0 mod J

and where in (ii) it is understood that Bλij
a = Bλji

a .

Example 3.1. We consider a 2nd order P.D.E. system

(71) F λ

(
yi, za,

∂za

∂yi
,

∂2za

∂yi∂yj

)
= 0.

To set this up as a Pfaffian differential system we use the space J2(Rn, Rs0) of 2-
jets of maps from Rn to Rs0 , and on J2(Rn, Rs0) we use coordinates (yi, za, pa

i , pa
ij)

where pa
ij = pa

ji. In J2(Rn, Rs0) we consider an open subset M of smooth points
on the locus

F λ(yi, za, pa
i , pa

ij) = 0.

Setting

θa = dza − pa
i dxi|M

θa
i = dpa

i − pa
ijdxj|M

πa
ij = −dpa

ij|M

ωi = dxi|M
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(this is just the restriction to M of the canonical system) and using

dθa = −dpa
i ∧ dxi ≡ 0 mod {θa

i },

we see that the Pfaffian differential system corresponding to (71) has the form (69)
with symbol relations (70) where

Bλij
a =

∂F λ

∂pij
a

.

The usual symbol matrix of the P.D.E. system (71) is given by

(72) ‖Bλij
a ξiξj‖,

and we want to extend this to the Pfaffian differential system (69). More precisely,
it is well known that the characteristic variety associated to the symbol matrix
(72), in which ξ appears quadratically in each term, is the same as that obtained
by writing (71) as a 1st order system and computing its symbol matrix, in which ξ
appears linearly in each term. It is the differential system analogue of this that we
wish to establish.

We remark that the condition that (69) be locally induced from a 2nd order
P.D.E. system, i.e., that there should locally be an embedding
f : X → J2(Rn, Rs0) satisfying

span{θa, ωi} = span{f∗dxa, f∗dyi}

span{θa
i , θa, ωi} = span{f∗dpa

i , f∗dza, f∗dyi},

is the Frobenius condition

dθa ≡ 0 mod {θa, ωi}

dωi ≡ 0 mod {θa, ωi}

(these plus (69) imply that dθa
i ≡ 0 mod {θa, θa

i , ωi}).
Example 3.2. The involutive prolongation (53) of the isometric embedding system
for S in E3 has the form (69) (where span{θa} = span{θ, ϕ} and span{θa, θa

i } =
span{θ, ϕ, ψ − ψ}), so that it “looks like” a 2nd order P.D.E. system. (This is
certainly natural to expect, since the curvature is involved.) But it follows from
(49) and (50) that it is not locally equivalent to such a system.

Returning to the general discussion, we want to determine the characteristic
variety of the system (69). The tableau matrix has the block form

π =
[

0
πa

ij

]
,

and by (68) we may ignore the block of zeros. For ξ = ξiω
i, the symbol matrix

applied to a vector w = {wa
i } is

(73) σξ(w) =
(

wa
i ξj −wa

j ξi

Brij
a wa

i ξj

)
.
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The two blocks of this column vector correspond to the blocks (i) and (ii) of symbol
relations (70). If σξ(w) = 0, then from

wa
i ξj = wa

j ξi, ξ �= 0,

we conclude that
wa

i = waξi

is a decomposable tensor. Using this the second block in (73) gives

(74) Bλij
a waξiξj = 0.

In other words, the symbol matrix (72) is singular. Conversely, if (74) holds, then
for wa

i = waξi we have σξ(w) = 0. In conclusion:

The characteristic variety for the Pfaffian differential(75)

system (69) and (70) is the same as the characteristic

variety formed from the symbol matrices (72).

Informally, we may say that if the tableau matrix of a Pfaffian differential system
looks like the tableau matrix of a 2nd order P.D.E. system, then the characteristic
variety according to Definition 2.1 above may be computed as one ordinarily would
for 2nd order P.D.E. systems. Of course, this may be generalized to higher order
systems.

Example 3.3. Referring to (64), the characteristic variety of the involutive prolon-
gation of the isometric embedding system is given immediately by

a(ξ2)2 − 2bξ1ξ2 + c(ξ1)2 = 0,

a result we arrived at there by a somewhat longer calculation following the original
definition.

(iii) Characteristic variety of the 1st prolongation. We have briefly intro-
duced the 1st prolongation in Chapter IV and will more fully discuss it in Chap-
ter VI below. Here, we shall show by computation how the characteristic variety
behaves under prolongation.

We consider a linear Pfaffian differential system whose integrability conditions
are assumed to be satisfied; thus there are integral elements over each point. Omit-
ting reference to the independence condition, such a system may be assumed to be
given by (13) and (16) above

(i) θa = 0
(ii) dθa ≡ πa

i ∧ ωi mod {I}
(iii) Bλi

a πa
i ≡ 0 mod {I}

where (iii) are a basis for the symbol relations. Writing these as modulo {I} = {θb}
means that the torsion has been absorbed. Integral elements are given by linear
equations

πa
i − pa

ijω
j = 0
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where

pa
ij = pa

ji

Bλi
a pa

ij = 0.

The 1st prolongation is a differential system on the manifold M (1) obtained locally
from M by adding the pa

ij’s satisfying these conditions. On M (1) the 1st prolonga-
tion is the Pfaffian differential system I(1) generated by the equations

(76)

(i) θa = 0
(ii) θa

i = πa
i − pa

ijω
j = 0

(iii) Bλi
a pa

ij = 0.

The exterior derivatives of these equations give, using the original structure equa-
tions,

(77)
dθa ≡ 0 mod {I(1)}

dθa
i ≡ πa

ij ∧ ωj mod {I(1)}

where locally {I(1)} = {θa, θa
i } and

πa
ij = −dpa

ij + (horizontal forms relative to M (1) →M).7

Comparing (76) and (77) we see as before that the original Pfaffian differential
system goes into the 1st derived system of its prolongation, and hence, by (68),
when computing the characteristic variety of I(1) we need only consider the tableau
‖πa

ij‖. Differentiating equation (iii) in (76) and using that(
horizontal forms

relative to M (1) →M

)
= span{θa, ωi, πa

i }8

= span{θa, πi, θa
i }

where span allows linear combinations with coefficients in C∞(M (1)), it follows that
the symbol relations on the πa

ij are

(78)
πa

ij ≡ πa
ji mod {θb, θb

i , ω
i}

Bλi
a πa

ij ≡ 0 mod {θb, θb
i , ω

i}.

Note that the 2nd set of relations is indexed by pairs (λ, j) of indices. Thus we
should write these relations as

B(λ,j)ik
a πa

ik ≡ 0 mod {θb, θb
i , ω

i}
7A differential form ϕ ∈ ΩqX is horizontal relative to a smooth mapping f : X → Y if

ϕ(x) ∈ π∗ ∧q T ∗
f(x)

Y for all x ∈ X .
8This equality is valid if there are no Cauchy characteristics. The general case may be done

by “foliating out” the Cauchy characteristics or by the more intrinsic argument used in §6 of
Chapter IV to prove the same equations as (78) below—cf. equations (118) there.
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where
B(λ,j)ik

a = δj
kBλi

a .

If ξ = {ξi} is in the characteristic variety for (I(1), Ω), then there exists w = {wa
i }

satisfying
(i) wa

i ξj = wa
j ξi

(ii) B
(λ,j)ik
a wa

i ξk = 0.

The reasoning here is now analogous to that used in establishing (75) just above.
From (i) it follows that

wa
i = waξi,

and then from (ii) it follows that

Bλi
a waξiξj = 0, 1 ≤ j ≤ n.

It follows that
Bλi

a waξi = 0,

which says that ξ is characteristic for (I, Ω). Since the converse is obviously true,
we have established that:

Under the projection ω̃ : M (1) →M , there is a(79)
natural isomorphism

Ξ(1)
x
∼= Ξω̃(x)

between the fibre of the characteristic variety Ξ(1) for

(I(1), Ω) lying over x ∈ M (1) and the fibre of

the characteristic variety Ξ for (I, Ω) lying over

ω̃(x) ∈M .

Informally, we may say that, in the absence of integrability conditions, the char-
acteristic variety remains unchanged when we prolong. If there are integrability
conditions, then they will contribute additional symbol relations to the prolonged
system and the characteristic variety may get smaller—i.e., Ξ(1)

x may be a proper
subvariety of Ξω̃(x).

Remark. The question of whether the symbol relations (78) may be refined to

(78bis)
πa

ij ≡ πa
ji mod {I(1)}

Bλi
a πa

ij ≡ 0 mod {I(1)},
or equivalently whether the absence of integrability conditions on M implies the
absence of integrability conditions on M (1), is an interesting one. In general the
answer is no; however, it will be proved in Chapter VI below that{

(I, Ω) involutive
on M

}
⇒

{
(I(1), Ω) involutive

on M (1)

}
.

The proof will show that the involutivity of the tableau of (I, Ω) implies both that
the tableau of (I(1), Ω) are involutive and that there are no integrability conditions
for (I(1), Ω), which is just (78bis). This argument will be put in a conceptual
framework in Chapter VIII when we discuss Spencer cohomology.
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(iv) Relationship between the characteristic variety and the Cartan–
Kähler theorem.

The remaining properties of the characteristic variety are more substantial; they
require involutivity and deal with the complex characteristic variety.

Let (I, Ω) be a linear Pfaffian differential system on a manifold M given by a
filtration I ⊂ J ⊂ T ∗M . We give the structure equations of (I, Ω) in the form (13)
above. For simplicity of exposition we assume that there are no Cauchy character-
istics, so that span{θa, ωi, πa

i } = T ∗M . The statements of the results given below
remain valid without this assumption. From section 5 in Chapter IV we recall the
tableau matrix given by equation (88) there

(80) π =

∥∥∥∥∥∥∥
π1

1 . . . π1
n

...
...

πs0
1 . . . πs0

n

∥∥∥∥∥∥∥ mod J,

(we now omit the bars over the πa
i ’s and understand that all 1-forms in π are

considered modulo J), and the reduced Cartan characters s′1, s
′
2, . . . , s

′
n defined

inductively by

(81) s′1 + · · ·+ s′k =
{

number of linearly independent
forms in the first k-columns of π

}
.

Here we assume that the basis ω1, . . . , ωn for J/I is chosen generically. Also, in
reality (81) is defined at each point x ∈ M , and we assume that these pointwise
defined ranks are constant. We also recall that, in the absence of integrability
conditions, the reduced characters are equal to the usual characters sk—cf. equation
(86) in Chapter IV.

Definition 3.4. The character l and Cartan integer κ of (I, Ω) are defined by{
s′1, . . . , s

′
l �= 0, s′l+1 = · · · = s′n = 0

κ = s′l .

As will be seen below, both the character and Cartan integer are invariant under
prolongation so long as the system has no integrability conditions.

Now suppose that the system is involutive and real analytic. According to the
Cartan–Kähler theorem we may construct local integral manifolds for (I, Ω) by
solving a succession of initial value or Cauchy problems. Such a succession of
initial value problems corresponds to nested sequence of integral manifolds{

N0 ⊂ N1 ⊂ · · · ⊂ Nn−1 ⊂ N

dimNp = p

whose tangent spaces form a regular flag. From Chapter III we recall that:

N is uniquely determined by Nl and Nl is uniquely obtained from
Nl−1 by prescribing “κ arbitrary functions of l variables”.

Thus we may think of (l, κ) as telling us something about how many local integral
manifolds there are. To an algebraic geometer, l resembles a transcendence degree
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and κ a field extension degree—this analogy will turn out to be precise. We will
state results that express l, κ and the condition to be a regular flag in terms of
algebro-geometric properties of the complex characteristic variety ΞC ⊂ PLC. In
practice these theorems usually allow us to determine l, κ and regular flags without
going through the sometimes laborious procedure of calculating the s′i. This will
be illustrated by examples.

Assume that (I, Ω) is involutive and let

σ : I∗
C
⊗ LC → QC

be the complexified symbol map for (I, Ω). For each x ∈ M and 0 �= ξ ∈ LC,x we
have

σx : I∗
C,x ⊗ LC,x → QC,x

σx,ξ : I∗C,x → QC,x

where for w ∈ I∗
C,x

σx,ξ(w) = σx(w ⊗ ξ).

By definition
ΞC,x = ([ξ] ∈ PLC,x : dimkerσx,ξ ≥ 1}.

It is clear that ΞC,x is a complex algebraic variety, in fact, the ideal of ΞC,x is by
definition the homogeneous ideal generated by suitable minors of the symbol matrix

‖Bλi
a (x)ξi‖.

Assuming first for simplicity that ΞC,x is irreducible we set

d = dimΞC,x

δ = deg ΞC,x

µ = dimkerσx,ξ where [ξ] ∈ ΞC,x is a general point.

As a consequence of the involutivity of (I, Ω) we will see that d, δ, and µ are
independent of x ∈M . In general, if

ΞC,x =
⋃
α

Ξ(α)
C,x

is the unique decomposition of ΞC,x into irreducible components we set

d = max
α

dimΞ(α)
C,x

δ =
∑′

δ(α)(x)

µ(x) =
∑′

µ(α)(x)

where δ(α)(x) = deg Ξ(α)
C,x, µ(α)(x) = dimkerσx,ξ(α) where [ξ(α)] ∈ Ξ(α)

C,x is a general
point, and

∑′ denotes the sum over components of maximal dimension. Again, d,
δ, and

∑′
µ(α)(x)δ(α)(x) will be independent of x.
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Example 3.5. For the involutive prolongation of the isometric embedding system
we have

σx,ξ =
∥∥∥∥ ξ2 −ξ1

cξ1 − bξ2 aξ2 − bξ1

∥∥∥∥
where

ac− b2 = K(x)

is the Gaussian curvature. If K(x) �= 0 then ΞC,x consists of two distinct points
with each having

δ(α)(x) = 1, µ(α)(x) = 1.

If K(x) = 0 then ΞC,x consists of one point with δ = 2 and µ = 1. Note that

(82)
{

µ(1)(x)δ(1)(x) + µ(2)(x)δ(2)(x) = 2, K(x) �= 0
µ(x)δ(x) = 2, K(x) = 0

in accordance with the above remark. Indeed, if K(x) �= 0 then over C we may
assume that the 2nd fundamental form is∥∥∥∥ a 0

0 c

∥∥∥∥ , ac = K �= 0,

in which case

σx,ξ =
∥∥∥∥ ξ2 −ξ1

cξ1 aξ2

∥∥∥∥
ΞC,x =

[
i,

√
c

a

]
∪
[
i,−

√
c

a

]
.

For each point of ΞC,x clearly this matrix has rank one. If K(x) = 0 then we may
assume that the 2nd fundamental form is∥∥∥∥ a 0

0 0

∥∥∥∥ , a �= 0.

In this case, ΞC,x = [1, 0] counted with multiplicity 2 and at this point

σx,ξ =
∥∥∥∥ 0 −1

0 0

∥∥∥∥
has rank one. By our assumption of involutivity the 2nd fundamental form can
never be zero.

Our result is the following

Theorem 3.6. Let (I, Ω) be an involutive Pfaffian system of character l and having
Cartan integer κ. Then {

l = d + 1
κ =

∑′
µ(α)(x)δ(α)(x).
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Corollary 3.7. Suppose that all µ(α)(x) = 1 (this is frequently the case). Then{
l = dimΞC,x + 1
κ = deg ΞC,x.

If we omit reference to the particular point x ∈ X we may rephrase this as:

The integral manifolds of an involutive, real analytic(83)
Pfaffian-differential system locally depend on deg ΞC

arbitrary functions of dim ΞC + 1 variables.

Example 3.8. Referring to (82) above, the local isometric embeddings of a real
analytic surface in E3 depend on two arbitrary functions of one variable. We want
to explain this, and the result we shall find is essentially: To locally isometrically
embed S in E3, we choose a connected curve γ ⊂ S. Then the isometric embeddings

γ → γ ⊂ E3

depend on two functions of one variable, and such an embedding extends essentially
uniquely to a local isometric embedding

S → S ⊂ E3

provided that γ is suitably general.

We let (I, Ω) on the manifold M denote the involutive prolongation of the iso-
metric embedding system. Then

M ⊂ P ×F(E3)× S2V ∗.

There is an essentially unique lifting of γ ⊂ S to P given by

s→ (y(s), e1(s), e2(s))

where γ is given by s → y(s) and e1(s) is the unit tangent to γ (s is an arclength
parameter). To be ‘essentially unique’ will mean that the lifting is unique once we
have specified it at one point. The connection form

ω12 = kg(s)ds,

where kg is the geodesic curvature of γ in S. Let γ → γ be given by

s→ x(s) ∈ E3

and set e1(s) = dx(s)/ds, which is a unit vector. This embedding locally depends
on two functions of one variable. We claim that there are essentially unique vectors
e2(s), e3(s) and functions a(s), b(s) such that

(i)
de1

ds
= kge2 + ae3

(ii)
de2

ds
= −kge1 + be3

(iii)
de3

ds
= −ae1 − be2.
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To see this we note that ∣∣∣∣de1

ds

∣∣∣∣2 = k2
g + a2 = κ2

where κ(s) is the curvature of γ in E3. Solving this gives a(s) up to ±1. Referring
to (i) above, we may find unique unit vectors e2(s) and e3(s) in e1(s)⊥ such that
de1/ds is the hypothenuse of the right triangle with sides kge2 and ae3. Having
determined e2 we may determine b up to ±1 from the length of de2/ds. Having
determined a(s) and b(s), we may determine c(s) by the Gauss equation

a(s)c(s) − b(s)2 = K(y(s)).

In this way, given γ → γ we have determined a frame e1(s), e2(s), e3(s) and 2nd

fundamental form a(s)ω2
1 +2b(s)ω1ω2+c(s)ω2

2 along γ, i.e. we have a 1-dimensional
integral manifold N1 ⊂M lying over the graph of γ → γ. Since s2 = 0 this integral
manifold extends locally to a unique integral manifold N2 of (I, Ω).

æ

Example 3.9. We consider a single linear P.D.E.

(84) P (x, D)u = 0

of order m with one unknown function. Here we use the standard notations

P (x, D) =
∑

|α|≤m

Pα(x)Dα
x

Dα
x = (∂/∂x1)α1 . . . (∂/∂xn)αn

|α| = α1 + · · ·+ αn.

As follows from the discussion above, when we write (84) as a Pfaffian differential
system and compute its characteristic variety we get the expected answer

ΞC = {(x, ξ) : Pm(x, ξ) =
∑

|α|=m

Pα(x)ξα = 0}.

This system (84) also turns out to be involutive (this is a nice exercise using Cartan’s
test). Since clearly also all µ(α)(x) = 1 (the symbol is a 1×1 matrix) it follows from
(83) that, in the real analytic case, the solutions to (84) depend on m arbitrary
functions of n−1 variables. These are just the values of u and its 1st m−1 normal
derivatives along a non-characteristic hypersurface. In this case the result is a well
known consequence of the Cauchy–Kowaleski theorem.

Example 3.10. We reconsider the Cauchy–Riemann system given by (26) above
with symbol matrix (27) and complex characteristic variety (28) there. Then δ(1) =
δ(2) = µ(1) = µ(2) = 1, {

d = m− 1
κ = 2

and (83) is in accordance with the well-known fact that holomorphic functions in
an open set U ⊂ Cm depend on two real functions of m real variables (think of
locally extending a complex-valued real analytic function from Rm to Cm).

As another consequence of Theorem 3.6 we have the following:
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Corollary 3.11. Let (I, Ω) be a C∞ involutive linear Pfaffian differential system
whose complex characteristic variety is empty, i.e.,

ΞC = ∅.

Then I is completely integrable. In particular, through each point of M there passes
a unique integral manifold of I.
Proof. By Theorem 3.6 we have s1 = · · · = sn = 0, and since there are no integra-
bility conditions the structure equations are

dθa ≡ 0 mod {θa}.

�
There is another consequence of this corollary. Because of its many uses we state

the result as a theorem.

Theorem 3.12. Let (I, Ω) be a C∞ exterior differential system and assume that:
(i) the complex characteristic variety is empty,
(ii) (technical assumption) the process of prolongation makes sense (i.e., at each

stage we get a locally finite union of manifolds; this is automatic in the real analytic
case). Then a prolongation of (I, Ω) is either empty or is a Frobenius system. In
particular, for a suitable q each connected integral manifold of (I, Ω) is uniquely
determined by its q-jet at one point.

Informally, we may say that in case ΞC = ∅ the integral manifolds of (I, Ω)
depend on a finite number of constants.

Proof. We will prove in Chapter VI that a suitable prolongation (I(q), Ω) of (I, Ω)
is either empty or involutive. Since the integral manifolds of (I, Ω) and (I(q), Ω)
are locally in one-to-one correspondence, we may restrict to the latter case. From
the remarks following (79) above we infer that the complex characteristic variety of
(I(q), Ω) is empty. By Corollary 3.11, (I(q), Ω) is a Frobenius system. Its integral
manifolds are uniquely specified by constants; through each point of M (q) there
is a unique connected integral manifold. This translates into the assertion that
connected integral manifolds of (I, Ω) are uniquely determined by their q-jets at
one point.

Example 3.13. We shall give an example of the finiteness Theorem 3.12 for a lin-
ear P.D.E. system that arose initially in algebraic geometry. This example is for
illustrative purposes and will not be referred to elsewhere in the book.

Let E → M be a vector bundle over a manifold, E the sheaf of C∞ sections of
E, and Θ ⊂ E a subsheaf. We ask for another vector bundle F → M and linear
differential operator

(85) D : E → F

whose kernel is Θ. A first candidate for F may be obtained as follows: For each
k let Jk(E) → M be the bundle of k-jets of sections of E → M , and denote by
J k(E) the sheaf of C∞ sections of this jet bundle. There is the universal kth order
differential operator

jk : E → J k(E)
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that sends a section s of E to its k-jet jk(s) (in local coordinates, jk(s)(x) is the
Taylor series up through order k of s at the point x). We then consider the images
jk(Θ) ⊂ J k(E) of k-jets of sections of Θ, and we assume that the values jk(s)(x)
(s ∈ Θ and x ∈ M) form a sub-bundle Jk(Θ) of Jk(E). For some k for which
Jk(Θ) �= Jk(E) we set F = Jk(E)/Jk(Θ) and consider the kth order operator

D : E → F

defined by
(Ds)(x) = πjk(s)(x)

where π : Jk(E) → F is the projection. Clearly, Θ ⊂ kerD; in this way we obtain
candidates for linear differential operators (85) whose solution sheaf is Θ. (It is also
clear that any solution to this problem must essentially be of this form.)

Now let G = G(k, V ) be the Grassmann manifold of k-planes in a vector space
V (which may be real or complex; it doesn’t matter). Over G we have the universal
sub-bundle S → G, the trivial bundle Ṽ = G×V , and the universal quotient bundle
Q→ G, all fitting in the standard exact sequence

(86) 0 → S → Ṽ → Q → 0.

The constant sections V of Ṽ → G project to give a subsheaf V ⊂ Q, and we ask
for a linear differential operator

(87) D : Q → R

whose kernel is V (here we abuse notation by identifying V with a subsheaf of Q).
More generally, for any submanifold M ⊂ G we may restrict (86) to M and ask the
same question. It is this latter situation that arose in algebraic geometry. What
we shall do here is:

i) for any M ⊂ G define a linear, 1st order operator (87) such that V ⊂ ker D;
ii) determine geometric conditions on M such that the complex characteristic

variety ΞC of D is empty. By Theorem 3.12 this implies that: Over any open subset
U ⊂M , kerD is a finite-dimensional subspace of H0(U, E); and

iii) show that if M = G, then over any open subset U ⊂ G, kerD = V .

We note that since the symbol of D will not be identically zero, the linear P.D.E.
system Ds = 0 cannot be involutive (this is a consequence of Corollary 3.11 above).

We begin with some notation. Given M ⊂ G and a point x ∈ M we denote
by Sx ⊂ V the corresponding k-plane and set Qx = V/Sx. Since the question is
local we may choose a frame e1(x), . . . , eN(x) (N = dimV ) for Ṽ → N such that
e1(x), . . . , ek(x) is a frame for S →M . Using the range of indices{

1 ≤ α, β, γ ≤ k,

k + 1 ≤ µ, ν ≤ N

we set

(88)
{

deα = ωβ
αeβ + ωµ

αeµ

deµ = ωα
µeα + ων

µeν .
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For each x ∈M the map

TxM → Hom(Sx, Qx) = S∗
x ⊗Qx

given for v ∈ TxM by
v → 〈ωµ

α(x), v〉e∗α(x)⊗ eµ(x)

is well-defined and gives an inclusion

(89) TM ⊂ Hom(S, Q).

When M is an open set on G this inclusion is an equality and gives the well known
identification TG ∼= Hom(S, Q).

We now fix a point x0 ∈M and set T = Tx0M , S = Sx0 , Q = Qx0 ; we thus have
a subspace

T ⊂ Hom(S, Q).

For this subspace we consider the following two conditions:

(90)
⋂

ϕ∈T

kerϕ = (0);

(91)
For any hyperplane H ⊂ T⋂

ϕ∈H

kerϕ = (0).

If the condition (90) is satisfied at each point then we shall prove that J1(V ) ⊂
J1(Q) is a proper sub-bundle. We then set R = J1(Q)/J1(V ) and define

(92) D : Q → R

by the above procedure (D = πD1 where π : J1(Q)→ R is the projection). This is
a linear, 1st order differential operator and we shall prove that:

If (91) is satisfied, then the complex characteristic(93)
variety ΞC of D is empty.

As noted above, this implies that locally kerD is a finite-dimensional vector space.

If dim V ≥ k + 2 and M is an open set of G then (90)(94)

and (91) are satisfied, and in fact kerD = V .

The dimension restriction simply means that G is not a projective space.
To get some feeling for the conditions (90) and (91) we set dim V = N and

assume that
k ≤ N − k;

i.e., dimS ≤ dimQ. Then it is easy to see that: Condition (90) is generic if
dimM ≥ 1. Condition (91) is generic if either{

k ≤ N − k − 1 and dimM ≥ 2, or
k = N − k and dimM ≥ 3.
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We are now ready to compute. If v ∈ V gives a constant section of Q, then
writing v = vαeα + vµeµ we have

0 = dv ≡ (dvµ + vλωµ
λ + vαωµ

α)eµ mod {eα}

which implies that

(95) dvµ + vλωµ
λ + vαωµ

α = 0.

Now the map

(96) V → J0(Q)x = Qx

is obviously surjective for each x ∈ M . We shall show that if (90) is satisfied then
the map

V → J1(Q)x

is injective for each x ∈ M (in fact, this is equivalent to (90)). For this we may
assume that v ∈ Sx (i.e., v = 0 in Qx), so that all vλ(x) = 0. Then (95) gives

(97) dvµ(x) = −vα(x)ωµ
α(x).

Now in the sequence

0→ T ∗
x M ⊗Qx → J1(Q)x

ρ−→ J0(Q)x → 0,

ρ(v) = 0, and so the 1-jet j1v(x) is given by dvµ(x)eµ(x) ∈ T ∗
x M ⊗ Qx. By (97)

this is zero if, and only if,
vα(x)ωµ

α(x) = 0

for all µ. Clearly this is just a reformulation of (90).
Next we want to compute the symbol σ of the operator (92). Working over a

fixed point x0 ∈M and using our above notations, the symbol is a map

(98) σ : T ∗ ⊗Q → R

where R is the fibre of J1(Q)/J1(V ) over x0. To identify R, we note that by the
surjectivity of (96) it is a quotient space of T ∗ ⊗Q. Denoting by

j : T ⊂ S∗ ⊗Q

the inclusion (89) over x0, we define a linear mapping λ : S → T ∗ ⊗ Q by the
commutative diagram

S
λ−→ T ∗ ⊗Q

idS ⊗ I ↘ ↙ j∗ ⊗ idQ

S ⊗Q∗ ⊗Q

where I ∈ Q∗ ⊗ Q = Hom(Q, Q) is the identity. Our main observation is the
following consequence of (95):

R = T ∗ ⊗Q/λ(S).
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Thus the symbol (98) is just the quotient mapping

T ∗ ⊗Q→ T ∗ ⊗Q/λ(S).

The characteristic variety is non-empty if, and only if, we have

(99) λ(s) = η ⊗ q

for some 0 �= s ∈ S, η ∈ T ∗, q ∈ Q. Setting

H = η⊥ ∩ T,

(99) is easily seen to be equivalent to

s ∈
⋂

ϕ∈H

ker(j(ϕ)).

Comparing with (91) we obtain a proof of (93).
We will now prove (94). Let

q = vµeµ

be a section of Q over an open set in G and assume that Dq = 0. By definition
this means that there exists s = vαeα such that, for each µ,

(100) dvµ + vλωµ
λ + vαωµ

α = 0.

The exterior derivatives of (88) give

dωj
i = ωk

i ∧ ωj
k, 1 ≤ k, j, k ≤ N.

Using this the exterior derivative of (100) gives

dvλ ∧ ωµ
λ + vλωα

λ ∧ ωµ
α + vλων

λ ∧ ωµ
ν

+ dvα ∧ ωµ
α + vαωβ

α ∧ ωµ
β + vαωλ

α ∧ ωµ
α = 0.

Plugging (100) into this equation several cancellations occur and it becomes

(dvα + vλωα
λ + vβωα

β ) ∧ ωµ
α = 0

for µ = k + 1, . . . , N . Now all the forms ωµ
α are linearly independent (they give a

local coframe for G), and the Cartan lemma implies that

dvα + vλωα
λ + vβωα

β ∈ span{ωµ
1 , . . . , ωµ

k}
for each µ = k + 1, . . . , N . If N ≥ k + 2 then we may choose µ �= ν and use

span{ωµ
1 , . . . , ωµ

k} ∩ span{ων
1 , . . . , ων

k} = (0)

to conclude that

(101) dvα + vλωα
λ + vβωα

β = 0.

For the V -valued function
v = vαeα + vµeµ

(100) and (101) imply that dv = 0. �
The proof shows that if N ≥ k + 2 and M ⊂ G is a generic submanifold with

dim M ≥ 2k,

then kerD = V . (Note that dimG = k(N − k) so that M must be an open set on
G if N = k + 2.) Unfortunately, for the cases that arise in algebraic geometry we
have that approximately dimM = k, so that prolongation is necessary to decide if
Ker D = V .
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Returning to the general discussion, in section 2 above we have defined the sub-
bundle

S ⊂ L∗

to be the image of the Cauchy characteristics and have proved (cf. equation (19)
there) that

ΞC ⊂ PS⊥
C

.

In the involutive case there is a converse. To explain it, for each subset Σ ⊂ PLC

whose fibres Σx are algebraic subvarieties of PLx,C
∼= Pn−1, we define the span of

Σx to be

{Σx} =
⋂

(linear spaces containing Σx)

and set

{Σ} =
⋃

x∈M

{Σx}.

Theorem 3.13. In case (I, Ω) is involutive, we have

S⊥
C = {ΞC}.

In the extreme case when ΞC is empty, this gives S⊥
C

= LC so that (I, Ω) is a
Frobenius system, which is Corollary 3.11 above.

We shall not prove this result in this book.

(v) The characteristic variety and K-singular integral elements.
As we have defined it, the characteristic variety essentially has to do with charac-

teristic, or singular, hyperplanes in n-dimensional integral elements. On the other
hand, if (I, Ω) is an involutive Pfaffian differential system of character l then the
uniqueness of extensions in the Cauchy problem for n-dimensional integral man-
ifolds occurs along l-dimensional submanifolds. Thus, we may expect that the
characteristic variety should consist of singular l-dimensional integral elements. In
other words, when l < n − 1 (i.e., roughly speaking when we are in the overde-
termined case) there are two possible characteristic varieties, and it is obviously
important to relate them.

To explain this we recall that Gp(I) ⊂ Gp(TM) denotes the set of p-dimensional
integral elements of a differential ideal I on manifold M , and that the rank of the
polar equations at (x, E) ∈ Gp(I) is denoted by ρ(E). Next, we recall that (i)
(x, E) ∈ Gp(I) is K-regular if near (x, E) the set Gp(I) is a manifold with defining
equations

ϕ|E′ = 0, (x′, E′) ∈ Gp(TM)

for ϕ ∈ I, and (ii) ρ(E′) is constant near (x, E). If (x, E) is not K-regular then it
is said to be K-singular.

Now suppose that (I, Ω) is a linear Pfaffian differential system given by a filtra-
tion I ⊂ J ⊂ T ∗M and with characteristic variety

Ξ ⊂ PL
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where L = J/I with rank L = n. For any n-dimensional integral manifold N ⊂M ,
the restriction J → T ∗(N) induces isomorphisms

L|N ∼= T ∗N

PL|N ∼= Gn−1(TN),

so that the complex characteristic variety ΞC maps to a set of hyperplanes in the
tangent spaces to N that we think of as giving characteristic hyperplanes for a
determined Cauchy problem posed along hypersurfaces in N . On the other hand,
if (I, Ω) has character l then, from the proof of the Cartan–Kähler theorem, there
is a sequence of uniquely determined Cauchy problems beginning with one posed
along general l-dimensional submanifolds of N . The characteristics for the first of
these problems should appear in Gl(TN), which leads us to look for some sort of
characteristic variety in Gl(L∗) ∼= Gn−l(L). In fact, for each p with 1 ≤ p ≤ n − 1
we shall now define

Λp ⊂ Gp(L∗)

with the properties that Λn−1 = Ξ and that Λl = Λ is the characteristic variety of
primary interest.

Using the identification
Gp(L∗) ∼= Gn−p(L)

given by sending a p-plane E in an n-dimensional vector space to its (n − p)-
dimensional annihilator E⊥ in the dual space, for each (x, E) ∈ Gp(L∗) we choose
our basis ω1, . . . , ωn for L so that ωp+1(x), . . . , ωn(x) gives a basis for E⊥. Consider
now the tableau matrix

π(x) =

⎡
⎢⎣π1

1(x) . . . π1
n(x)

...
...

πs0
1 (x) . . . πs0

n (x)

⎤
⎥⎦ mod Jx,

and denote by σ(E) the number of 1-forms in the first p columns of π(x) that are
linearly independent mod Jx. Under a substitution

ω̃λ = ωλ p + 1 ≤ λ ≤ n

ω̃ρ = ωρ + Aρ
λωλ 1 ≤ ρ ≤ p

we have

π̃a
ρ = πa

ρ

π̃a
λ = πa

λ + Aρ
λπa

ρ ,

from which it follows that σ(E) is well-defined.

Definition 3.14. i) We define Λp ⊂ Gp(L∗) by

Λp = {E : σ(E) < s′1 + · · ·+ s′p}

ii) If (I, Ω) has character l, then we define the Cartan characteristic variety Λ
to be Λl.
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We may intuitively think of Λp as the set of K-singular p-dimensional integral
elements. In fact, as is easily verified from the discussions in Chapter IV, the
precise statement is this: If there are no integrability conditions, so that the symbol
relations may be assumed to be

Bλi
a πa

i ≡ 0 mod I,

then Λp is the set of p-dimensional integral elements whose polar equations have
smaller rank than is generically the case. In particular, in the absence of integrabil-
ity conditions, Λn−1 coincides with characteristic variety Ξ as given above in terms
of the symbol.

According to the proof of the Cartan–Kähler theorem, the Cartan characteristic
variety determines the set of integral elements that are characteristic for the last
Cauchy–Kowaleski system in which there is any freedom in assigning initial data.

It is clear how to define Λp,C and ΛC. A fundamental result is given by the
following

Theorem 3.15. In case (I, Ω) is involutive we have

ΛC = {E ∈ Gl(L∗
C
) : E ∈ [ξ]⊥ for some [ξ] ∈ ΞC}

ΞC = {[ξ] ∈ PLC : E ∈ ΛC for all E ⊂ [ξ]⊥}.

Simple examples show that the result is false without the assumption of involu-
tiveness. Since we may have Ξ = ∅ but Λ �= ∅ (see below), the result is false over R.
What we can say is that the real Cartan characteristic variety Λ is given in terms
of the complex usual characteristic variety ΞC by

(102) Λ = {E ∈ Gl(L∗) : E ⊂ [ξ]⊥ for some [ξ] ∈ ΞC}.

In particular, we may have Ξ = ∅ but ΞC and Λ both �= ∅; see below.
To picture Theorem 3.15 it may help to use the incidence correspondence

Σ ⊂ Gl(L∗
C) × PLC

defined by
Σ = {(E, [ξ]) : E ⊂ [ξ]⊥}.

There are projections
Σ

π1 ↙ ↘ π2

Gl(L∗
C
) PLC

and the first assertion in Theorem 3.8 and (102) are equivalent to{
ΛC = π1(π−1

2 (ΞC))
Λ = ΛC ∩Gl(L∗).

Example 3.16. On R2m ∼= Cm with coordinates zi = xi +
√
−1 yi and complex

structure J : R2m → R2m given by{
J(∂/∂xi) = ∂/∂yi

J(∂/∂yi) = −∂/∂xi
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we consider the Cauchy–Riemann system (cf. Example 2.4 above). Since it is ellip-
tic, the real characteristic variety Ξ = ∅.

To describe the Cartan characteristic variety, since the system is translation
invariant it will suffice to describe the fibre Λ0 of Λ over the origin, and using (102)
this is given by

Λ0 = {E ∈ Gm(R2m) : E ∩ J(E) �= (0)}.

In other words, Λ0 consists of real m-planes E ⊂ R2m that contain at least one
complex line (the latter being a real 2-plane F ⊂ E with J(F ) = F ).

It is, of course, well known that real m-dimensional submanifolds Y m ⊂ Cm

such that Ty(Y ) ∩ JTy(Y ) = (0) for every y ∈ Y are locally determining sets for
holomorphic functions.

In general we have

Λp,0 = {E ∈ Gp(R2m) : dim E ∩ J(E) ≥ max(1, 2(p−m) + 1)}.

For instance, Λ2m−1,0 = G2m−1(R2m) contains no information.
The second assertion in Theorem 3.15 gives ΞC in terms of ΛC as follows

ΞC = {[ξ] : π−1
2 ([ξ]) ⊂ π−1

1 (ΛC)}.

In other words, an (n− 1)-plane is characteristic only if every l-plane contained in
it is Cartan characteristic.

(vi) Integrability of the characteristic variety.
(a) Let N be a manifold and Σ ⊂ PT ∗N a subset. There is an associated eikonal

equation EΣ defined as follows:

A function ϕ(y) on N is a solution of EΣ if

[dϕ(y)] ∈ Σy whenever dϕ(y) �= 0.

More precisely, we let Σ̃ ⊂ T ∗N be defined by

Σ̃ = π−1Σ ∪ {0}

where π : T ∗N\{0} → PT ∗N is the projection and {0} ⊂ T ∗N is the zero section.
Then Σ̃ is a conical subvariety of T ∗N , i.e., it is invariant under the natural R∗

action on T ∗N . Moreover, any conical subvariety is of this form. If y1, . . . , yn = (yi)
are local coordinates on N with induced coordinates (yi, ξi) on T ∗N , then we shall
always assume that Σ is a subset with the property that Σ̃ is defined by equations

(103) F λ(yi, ξi) = 0 λ = 1, . . . , R

where the F λ are either C∞ or real analytic functions depending on the category
in which we are working.

Definition 3.17. The eikonal equation is

(EΣ) F λ

(
yi,

∂ϕ(y)
∂yi

)
= 0 λ = 1, . . . , R.
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Remarks. The functions F λ need only be defined microlocally, i.e., in open sets
U ⊂ T ∗N invariant under the natural R∗ action. In the cases of interest to us the
fibres Σy of Σ→ N will be algebraic varieties, so that the F λ(yi, ξi) may be chosen
to be homogeneous polynomials in the ξi whose coefficients are functions of the yi.
In this case, the complexifications{ ΣC ⊂ PT ∗

C
N

Σ̃C ⊂ T ∗
C
N

are naturally defined, and so the complex eikonal equation makes sense by allowing
the function ϕ to have complex values and requiring that dϕ ∈ Σ̃C. We remark
that we may have Σ = ∅ but ΣC �= ∅. From now on we assume that the F λ(yi, ξi)
may be chosen to be homogeneous polynomials in the ξi.

Definition 3.18. The subset ΣC ⊂ PT ∗
C
N is involutive in case the eikonal equation

EΣC
is involutive.

To state the main result, we let I be a differential system on a manifold M and
with complex characteristic variety

ΞC ⊂ PU∗
C

(cf. Definitions 1.1, 1.2 and the subsequent discussion). For any integral manifold

(104) f : N →M

of I there is the induced characteristic variety

ΞC,N ⊂ PT ∗
CN

defined as follows: Given (104) we have a diagram

(105)

PU∗
C⏐⏐"ω̃

PT ∗
C
N

f̂∗−−−−→ Gn(TM)⏐⏐" ⏐⏐"
N −−−−→

f
M

where {
f̂∗(y) = f∗(TyN)
ω̃−1(x, E) = PE∗

C
.

The condition that (104) be an integral manifold of I is that

f̂∗(N) ⊂ Gn(I),

and the dotted arrow in (105) means that there is a natural mapping

ω̃−1(f̂∗(N))→ PT ∗
CN.

By definition, ΞC,N is the image of ΞC∩ω̃−1(f̂∗(N)) under this mapping. Informally,
we may say that ΞC,N is induced from the characteristic variety ΞC in each of the
integral elements f∗(TyN) ∈ Gn(TM).

Definition 3.19. We shall say that ΞC is involutive in case the eikonal equation
EΞC,N is involutive for any integral manifold (104) of I.

The main result is essentially the following: If I is involutive, then its charac-
teristic variety is involutive. More precisely, the result is
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Theorem 3.20. Let E ∈ Gn(I) be an ordinary integral element. Then ΞC is
involutive in a (possibly smaller) neighborhood V of E.

What this means is that ΞC,N is involutive for all integral manifolds (104) satis-
fying f̂∗(N) ⊂ V .

We will prove this result only in the case when the characteristic varieties ΞC,E =
ΞC∩PEC are points. By Theorem 3.6 this corresponds to the case where the Cartan
characters are given by

(∗) s′1 = s0, s′2 = · · · = s′n = 0.

Referring to (97) in §5 of Chapter IV we see that the symbol relations given
by (96) in that section are given by commuting matrices Cρ. We shall make the
additional assumption that

(∗∗) the Cρ are simultaneously diagonalizable.

It is interesting to note that Cartan stated the above theorem under the as-
sumption (∗) (cf. Cartan [1953]9). He also proved the result under our additional
assumption (∗∗), and by the computation of several examples he showed that the
result is much more subtle in case the Cρ may have non-diagonal Jordan normal
forms.

More recently in Guillemin, Quillen and Sternberg [1970] Theorem 3.20 is stated
and proved for involutive P.D.E. systems. There they also make a technical assump-
tion analogous to but weaker than our assumption (∗∗), but there is no restriction
on the dimension of the characteristic variety. Subsequently the general result was
proved in Gabber [1981], where additional references may be found.

Since not every exterior differential system is derived from a P.D.E. system, the
Guillemin, Quillen and Sternberg result does not immediately imply Theorem 3.20.
However, the result is not really in doubt; even the stronger theorem corresponding
to the result proved by Gabber is certainly true. What is important, in our opinion,
is that we do not know a proof of Theorem 3.20 using moving frames in the spirit
of the one we shall give below in our special case. That argument will show that
the theorem falls out by exterior differentiation of the structure equations of a
involutive system, where the assumption (∗∗) is used to put these equations in a
particular form. We think it is a very worthwhile problem to give a similar proof
of the full result.

It will simplify our notations if we now work only with the real characteristic
variety and observe that the arguments remain valid in the complex case. Unless
mentioned to the contrary this will now be done.

(b) We will now derive conditions for the involutivity of a conical submanifold Σ̃
of T ∗N . For this we assume that we may micro-locally choose functions F λ(yi, ξi)
such that (103) gives a regular set of defining functions for Σ̃. We denote by {f, g}
the Poisson bracket of functions locally defined on T ∗N , and recall that by definition

(106) {f, g} =
∑

i

∂f

∂ξi

∂g

∂yi
− ∂f

∂yi

∂g

∂ξi
.

9The result is announced on page 1127 in Part II of the 1984 edition of the collected works.
Numerous special cases were worked out in the paper preceding the announcement.
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More intrinsically, if

(107) η = ξidyi

is the tautological 1-form on T ∗N with associated symplectic form

(108) Θ = dη = dξi ∧ dyi,

then
{f, g}Θn = n df ∧ dg ∧Θn−1.

It is well known that the condition for the involutivity of EΣ is

(109) {F λ, F µ} = 0 on Σ̃, 1 ≤ λ, µ ≤ R.

We shall derive this result from differential system point of view. This computation
will also allow us to reformulate the condition for integrability in a way that leads
naturally to the proof of Theorem 3.20.

The result is local (even micro-local), and so we work in the above local coordi-
nates and consider T ∗N×R as J1(Rn, R) with coordinates (y1 , . . . , yn, ψ, ξ1, . . . , ξn).
In J1(Rn, R) we consider the submanifold P ∼= Σ̃× R defined by

F λ(yi, ξi) = 0 λ = 1, . . . , R.

On P we have the contact system (J , Φ) generated by the equations

(110)
θ = dψ − ξidyi = 0

Φ = dy1 ∧ · · · ∧ dyn �= 0.

Lemma 3.21. Locally on P we may choose a coframe ϕ1, . . . , ϕn, θ, πR+1, . . . , πn

such that

(111)
Φ ≡ ϕ1 ∧ · · · ∧ ϕn mod {θ} and

dθ ≡ πε ∧ ϕε +
1
2
cijϕ

i ∧ ϕj mod {θ}

where ε = R + 1, . . . , n and cij + cji = 0.

Proof. The structure equation of (110) is

(112) dθ ≡ −dξi ∧ dyi mod {θ},

and the symbol relations on the dξi are

(113)
∂F λ(yi, ξi)

dξi
dξi ≡ 0 mod {θ, dyi}.

By our assumption, the matrix ‖∂F λ/∂ξi‖ has everywhere rank R, and so we may
find invertible matrices ‖Aλ

µ‖ and ‖Bi
j‖ such that

Aλ
µ∂F µ/∂ξjB

i
j = δλ

i .



§3. Properties of the Characteristic Variety 197

Setting dξi = −Bj
i πj the symbol relations (113) imply that

(114) πλ ≡ 0 mod {θ, dyi}, λ = 1, . . . , R.

Then for ϕi = Bi
jdyj we have

−dξi ∧ dyi = Bj
i πj ∧ dyi

= πj ∧ ϕj ,

so that by (112) and (114)

dθ ≡ πε ∧ ϕε mod {θ, ϕi}.

Writing this out modulo {θ} gives (114) for suitable functions cij = −cji. �
To establish (109), we consider a differential system (J , Φ) with structure equa-

tions on an open set U ⊂ R2n−R+1

(115)
(i) θ = 0
(ii) dθ ≡ πε ∧ ϕε + 1

2 cijϕ
i ∧ ϕj mod {θ}, cij + cji = 0

(iii) Φ = ϕ1 ∧ · · · ∧ ϕn �= 0

where ϕ1, . . . , ϕn, θ, πR+1, . . . , πn are a local coframe. We may make a substitution

(116) πε → πε − pεiϕ
i, pεδ + pδε = 0,

without effecting the form of the structure equations (115). When this is done we
may eliminate the terms

cεδ, cεµ 1 ≤ ε, δ ≤ R and R + 1 ≤ µ ≤ n

in dθ, and then

(117) dθ ≡ πε ∧ ϕε +
1
2
cλµϕλ ∧ ϕµ mod {θ}.

It is easy to see that the 2-form

T =
1
2
cλµϕλ ∧ ϕµ

is, up to a conformal factor, invariantly associated to (J , Φ). Indeed, the only
substitution (116) that leaves the form (117) invariant is when all pεi = 0, and
consequently the condition that the integrability conditions be satisfied for (J , Φ)
is

(118) cλµ = 0.

In this case (J , Φ) is involutive.
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In fact, assuming (118) we may “integrate (J , Φ) by O.D.E.’s” as follows: Denot-
ing by {∂/∂ϕi, ∂/∂θ, ∂/∂πε} the dual frame to {ϕi, θ, πε}, the vector fields ∂/∂ϕλ

satisfy

∂/∂ϕλ θ = 0

∂/∂ϕλ dθ ≡ cλµϕµ mod {θ}.

Thus, assuming (118) the vector fields ∂/∂ϕλ are Cauchy characteristics, and in
fact it is easy to see that, in the notation of Chapter I,

A(Φ) = span{∂/∂ϕ1, . . . , ∂/∂ϕR}.

Local integral manifolds for (J , Φ) may be found by prescribing arbitrary values
of ψ(x) along an Rn−R ∩U in a general linear coordinate system, and then flowing
this initial data out along the R-dimensional integrable distribution C(Φ), just as
is done in the case R = 1 as explained in Chapter II.

It remains to mutually identify the conditions (109) and (118). Both are in-
variantly attached to the submanifold Σ̃ ⊂ T ∗N and do not depend on the local
defining equations or choice of coframing. It will therefore suffice to identify these
two sets of conditions at a point (yi, ξ

i
) ∈ Σ̃.

For this we will show that (109) expresses the condition that there be integral
elements of (J , Φ) at each point of P . We may choose the F λ(yi, ξi) such that

(119)
∂F λ

∂ξj
(yi, ξ

i
) = δλ

j .

We view integral elements of (J , Φ) as n-planes En in T(yi,ξ
i
)(T ∗N × R), and by

(110) and (119) any En on which Φ �= 0 has equations

(120)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dξλ +
∑

j

∂F λ

∂yj
(yi, ξ

i
)dyj = 0 λ = 1, . . . , R

dξρ +
∑

j

pρjdyj = 0 ρ = R + 1, . . . , n

dψ =
∑

i

ξ
i
dyi

where pρj are to be chosen to annihilate dθ. By (112) the restriction of dθ to the
n-plane (120) is

(121)
∑
λ,j

∂F λ

∂yj
dyj ∧ dyλ +

∑
ρ,j

pρjdyj ∧ dyρ,

where the ∂F λ/∂yj are to be evaluated at (yi, ξ
i
). We may set pρσ = 0 and

pρλ = −∂F λ/∂yρ so that (121) reduces to∑
λ,µ

∂F λ/∂yµdyµ ∧ dyλ.
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Thus the vanishing of all

(122) (∂F λ/∂yµ)(yi, ξ
i
) = {F µ, F λ}(yi, ξ

i
)

is equivalent to the existence of an integral element of (J , Φ) at (yi, ξ
i
) and this

establishes the equivalence of (109) and (118).
(c) In preparation for the proof of Theorem 3.7 we want to express the involu-

tivity conditions (109) in more geometric form. For this we recall that Σ̃ ⊂ T ∗N
has dimension given by

dim Σ̃ = 2n−R,

and we denote by Θ the symplectic form (108) on T ∗N .

Proposition 3.22. The involutivity condition (109) is equivalent to

(123) rank Θ = 2(n−R)

on Σ̃.

Proof. It will suffice to verify the equivalence of (109) and (123) at a point of Σ̃
where (119) is satisfied. Then, as in (121),

Θ = −
∑
λ,j

∂F λ

∂yj
dyj ∧ dyλ +

∑
ρ

dξρ ∧ dyρ

=
∑

ρ

(dξρ +
∑

λ

∂F λ

∂yρ
dyλ) ∧ dyρ +

∑
λ,µ

∂F λ

∂yµ
dyλ ∧ dyµ

=
∑

ρ

γρ ∧ dyρ +
∑
λ,µ

∂F λ

∂yµ
dyλ ∧ dyµ

where the forms γρ = dξρ+
∑

λ
∂Fλ

∂yρ dyλ, dyρ, dyλ give a coframe for T ∗Σ̃ at the point
in question. It follows from this last expression and (122) that (123) is equivalent
to (109). �

A noteworthy special case arises when R = n−1, which is the case corresponding
to our assumption (∗). Then Σ ⊂ PT ∗N consists of points, say d of these, in each
fibre Σy lying over y ∈ N . Geometrically, each of these d points gives a hyperplane
Hα(y) in TyN , and we claim that

The involutivity of Σ̃ is equivalent to the integrability(124)
of each of the distributions Hα.

Proof. It will suffice to locally treat the case d = 1. Then Σy is given by [η(y)]
where

η(y) =
∑

i

ξi(y)dyi

is a non-zero section of T ∗N , and

Σ̃ = {λη(y) : λ ∈ R and y ∈ N}.
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On Σ̃

Θ = d(λη(y))

= dλ ∧ η(y) + λdη(y).

If the integrability condition
dη(y) = γ ∧ η

is satisfied, then
Θ = (dλ + λγ) ∧ η

has rank 2. Conversely, if we locally choose forms β1, . . . , βn−1 such that

span{η, β1, . . . , βn−1} = span{dy1, . . . , dyn},

then writing
dη = γ ∧ η + β

where β involves only the βi we have

Θ = (dλ + λγ) ∧ η + β.

From this it is apparent that Θ has rank 2 only if β = 0. �
Proof of Theorem 3.20. (under the further hypotheses (∗) and (∗∗))

We may prolong I to obtain an involutive linear Pffafian system with the same
induced characteristic variety on integral manifolds. Thus it will suffice to prove
the result in this case.

Let I ⊂ Ω1(M) be an involutive linear Pfaffian system and denote by {I} ⊂
Ω∗(M) the algebraic ideal generated by I. Its structure equations may be written
in the form

dθα ≡ 0 mod {I}

dθa ≡ πa
i ∧ ωi mod {I}

where the θα span the 1st derived system, the forms θa with 1 ≤ a ≤ s span the
remainder of I, and Ω = ω1 ∧ · · · ∧ ωn is the independence condition.

Our assumption (∗) means that, if we set πa
1 = πa and denote by π = (πa) the

first column of the tableau matrix and by πρ = (πa
ρ) the ρth column for 2 ≤ ρ ≤ n,

then the 1-forms πa are linearly independent modulo {θα, θa, ωi} and the symbol
relations are

πρ ≡ Bρπ mod J

for s× s matrices Bρ. The integrability conditions mean that we may assume this
equation holds modulo I. The assumption of involutivity is then equivalent to
commutation relations

[Bρ, Bσ] = 0.

Our assumption (∗∗) implies that we may make a linear change among the πa’s
so that the Bρ are all diagonal. We note that the πa

i may now be complex valued.
Thus we have

πa
ρ ≡ λa

ρπa mod I
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(no summation), and if we set λa
1 = 1 and

ω̂a = λa
i ωi,

then the characteristic variety is given by the s points [ω̂a] ∈ PLC. The structure
equations of I are

(125)
dθα ≡ 0 mod {I}
dθa ≡ πa ∧ ω̂a mod {I}

(no summation), and by (124) we must show that

On any integral manifold N we have(126)

dω̂a
N ≡ 0 mod ω̂a

N .

Here, we recall our notation ψN = ψ|N for any submanifold N ⊂M .
The idea is to differentiate the equations (125), and in so doing we shall make

use of a trick that was employed by Cartan. Namely, fixing N we may make a
change πa

i → πa
i − pa

ijω
j so that

(127) (πa
i )N = 0.

This does not mean that we adjoin the equations (127) to I; it means only that on
the particular integral manifold N we may assume that (127) holds.

We now write out the second equation in (125) as

dθa = πa ∧ ω̂a + ϕa
β ∧ θβ + ϕa

b ∧ θb.

Exterior differentiation and use of (125) gives for each fixed a

(128) πa ∧ dω̂a + ϕa
b ∧ πb ∧ ω̂b ≡ 0 mod {I, ω̂a}.

In any case we have expansions of the form

(129)
ϕa

b ≡ F a
bcπ

c + F a
biω

i mod I

dω̂a ≡ 1
2
Ca

ijω
i ∧ ωj + Ba

biπ
b ∧ ωi +

1
2
Aa

bcπ
b ∧ πc mod {I}.

Using the trick (127) we must show that the Ca
ij = −Ca

ji satisfy suitable conditions.
The ω-quadratic terms in (128) give (no summation on a)

1
2
πa ∧Ca

ijω
i ∧ ωj + F a

biω
i ∧ πb ∧ ω̂b ≡ 0 mod {I, ω̂a}.

For each fixed b �= a this implies that

F a
biω

i ∧ πb ∧ ω̂b ≡ 0 mod {I, ω̂a},
and the remaining equation becomes (no summation on a)

1
2
πa ∧ Ca

ijω
i ∧ ωj ≡ 0 mod {I, ω̂a}.

This gives
1
2
Ca

ijω
i ∧ ωj ≡ 0 mod {I, ω̂a}

which when plugged into (129) becomes

dω̂a ≡ 0 mod {I, ω̂a, π1, . . . , πs}.
Using (127) this implies our desired result (126). �
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CHAPTER VI

PROLONGATION THEORY

As has been seen in earlier chapters, it often happens that a given differential
system with independence condition fails to be involutive. The process of prolonga-
tion is designed to remedy this situation and will be discussed in this chapter. At
the P.D.E. level, the process of prolongation is nothing more than introducing the
partial derivatives of the unknown functions as new variables and then adjoining
new P.D.E. to the original P.D.E. system which ensure that the new variables are,
in fact, the partial derivatives of the original unknown functions. The objective
in doing this is that it may happen that the new system of P.D.E. is involutive
even though the original system is not. (For an explicit example of this, see Ex-
amples 1.1 and 1.2 in Section 1 below.) Geometrically, for an exterior differential
system, prolongation is essentially the process of replacing the original exterior dif-
ferential system I ⊂ Ω∗(M) by the canonical Pfaffian system with independence
condition (I(1), Ω) defined on the space Vn(I) of n-dimensional integral elements of
I. This is made precise in Section 1 under the assumption that the space Vn(I) is
sufficiently “well-behaved”. More precisely, we assume that Vn(I) has a stratifica-
tion into smooth submanifolds of Gn(TM), an assumption which is always satisfied
in practice or when I is real analytic. The remainder of Section 1 is devoted to three
examples which illustrate several phenomena which may arise during the process
of prolongation.

In Section 2, we investigate the effect that prolongation has on a component Z
of Vn(I) which consists of ordinary integral elements. We prove the expected result
that the prolongation (I(1), Ω) is involutive on Z. Moreover, (see Theorem 2.1) we
show that the Cartan characters of (I(1), Ω) on Z can be computed by the expected
formula from the Cartan characters of Z as a component of Vn(I). This result is
to be found in Cartan’s work in the case that I is a Pfaffian system in linear form.
The more general case (which does not follow from the Pfaffian system case) is
due to Matsushima [1953]. For the (simpler) proof in the Pfaffian system case, the
reader may want to compare the discussion at the end of Chapter VIII, Section 2,
where Cartan’s original argument (albeit in more modern language) is given.

There remains the question of the effect of prolongation on a non-involutive
exterior differential system. It was a conjecture of Cartan (based on his having
computed a large number of examples) that, for any real analytic differential system
I, a finite number of iterations of the process of prolongation applied to I would
lead either to an involutive differential system or else to a system with no integral
elements (and hence, no integral manifolds). Although Cartan made attempts to
prove this important result (for example, see Cartan [1946]), he was never able to
do so. It was Kuranishi [1957] who first provided a proof of Cartan’s conjecture
under certain technical hypotheses on I, which, in practice, were always fulfilled.
Since then, various improvements in the technical hypotheses have been made, (cf.
Goldschmidt [1968a, 1968b] and Theorem 1.14, Chapter X), although the general
result remains open. Since the technical hypotheses are difficult to check without
computing the successive prolongations up to a certain order, the general Cartan–
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Kuranishi prolongation theorem has so far been of more theoretical importance
than practical importance. On the other hand, the fully linear theory is better
behaved and the reader should consult Chapter X for that case. In any case, the
validity of the theorem (even with the technical hypotheses) serves, in practice, as
motivation for the computation of the prolongations.

In the last two sections of this chapter, we discuss (a version of) the Cartan–
Kuranishi prolongation theorem. In Section 3, we introduce the important notion
of a prolongation sequence, which slightly generalizes the case of a sequence of
prolongations for which the space of integral elements at each stage forms a smooth
submanifold of the appropriate Grassmann bundle for which the projection to the
appropriate base manifold is a submersion. In the terminology of Chapter IV, this
corresponds to the case of a sequence of prolongations for which the “torsion” is
always “absorbable”. We prove that, in this case, after a finite number of steps, the
remaining differential systems in the sequence are all involutive (see Theorem 3.2).
The crucial step is the reduction of the problem to a commutative algebra statement
which is related to the Hilbert syzygy theorem (an important step in all of the known
proofs of the Cartan–Kuranishi theorem). This commutative algebra statement is
then proved in Chapter VIII.

Finally, in Section 4, we relate Theorem 3.2 to the “classical” version of the
Cartan–Kuranishi Prolongation Theorem, namely the case where the torsion is
always absorbable. We then enter into a discussion of the general case and point
out some of the difficulties and what is expected to be the general result. The
upshot of our discussion is that, when dealing with a non-involutive differential
system, the process of prolongation is an essential step in the study of the integral
manifolds. Moreover, in practice, in the analytic category, the process satisfactorily
answers the existence question for integrals of an exterior differential system.

§1. The Notion of Prolongation.

We begin by recalling some relevant constructions from earlier sections. Let
M be a smooth manifold of dimension m and let n ≤ m be an integer. We let
π : Gn(TM)→M denote the Grassmann bundle whose fiber at x ∈M consists of
the space of n-planes E ⊂ TxM . Every smooth immersion f : Nn → M induces
a canonical smooth map f1 : Nn → Gn(TM) by the formula f1(p) = f∗(TpN) ⊂
Tf(p)M . This f1 is clearly a lifting of f . The dimension of Gn(TM) is m+n(m−n)
and it carries a canonical Pfaffian system I of rank m− n which has the property
that for every immersion f : Nn → M the induced lifting f1 : Nn → Gn(TM) is
a integral manifold of the exterior differential system I generated by I. Moreover,
a smooth map ϕ : Nn → Gn(TM) is of the form ϕ = f1 for some immersion
f : Nn →M if and only if π ◦ϕ : Nn →M is an immersion and ϕ is an integral of
the system I. In this case, it then follows that ϕ = (π ◦ϕ)1. Alternatively, we note
that there is a canonical rank n independence condition Ω on Gn(TM) with the
property that the integrals ϕ : Nn → Gn(TM) of (I, Ω) are precisely the canonical
lifts of immersions f : Nn →M . For a more explicit description of this system, we
refer the reader to Chapter IV.

Let S ⊂ Gn(TM) be a subset. We say that an immersion f : Nn → M is an
S-immersion if f1(N) ⊂ S. In most cases of interest, S will be a submanifold, so
let us assume this for the moment. It is clear that a map ϕ : Nn → S will be the
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canonical lift of an S-immersion if and only if it is also an integral of the system
(I, Ω). Thus, the study of S-immersions is equivalent to the study of the integrals
of the system (I|S , Ω|S) on S.

A special case will be of great importance. If I ⊂ Ω∗(M) is a closed differential
ideal and S = Vn(I), then the system (I|S, Ω|S) is what we would like to call the
(first) prolongation of I. The difficulty with this as a definition is that the space
Vn(I) often fails to be a smooth manifold. In practice, however, we can usually
write

(1) Vn(I) =
⋃

β∈B

Sβ

where {Sβ | β ∈ B} is a stratification of Vn(I0) into irreducible smooth components.
(This is always possible when I is real analytic.) Then we may consider the exterior
differential system

(2) (I(1), Ω(1)) =
⋃

β∈B

(I|Sβ , Ω|Sβ).

defined on the disjoint union of the strata Sβ as the (first) prolongation of I. Note
that, on each component Sβ, the prolongation of I is always a Pfaffian system with
independence condition.

For a Pfaffian system with independence condition (I, Ω) the first prolongation is
defined to consist of the canonical system with independence condition on Vn(I, Ω)
restricted to the components of Vn(I, Ω).

In practice, we are usually interested in the integrals of I (or (I, Ω)) which satisfy
some additional conditions. This often has the effect of restricting our attention to
a particular smooth stratum in Vn(I, Ω) anyway.

Before going on to the general theory of prolongation, we will discuss several
examples. These examples will be used to motivate the development of the theory
in the later sections of this chapter.

Example 1.1. Consider the differential system which describes the simultaneous
solutions of the pair of differential equations

(3)
∂2u

∂x2
− ∂2u

∂y2
=

∂2u

∂x2
− ∂2u

∂z2
= 0.

These equations describe a submanifold M of J2(R3, R). With the usual coordi-
nates (xi, u, pi, pij = pji) on J2(R3, R), M is given by the equations p22 = p33 = p11.
Comparing this system with the example in Chapter IV about pairs of second order
equations, we note that the symbol quadrics are spanned by {(ξ1)2 − (ξ2)2, (ξ1)2 −
(ξ3)2} and, since these have no common divisor, the system (3) of P.D.E. is not
involutive.

The differential system I is the restriction of the contact system on J2(R3, R)
to M and thus is generated by the Pfaffian system I spanned by the four 1-forms

(4)

ϑ = du− p1dx1 − p2dx2 − p3dx3

ϑ1 = dp1 − p11dx1 − p12dx2 − p13dx3

ϑ2 = dp2 − p12dx1 − p11dx2 − p23dx3

ϑ3 = dp3 − p13dx1 − p23dx2 − p11dx3.
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The independence condition is given by Ω = dx1 ∧ dx2 ∧ dx3. Setting πij = dpij

and ωi = dxi, the structure equations become

(5) d

⎡
⎢⎣

ϑ
ϑ1

ϑ2

ϑ3

⎤
⎥⎦ ≡ −

⎡
⎢⎣

0 0 0
π11 π12 π13

π12 π11 π23

π13 π23 π11

⎤
⎥⎦ ∧

⎡
⎣ω1

ω2

ω3

⎤
⎦ mod I.

It is straightforward to compute that s′0 = 4, s′1 = 3, s′2 = 1, and s′3 = 0. By
Cartan’s Test, the system will be involutive if the integral elements of (I, Ω) at
each point of M form an (affine) space of dimension 5 = s′1 + 2s′2 + 3s′3. However,
calculation yields that the integral elements at each point of M are described by 4
parameters. Explicitly, for any four real numbers r1, r2, r3, r4, the 3-plane based at
any point of M which is annihilated by the 1-forms ϑ, ϑ1, ϑ2, ϑ3 and the 1-forms

(6)

⎡
⎢⎣

ϑ4

ϑ5

ϑ6

ϑ7

⎤
⎥⎦ =

⎡
⎢⎣

π11

π12

π13

π23

⎤
⎥⎦−

⎡
⎢⎣

r1 r2 r3

r2 r1 r4

r3 r4 r1

r4 r3 r2

⎤
⎥⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦

is an integral element of (I, Ω) and every such integral element is of this form.
Thus, V3(I, Ω) = M ×R4 and I(1) is generated on M (1) = M ×R4 by the eight

1-forms {ϑ, ϑ1, ϑ2, . . . , ϑ7}. The structure equations of I(1) are

(7)

dϑ ≡ dϑ1 ≡ dϑ2 ≡ dϑ3 ≡ 0 mod I(1)

d

⎡
⎢⎣

ϑ4

ϑ5

ϑ6

ϑ7

⎤
⎥⎦ = −

⎡
⎢⎣

π1 π2 π3

π2 π1 π4

π3 π4 π1

π4 π3 π2

⎤
⎥⎦ ∧

⎡
⎣ω1

ω2

ω3

⎤
⎦ mod I(1).

where we have set πi = dri.
The sequence of reduced Cartan characters of I(1) is easily computed to be

(s′0, s
′
1, s

′
2, s

′
3) = (8, 4, 0, 0). Moreover, the space of integral elements of (I(1), Ω) at

each point of M (1) can be seen to be parametrized by 4 (= s′1+2s′2+3s′3) parameters
t1, t2, t3, t4 in such a way that the annihilator of the corresponding integral element
at any point of M (1) is spanned by the eight 1-forms {ϑ, ϑ1, ϑ2, . . . , ϑ7} together
with the four 1-forms

(8)

⎡
⎢⎣

ϑ8

ϑ9

ϑ10

ϑ11

⎤
⎥⎦ =

⎡
⎢⎣

π1

π2

π3

π4

⎤
⎥⎦−

⎡
⎢⎣

t1 t2 t3
t2 t1 t4
t3 t4 t1
t4 t3 t2

⎤
⎥⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦ .

It then follows, by Cartan’s Test, that the system (I(1), Ω) is involutive on M (1)

with Cartan character sequence (s0, s1, s2, s3) = (8, 4, 0, 0) even though (I, Ω) is
not involutive on M . Since the integrals of (I(1), Ω) on M (1) and (I, Ω) on M are
in one-to-one correspondence, we see that we may actually study the integrals of
(I, Ω) by applying the Cartan–Kähler theorem to (I(1), Ω).

The fact that s1 = 4 is the last non-zero Cartan character of I(1) indicates
that the “general” integral manifold of (I(1), Ω) should depend on four functions



206 VI. Prolongation Theory

of one variable. Note also that the characteristic variety in each integral element
E of (I(1), Ω) consists of the four points [dx1 ± dx2 ± dx3] in PE∗. Now, in this
particular example, it is possible to explicitly write down the general solution of
(3). This general solution takes the form

(9)
u(x1, x2, x3) = f++(x1 + x2 + x3) + f+−(x1 + x2 − x3)

+ f−+(x1 − x2 + x3) + f−−(x1 − x2 − x3)

where the functions f±± are four arbitrary functions of 1 variable.
However, it is not usually possible to write down the “general” solution of a

P.D.E. so explicitly. For example, the reader might try analyzing the system

(10)
∂2u

∂x2
+ λ1u =

∂2u

∂y2
+ λ2u =

∂2u

∂z2
+ λ3u

where the λi are arbitrary constants. Again, it turns out that the first prolongation
on M (1) is involutive even though the natural system on
M ⊂ J2(R3, R) is not.

The next example illustrates the fact that the prolongation process may need to
be iterated several times before the resulting system becomes involutive.

Example 1.2. Consider the pair of equations for u as a function of x and y

(11)
∂nu

∂xn
=

∂nu

∂yn
= 0.

In a departure from our usual notation for coordinates on Jn(R2, R), let us use
pi,j to represent ∂i+ju/∂xi∂yj . Thus, p0,0 = u and the equations (11) correspond
to the submanifold M ⊂ Jn(R2, R) given by the equations p0,n = pn,0 = 0. The
contact Pfaffian system on Jn(R2, R) is then generated by the 1-forms {ϑi,j | i+j <
n} where

(12) ϑi,j = dpi,j − pi+1,jdx− pi,j+1dy.

We let I denote the restriction of this Pfaffian system to M . The structure equations
of I then can be written as

(13a) dϑi,j ≡ 0 for 0 ≤ i + j < n− 1

(13b)

⎛
⎜⎜⎝

dϑn−1,0

dϑn−2,1

...
dϑ0,n−1

⎞
⎟⎟⎠ ≡ −

⎛
⎜⎜⎝

0 πn−1,1

πn−1,1 πn−2,2

...
...

π1,n−1 0

⎞
⎟⎟⎠ ∧

(
dx
dy

)

where the congruences are taken mod I and πk,l = dpk,l for k + l = n.

It is straightforward to compute that s′1 = n − 1 and s′2 = 0. Thus, in order
for (I, Ω) to be involutive (where Ω = dx ∧ dy), it would be necessary for there
to exist an (n− 1)-parameter family of integral elements of (I, Ω) at each point of
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M . However, it is easy to see that there is only an (n − 2)-parameter family of
integral elements of (I, Ω) at each point of M . In fact, M (1) = M × Rn−2 and we
can introduce coordinates {pi,j | 2 ≤ i, j; i + j = n + 1} on the Rn−2-factor so that
the annihilator of the corresponding integral element is spanned by the 1-forms
{ϑi,j | 1 ≤ i + j ≤ n− 1} and the 1-forms

(14)

⎛
⎜⎜⎝

ϑn−1,1

ϑn−2,2

...
ϑ1,n−1

⎞
⎟⎟⎠ ≡

⎛
⎜⎜⎝

πn−1,1

πn−2,2

...
π1,n−1

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 pn−1,2

pn−1,2 pn−2,3

...
...

p2,n−1 0

⎞
⎟⎟⎠
(

dx
dy

)
.

Note that M (1) can be regarded as the submanifold of Jn+1(R2, R) defined by
the equations

(15) p0,n = pn,0 = p0,n+1 = p1,n = pn,1 = pn+1,0 = 0.

Under this identification, I(1) becomes the restriction to M (1) of the contact Pfaffian
system on Jn+1(R2, R).

The structure equations of I(1) are easily seen to be

(16a) dϑi,j ≡ 0 for 0 ≤ i + j < n

(16b)

⎛
⎜⎜⎝

dϑn−1,1

dϑn−2,2

...
dϑ1,n−1

⎞
⎟⎟⎠ ≡ −

⎛
⎜⎜⎝

0 πn−1,2

πn−1,2 πn−2,3

...
...

π2,n−1 0

⎞
⎟⎟⎠ ∧

(
dx
dy

)

where the congruences are taken mod I(1) and πk,l = dpk,l for k + l = n + 1.
We compute that s′1 = n − 2 and s′2 = 0, but that, for n ≥ 3, there is only an

(n − 3)-parameter family of integral elements of (I(1), Ω) at each point of M (1).
Thus, for n ≥ 3, (I(1), Ω) is not involutive.

It is easy to continue this process. If we inductively define (I(k+1), Ω) = ((I(k))(1), Ω),
we find that, for k ≤ n − 1, the system I(k) is diffeomorphic to the restriction of
the contact Pfaffian system on Jn+k(R2, R) to a submanifold M (k) defined by the
equations

(17) pi,j = 0 whenever n ≤ i + j ≤ n + k and max{i, j} ≥ k.

For this system, s′1 = n−k−1 and s′2 = 0. However, when k ≤ n−2, the dimension
of the space of integral elements of (I(k), Ω) at any point of M (k) is only n− k− 2.
Thus, the system (I(k), Ω) is not involutive on M (k) for k ≤ n− 2.

However, it is also easy to see that the Pfaffian system I(n−1) on M (n−1) is a
Frobenius system and hence the system (I(n−1), Ω) is involutive on M (n−1).

Since the rank of I(n−1) is n2, it follows that there is an n2-parameter family
of local solutions of the system (11). This was expected since the solutions of (11)
are clearly the polynomials in x and y whose x-degree and y-degree are less than
or equal to n− 1.
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In the next example, we treat a problem involving the geometry of Riemannian
submersions in which the corresponding Vn(I) has several components.

Example 1.3 (Riemannian submersions). Let (N3, dx2) be a Riemannian manifold
with constant sectional curvature K. Our problem is to classify the Riemannian
submersions f : (N3, dx2) → (Σ2, dσ2) where (Σ2, dσ2) is a Riemannian surface.
We do not specify the metric on Σ2 in advance.

Given such an f , we may locally choose an orthonormal frame field e = (e1, e2, e3)
on N so that e3 is tangent to the fibers of f . Then the hypothesis that f be a
Riemannian submersion is equivalent to the condition that f∗(dσ2) = (η1)2 +(η2)2

where ηηη = (η1, η2, η3) is the coframing dual to the frame field e. It follows that
there exists a “connection form” γ in the domain of e so that dη1 = γ ∧ η2 and
dη2 = −γ ∧ η1.

Conversely, if ηηη = (η1, η2, η3) is any orthonormal coframing on an open set U ⊂ N
such that there exists a 1-form γ satisfying dη1 = γ ∧ η2 and dη2 = −γ ∧ η1, then
it is easy to see that (η1)2 + (η2)2 is a well defined quadratic form on Σ2 = U/F
where F is the foliation of U by the integral curves of the vector field e3 on U , i.e.,
the integral curves of the system η1 = η2 = 0 on U . It follows that the projection
f : U → U/F is a Riemannian submersion.

For any local orthonormal coframing ηηη = (η1, η2, η3) on U ⊂ N , there exist
unique 1-forms (known as the Levi–Civita connection forms) ηij = −ηji which
satisfy the “symmetry” condition dηi = −ηij ∧ ηj. The following equations for γ

(18)
−η12 ∧ η2 − η13 ∧ η3 = dη1 = γ ∧ η2

−η21 ∧ η1 − η23 ∧ η3 = dη2 = −γ ∧ η1

are satisfiable only if there exist functions a, b, c on U so that

(19)
η13 = aη2 + bη3

η23 = −aη1 + cη3.

Conversely, the existence of such functions is sufficient to yield a solution, namely
γ = η21 + aη3, to (18).

Thus the search for the desired Riemannian submersions f is locally equivalent to
the search for orthonormal coframings ηηη which satisfy certain first order differential
equations. Actually, the coframing ηηη carries slightly more information since two
coframings determine the same Riemannian submersion iff their corresponding e3-
foliations are the same. We shall see what becomes of this ambiguity in what
follows.

Using the above discussion as our guide, we may now set up a differential system
to find the desired framings as follows. Let F → N3 denote the orthonormal frame
bundle of (N3, dx2) and let {ωi, ωij = −ωji} denote the canonical and connection
1-forms on F . They satisfy the first and second structure equations of Cartan:

(20)
dωi = −ωij ∧ ωj

dωij = −ωik ∧ ωkj + Kωi ∧ ωj.

(Here, we use the summation convention. Recall that ds2 has constant sectional
curvature K.)



§1. The Notion of Prolongation 209

A (local) framing e is a (local) section e : U → F for an open set U ⊂ N . The
forms {ωi, ωij = −ωji} have the property that e∗(ωi) = ηi and e∗(ωij) = ηij where
ηηη = (η1, η2, η3) is the local coframing which is dual to e. As we have already said,
we are seeking (local) framings e for which there exists functions a, b, c so that (19)
holds. This motivates us to define M = F ×R3 (where we use a, b, and c as linear
coordinates on the R3-factor) and let I be the Pfaffian system generated by the
1-forms

(21)
ϑ1 = ω13 − aω2 − bω3

ϑ2 = ω23 + aω1 − cω3.

It is clear that every framing e which satisfies (19) gives rise to a unique integral
manifold Ne of I in M on which the form Ω = ω1 ∧ ω2 ∧ ω3 does not vanish.
Conversely, if I is the differential system generated by I on M then every integral
of (I, Ω) in M is locally of the form Ne for some framing e which satisfies (19).

It is easy to compute that the structure equations of I are given by

(22)
dϑ1 ≡ −π3 ∧ ω2 − π4 ∧ ω3

dϑ2 ≡ π3 ∧ ω1 − π5 ∧ ω3

mod I

where

(23)
π3 = da −2a(bω1 + cω2)
π4 = db + cω12 + (a2 −K)ω1 −b(bω1 + cω2)
π5 = dc− bω12 + (a2 −K)ω2 −c(bω1 + cω2).

Notice that the structure equations (22) imply that I has a one-dimensional
Cauchy characteristic system spanned by the vector field X on M which satisfies
ω12(X) = 1 and α(X) = 0 for α = ω1, ω2, ω3, ϑ1, ϑ2, π3, π4, or π5. It is easy to
see that the flow of this Cauchy vector field generates an S1-action on M which
corresponds to the rotation of a frame e which fixes the e3-component. We could
get rid of this S1-action by passing to the quotient (M ×R3)/S1 and working with
the corresponding Pfaffian system there, but this causes computational difficulties
since the quotient manifold has no natural coframing. Instead, our approach will
be to augment the independence condition to Ω+ = ω1 ∧ω2 ∧ω3 ∧ω12 and look for
integrals of the system (I, Ω+). This has the added advantage that the integrals of
this system correspond essentially uniquely to the local Riemannian submersions,
as the reader can easily see.

Now by the structure equations (22), it is clear that the reduced Cartan character
sequence of (I, Ω+) is (s′0, s

′
1, s

′
2, s

′
3, s

′
4) = (2, 2, 1, 0, 0). In order to have involutivity,

Cartan’s Test thus requires that there be a 4 (= s′1 + 2s′2 + 3s′3 + 4s′4) parameter
family of integral elements of (I, Ω+) at every point of M . However, it is easy to
see that the integral elements of (I, Ω+) at a point of M are parametrized by only
3 parameters. Namely, for any real numbers p, q, r, the 4-plane at each point of M
which is annihilated by the 1-forms ϑ1, ϑ2 and the 1-forms

(24)

⎡
⎣ϑ3

ϑ4

ϑ5

⎤
⎦ =

⎡
⎣ π3

π4

π5

⎤
⎦−

⎡
⎣ 0 0 p

0 p q
−p 0 r

⎤
⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦
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is an integral element of (I, Ω+) and every such integral element is of this form.
Thus, V4(I, Ω+) = M (1) is diffeomorphic to M×R3 (where we use p, q, r as coor-

dinates on the R3-factor) and, on M (1), I(1) is spanned by the 1-forms ϑ1, ϑ2, ϑ3, ϑ4,
and ϑ5.

The structure equations of I(1) can now be calculated to be

(25a) dϑ1 ≡ dϑ2 ≡ 0

(25b)

⎡
⎣dϑ3

dϑ4

dϑ5

⎤
⎦ ≡ −

⎡
⎣ 0 0 π6

0 π6 π7

−π6 0 π8

⎤
⎦ ∧

⎡
⎣ω1

ω2

ω3

⎤
⎦ +

⎡
⎣ 2ap ω1 ∧ ω2

0
0

⎤
⎦

where all of the congruences are taken mod I(1) and π6, π7, and π8 restrict to each
fiber of M (1) →M to become dp, dq, and dr respectively.

Note that (25b) implies that the locus V4(I(1), Ω+) ⊂ V4(M (1)) lies entirely over
the locus in M (1) defined by the equation ap = 0. In fact, if we let A ⊂ M (1)

denote the submanifold defined by the equation a = 0 and let P ⊂M (1) denote the
submanifold defined by the equation p = 0, then V4(I(1), Ω+) can be written as the
(non-disjoint) union A(1)∪P (1) where A(1) ∼= A×R3 (respectively, P (1) ∼= P ×R3)
is the submanifold of V4(M (1)) consisting of those elements of V4(I(1), Ω+) whose
base point lies in A (resp., P ) and (using coordinates t, u, v on R3) such that the
corresponding integral element is annihilated by the 1-forms ϑ1, ϑ2, ϑ3, ϑ4, ϑ5 and
the 1-forms

(26)

⎡
⎣ϑ6

ϑ7

ϑ8

⎤
⎦ =

⎡
⎣ π6

π7

π8

⎤
⎦−

⎡
⎣ 0 0 t

0 t u
−t 0 v

⎤
⎦
⎡
⎣ω1

ω2

ω3

⎤
⎦ .

Thus, V4(I(1), Ω+) is singular, being the union of two smooth manifolds of dimen-
sion 14 in G4(M (1)) which intersect transversely along a submanifold diffeomorphic
to (A∩P )×R3 of dimension 13. According to the stratification procedure outlined
at the beginning of this section, we should regard each of the strata A(1) ∩ P (1),
A(1)\(A(1)∩P (1)), and P (1)\(A(1) ∩P (1)) as separate manifolds on which to define
the systems I(2).

Let us begin with the stratum (A\(A∩P ))×R3 = A(1)\(A(1)∩P (1)) in M (2). On
A\(A ∩ P ) ⊂M (1), we have a a = 0 and p �= 0. Looking back at the formulas (23)
and (24), we see that, restricted to A\(A ∩ P ), we have ϑ3 = −pω3. In particular,
ω3 ≡ 0 mod I(1), so there cannot be any integral elements of (I(2), Ω+) at points of
A(1)\(A(1) ∩ P (1)) ⊂M (2). Thus, there are no integral manifolds of (I, Ω+) whose
canonical lifts lie in A\(A ∩ P ) ⊂M (1). It follows that we may ignore the stratum
A(1)\(A(1) ∩ P (1)) in M (2) for the remainder of the discussion.

The remaining two strata fit together to be the smooth submanifold P (1) ⊂
V4(I(1), Ω+). For simplicity, we shall therefore let (I(2), Ω+) denote the restriction
of the canonical differential system on V4(M (1)) to P (1) ⊂M (2).

Since p = 0 on P (1), a calculation gives that, on P (1)

π6 = 2a((ac− q)ω1 − (ab + r)ω2)
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and hence that
ϑ6 = 2a(ac− q)ω1 − 2a(ab + r)ω2 − tω3.

Thus, away from the locus Z defined by the equations

2a(ac− q) = 2a(ab + r) = t = 0,

we see that no integral element of I(2) can satisfy the independence condition. This
locus Z is the union of two smooth submanifolds: Z1 which is the locus defined by
the equations p = t = a = 0 and Z2 which is the locus defined by the equations
p = t = q − ac = r + ab = 0.

First, consider the locus Z1
∼= (A ∩ P )×R2 where we use u, v as coordinates on

the R2-factor. If we restrict the system I(1) to A∩P ⊂M (1), then we may compute
that ϑ3 = π6 = 0. The structure equations for I(1) restricted to A∩P may now be
computed to be

(27)

dϑ1 ≡ dϑ2 ≡ 0

dϑ4 ≡ −π7 ∧ ω3 mod I(1)

dϑ5 ≡ −π8 ∧ ω3.

The reduced Cartan character sequence for (I(1), Ω+) restricted to A ∩ P is then
clearly (s′0 , s′1, s′2, s′3, s′4) = (4, 2, 0, 0, 0). Moreover, it is clear that there does exist
a 2-parameter family of integral elements of (I(1), Ω+) at each point of A ∩ P . In
fact, Z1 = V4(I(1), Ω+) when the underlying manifold is A ∩ P . Thus, by Cartan’s
Test, (I(1), Ω+) is involutive on A ∩ P . From this it is easy to see that (I(2), Ω+)
is involutive on Z1. (A direct proof is easy in this case, but see the next section.)
It is interesting to note that if we let Z0 ⊂ M denote the locus defined by the
equation a = 0, then (I, Ω+) is actually involutive (with Cartan character sequence
(s0, s1, s2, s3, s4) = (2, 2, 0, 0, 0)) when restricted to Z0. Moreover, when (I, Ω+) is
restricted to Z0, we get V4(I, Ω+) = A ∩ P .

Next, consider the locus Z2. It is straightforward to calculate that, restricted
to Z2, we have π6 = π7 = π8 = 0. It follows from (26) that there are no integral
elements of (I(2), Ω+) restricted to Z2 except along the sublocus Z3 ⊂ Z2 defined
by the additional conditions u = v = 0. When we restrict to Z3, then the forms
ϑ6, ϑ7, and ϑ8 all vanish and the structure equations (26) imply that the remaining
1-forms ϑ1, ϑ2, ϑ3, ϑ4, and ϑ5 in I(2) form a Frobenius system. Note that Z3 is
actually diffeomorphic to M via its natural projection to M .

Thus, by prolongation, we arrive at the following classification of the framings
which correspond to Riemannian submersions:

There are two types of such framings.
The first type consists of the integrals of the involutive system (I, Ω+) on F×R2

where I is generated by the rank 2 Pfaffian system I which is generated by the two
1-forms

(28)
ϑ1 = ω13 − bω3

ϑ2 = ω23 − cω3.

The Cartan character sequence of (I, Ω+) is (s0, s1, s2, s3, s4) = (2, 2, 0, 0, 0). Thus,
the general solutions depend on two functions of one variable.
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In fact, it is quite easy to describe these solutions geometrically using the Cauchy
characteristic foliation of the system I defined by (28). The reader may want to
verify the following description of the corresponding Riemannian submersions: Note
that the totally geodesic surfaces in N3 depend on 3 parameters. Let Γ3 denote this
space. Any curve γ in Γ which is in “general position” represents a 1-parameter
family of totally geodesic surfaces in N3 which foliates an open set U ⊂ N . Let Fγ

denote this foliation on U . Let Lγ denote the orthogonal foliation of U by curves.
Then the projection U → U/Lγ is a Riemannian submersion where the quotient
metric is such that each of the leaves of Fγ projects isometrically onto U/Lγ . Of
course, in this local description, we are ignoring all the difficulties caused by the
(possible) non-Hausdorf nature of the quotient.

The second type corresponds to the integrals of the Frobenius system I on F×R3

generated by the 1-forms

(29)

ϑ1 = ω13 −aω2 −bω3

ϑ2 = ω23 +aω1 −cω3

ϑ3 = da− 2a(bω1 + cω2)
ϑ4 = db + cω12 +(a2 −K)ω1 −b(bω1 + cω2) −acω3

ϑ5 = dc− bω12 +(a2 −K)ω2 −c(bω1 + cω2) +abω3.

We leave the geometric analysis of these integrals and the corresponding Rie-
mannian submersions as an interesting exercise for the reader.

§2. Ordinary Prolongation.

In this section, we examine the effect that prolongation has when applied to
a component Z ⊂ Vn(I) consisting of ordinary integral elements of a differential
system I. For convenience, we shall assume that I is generated in positive degree.
The following result is due to Matsushima [1953].

Theorem 2.1. Let I ⊂ Ω∗(M) be a differential ideal which is generated in positive
degree (i.e., I contains no non-zero functions). Let Z ⊂ Vn(I) be a connected
component of the space of ordinary integral elements of I. Let (s0, . . . , sn) be the
sequence of Cartan characters of Z. Let (I(1), Ω) be the restriction to Z of the
canonical Pfaffian differential system with independence condition on Gn(TM).
Then (I(1), Ω) is linear and is involutive on Z. Moreover, the sequence of Cartan
characters of Vn(I(1), Ω) is given by s

(1)
p = sp + sp+1 + · · ·+ sn for all 0 ≤ p ≤ n.

Proof. Without loss of generality, we may assume that I contains all forms on M
of degree n + 1 or greater. (If not, enlarging I by adjoining all such forms will not
affect our hypotheses on Z nor will it affect the sequence of Cartan characters of
Z.) Thus, I has no integral elements of dimension larger than n and H(E) = E
for E ∈ Z.

Let s = dimM − n. To avoid trivialities, we shall assume that s is positive. As
usual, we let cp = s0 + · · ·+sp for 0 ≤ p ≤ n, and set c−1 = 0 for convenience. Note
that cn = s0 + · · ·+sn = s is the rank of the polar equations of any integral element
E ∈ Z. Recall from Chapter III that Z is a smooth submanifold of Gn(TM) of
codimension c0 + c1 + · · ·+ cn−1 = ns0 + (n− 1)s1 + · · ·+ sn−1 = ns− (s1 + 2s2 +
· · ·+ nsn).
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The conclusions of the theorem are local statements about the system I(1), so
it suffices to examine the differential ideal I(1) in a neighborhood of an arbitrary
element of Z. Let E be an element of Z and let z ∈ M be its base point. Then
there exists a local coordinate system x1, . . . , xn, y1, . . . , ys centered at z on a z-
neighborhood U ⊂ M so that E is spanned by the vectors {∂/∂xi | 1 ≤ i ≤ n} at
z. Moreover, we may assume that, for all p ≤ n, the subspace Ep ⊂ E spanned by
the vectors {∂/∂xi | 1 ≤ i ≤ p} at z is a regular p-dimensional element of I and
that the polar space H(Ep) is spanned by the vectors {∂/∂xi | 1 ≤ i ≤ n} at z
together with the vectors {∂/∂ya | a > cp} at z. In particular, the polar equations
E(Ep) are spanned by the 1-forms {dya | a ≤ cp} at z.

Let Ω = dx1 ∧ dx2 ∧ · · ·∧ dxn. As is our usual convention, let Gn(TU, Ω) denote
the space of n-planes in Gn(TU) on which Ω restricts to be non-zero. We define
the functions pa

i on Gn(TU, Ω) as usual so that Ẽ ∈ Gn(TU, Ω) is annihilated by
the 1-forms dya − pa

i (Ẽ)dxi. The functions (x, y, p) then form a coordinate system
on Gn(TU, Ω) centered at E. Moreover, the 1-forms ϑa = dya − pa

i dxi span the
canonical Pfaffian system on Gn(TU, Ω) ⊂ Gn(TM). Also, in accordance with our
earlier notation, for each Ẽ ∈ Gn(TU, Ω) which is based at w ∈ U , we let

(30) Xi(Ẽ) = (∂/∂xi + pa
i (Ẽ)∂/∂ya)|w.

denote the basis of Ẽ dual to the 1-forms dx1, dx2, . . . , dxn.
Let π : Gn(TU, Ω) → U be the base-point projection. Then for every exterior

form ϕ on U which is of degree p + 1 ≤ n, the corresponding (p + 1)-form π∗(ϕ)
has a unique expansion on Gn(TU, Ω) of the form

(31) π∗(ϕ) = 1/(p + 1)!
∑

FKdxK + 1/p!
∑

fbJϑb ∧ dxJ + Q.

In (31), the summation in the first term is over all (skew-symmetric) multi-indices
K from the range 1, . . . , n and of degree p + 1, the summation in the second term
is over (skew-symmetric) multi-indices J from the same range but of degree p and
over all b in the range 1, . . . , s, while the last term Q is a form of degree p+1 which
is at least quadratic in the terms {ϑb | 1 ≤ b ≤ s}.

It is elementary that the functions FK on Gn(TU, Ω) satisfy

(32) FK(Ẽ) = ϕ(Xk0(Ẽ), Xk1(Ẽ), . . . , Xkp(Ẽ))

for each multi-index K = (k0, k1, . . . , kp). To get corresponding formulae for the
functions fbJ , we compute the exterior derivative of both sides of (31) and reduce
modulo the ideal generated by the contact forms {ϑb}. This gives the formula

(33) dFK ≡ 1/p!
∑

b,iJ=K

fbJdpb
i mod {ϑ, dx}.

Now, recall, from Chapter III, our convention which defined the level, λ(a), of
an integer a in the range 1 ≤ a ≤ s to be the integer k so that ck−1 < a ≤ ck. We
let P = {(i, a) | 1 ≤ i ≤ λ(a)} denote the set of principal pairs of indices. Since
there are sk integers a in the range 1, . . . , s satisfying λ(a) = k, it follows that P
contains s1 +2s2 + · · ·+nsn pairs of indices. Any pair (j, a) satisfying λ(a) < j ≤ n
will be referred to as non-principal.
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Let ϕ1, . . . , ϕs be a polar sequence (see Chapter III) for the integral flag (0) ⊂
E1 ⊂ E2 ⊂ · · · ⊂ En = E. Thus, ϕa is a form in I of degree λ(a) + 1. By choosing
our polar sequence appropriately, we may even suppose that, for all a with λ(a) = 0,
we have ϕa|z = dya while, for all a with λ(a) > 0, we have

(34) ϕa(v, ∂/∂x1, . . . , ∂/∂xλ(a)) = dya(v)

for all v ∈ TzM .
Let

(35) π∗(ϕa) = 1/(p + 1)!
∑

F a
KdxK + 1/p!

∑
fa

bJϑb ∧ dxJ + Qa

be the expansion of π∗(ϕa) as in (31). Then by (32), the functions F a
K vanish

identically on Z ∩Gn(TU, Ω) for all a and all multi-indices K of degree λ(a) + 1.
It is easy to show that the relations (34) imply that fa

b12...λ(a)(E) = δa
b (Kronecker

δ) for all a and b. It then follows from (33) that, at E, for each non-principal pair
(j, a) we have

(36) dF a
j12...λ(a) ≡ dpa

j mod {ϑ, dx, {dpb
i}i≤λ(a)}.

Thus, the collection of functions F = {F a
j12...λ(a) | (j, a) non-principal} has linearly

independent differentials on a neighborhood of E in Gn(TU, Ω). Since the locus
of common zeroes of F contains Z ∩ Gn(TU, Ω) by construction and since the
codimension of Z in Gn(TU, Ω) is equal to ns−(s1 +2s2 + · · ·+nsn) = the number
of non-principal pairs, there exists an open neighborhood W of E ∈ Gn(TU, Ω) so
that the functions in F have linearly independent differentials on W and so that
the set Z ∩W is the common set of zeroes of these functions in W .

Moreover, on Z ∩W the equations F a
j12...λ(a) = 0 imply

(37)

0 = dF a
j12...λ(a) ≡ 1/p!

∑
b,iJ=j12...λ(a)

fa
bJdpb

i mod {ϑ, dx}

≡
∑

b

fa
b12...λ(a)dpb

j mod {ϑ, dx, {dpb
i}i≤λ(a)}.

Combining this with the fact that fa
b12...λ(a)(E) = δa

b , it follows that, by shrinking
W if necessary, we may suppose that the ns− (s1 + 2s2 + · · ·+ nsn) relations (37)
may be expressed in the form

(38) dpa
j ≡

∑
i≤min(λ(b),j)

Bai
jbdpb

i mod {ϑ, dx}

where (j, a) is non-principal.
In particular, on Z ∩W , for each non-principal pair (j, a), the function pa

j can
be expressed as a function of the variables x, y, and {pb

i | i ≤ min(λ(b), j)}. Thus,
the functions x, y, {pa

j | j ≤ λ(a)} form a coordinate system on Z ∩W centered at
E and the n + s + s1 + 2s2 + · · ·+ nsn 1-forms {dxi | 1 ≤ i ≤ n}, {ϑa | 1 ≤ a ≤ s},
and {dpa

i | i ≤ λ(a)} are a coframing on Z ∩W .
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Finally, we may suppose, by shrinking W if necessary, that, for any Ẽ ∈ Z ∩W ,
the integral flag (0) ⊂ Ẽ1 ⊂ Ẽ2 ⊂ · · · ⊂ Ẽn = Ẽ, defined by letting Ẽp be the span
of the vectors X1(Ẽ), . . . , Xp(Ẽ), is a regular flag.

Let I(1) be the Pfaffian system on Z ∩ W generated by the 1-forms
{ϑb | 1 ≤ b ≤ s}. Then I(1) generates the differential ideal I(1) restricted to
Z ∩W . In order to prove involutivity of (I(1), Ω), we need to compute the expres-
sions {dϑb | 1 ≤ b ≤ s} modulo I(1).

Now, on Z ∩W , we have

(39) dϑa = −dpa
i ∧ dxi.

The equations (38, 39) constitute the structure equations of the system I(1). Using
the reduced flag determined by the sequence (dx1, dx2, . . . , dxn), we see by (38)
that the reduced characters of I(1) are given for 0 ≤ p ≤ n by

(40) s̃′p = sp + sp+1 + · · ·+ sn.

Now, let π̄a
i = dpa

i for all principal pairs (i, a) and define

(41) π̄a
j =

∑
i≤min(λ(b),j)

Bai
jb π̄

b
i

for every non-principal pair (j, a). Then by (38) we have structure equations for
I(1) of the form

dϑa ≡ −π̄a
i ∧ dxi +

1
2
T a

ijdxi ∧ dxj mod I(1)(42)

π̄a
j ≡

∑
i≤min(λ(b),j)

Bai
jbπ̄

b
i mod I(1).(43)

In order to prove that the torsion of this system vanishes, we need to prove the
existence of functions La

ij on Z ∩W so that the equations

(44)
La

ij − La
ji = T a

ij

La
jk +

∑
i≤min(λ(b),j) Bai

jbL
b
ik = 0 (λ(a) < j)

hold. In order to prove that the symbol relations of I(1) are involutive with Car-
tan characters given by (40), we need to show that the space of solutions of the
homogeneous equations associated to (44) is of dimension s̃′1 + 2s̃′2 + · · ·+ ns̃′n =
s1 + 3s2 + · · ·+ 1

2
p(p + 1)sp + · · ·+ 1

2
n(n + 1)sn at each point of Z ∩W . (Note

that Cartan’s inequality already tells us that the homogeneous solution space can-
not have dimension larger than this number.) We will now prove both of these
assertions together.

Let β : Z ∩W → U be the restriction of the base-point projection π to Z ∩W .
Note that for any ϕ ∈ I, the functions FK in the expansion (35) of β∗(ϕ) must all
be zero. Thus, β∗(ϕ) ≡ 0 mod I(1) for all ϕ ∈ I. In particular, the expansion (35)
simplifies now to

(45) β∗(ϕa) = 1/p!
∑

fa
bJϑb ∧ dxJ + Qa
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where the forms Qa are of degree at least 2 in the terms {ϑb | 1 ≤ b ≤ s} and the
{fa

bJ | deg J = λ(a)} are functions defined on Z ∩W .
Note that on Z ∩W we also have

(46) 0 = dF a
K ≡ 1/p!

∑
b,iJ=K

fa
bJdpb

i mod {ϑ, dx},

which implies for all a and K that

(47) 0 =
∑

b,iJ=K

fa
bJ π̄b

i mod {ϑ, dx}.

Of course, these relations are simply linear combinations of the relations (41). In-
deed, the relations (41) are also linear combinations of these relations.

Now, since I is a differential ideal, we have dϕa ∈ I, so it follows that β∗(dϕa) ≡
0 mod I(1). Since Qa is at least quadratic in the generators of I(1), it follows that
dQa ≡ 0 mod I(1). Thus, computing the exterior derivative of (45) and reducing
mod I(1), we get the formula

(48)
∑

fa
bJdϑb ∧ dxJ ≡ 0 mod I(1).

Substituting the equation (42) into (48) and making use of the equation (47), we
get

(49)
∑

fa
bJT b

ijdxi ∧ dxj ∧ dxJ ≡ 0 mod I(1).

Now, for each Ẽ ∈ Z ∩W , let W(Ẽ) ⊂ Rs ⊗ Λ2(Rn) denote the vector space
which consists of the solutions τ = (τa

ij) of the linear equations τa
ij = −τa

ji and

(50)
∑

fa
bJ(Ẽ)τ b

ijdxi ∧ dxj ∧ dxJ = 0.

(This sum extends over all b, J (of degree λ(a)), i, and j. Of course, a is fixed.)
We claim that the dimension of W(E) is at most

D =
n∑

p=0

sp

((
n
2

)
−
(

n− p
2

))
.

To see this, note that when we set Ẽ = E, then for any triple (i, j, a) with λ(a) <

i < j, the coefficient of dxij12...λ(a) in the a’th equation of (50) is given by 2τa
ij+

(terms involving τ b
kl where min(k, l) ≤ λ(b)). It follows at once that there are at

least as many linearly independent equations in (50) as there are triples (i, j, a)
with λ(a) < i < j. This verifies our upper estimate for the dimension of W(E).

Of course, by shrinking W if necessary, we may assume that D is also an upper
bound for the dimension of W(Ẽ) for all Ẽ ∈ Z ∩W .

Now, for each Ẽ ∈ Z ∩W , let L(Ẽ) ⊂ Rs ⊗ Rn ⊗ Rn denote the vector space
which consists of the solutions l = (laij) of the linear equations

(51)
∑

b,iJ=K

fa
bJ(Ẽ)lbij = 0.
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Because of our remarks following (47) above, we know that these equations are
equivalent to the equations

(52) lajk +
∑

i≤min(λ(b),j)

Bai
jb(Ẽ)lbik = 0 (λ(a) < j).

It follows that the dimension of L(Ẽ) is n(s1 + 2s2 + · · ·+ nsn).
Finally, for each l ∈ L(Ẽ), let δ(l) ∈ Rs ⊗ Λ2(Rn) be given by the formula

(53) δ(l)a
ij = laij − laji.

It is a consequence of our definitions, that δ(L(Ẽ)) ⊂ W(Ẽ). Moreover, as we
have already noted after (44), the kernel of δ cannot have dimension greater than
s1 + 3s2 + · · ·+ 1

2
p(p + 1)sp + · · ·+ 1

2
n(n + 1)sn. It follows that the dimension of

δ(L(Ẽ)) must be at least

n∑
p=0

sp

(
np−

(
p + 1

2

))
=

n∑
p=0

sp

((
n
2

)
−
(

n− p
2

))
= D.

Since δ(L(Ẽ)) ⊂ W(Ẽ) and dimW(Ẽ) ≤ D, it follows that we must have both

(54) δ(L(Ẽ)) =W(Ẽ)

and

(55) dimker δ =
n∑

p=0

(
p + 1

2

)
sp

for all Ẽ ∈ Z ∩W . Thus, L and W are smooth vector bundles over Z ∩W and the
map δ : L → W is a smooth surjection. Since by (49), T is a smooth section of W
where T (Ẽ) = (T a

ij(Ẽ)), it follows that there exists a smooth section L = (La
ij) of

L so that T = δ(L). This completes the verification of the existence of a solution
to the equation (44) and the verification of the required dimension of the space of
solutions to the homogeneous equations (which is the rank of the bundle ker δ.)

By Cartan’s Test, it follows that (I(1), Ω) is involutive. �

§3. The Prolongation Theorem.

In this section, we prove a version of the Cartan–Kuranishi prolongation theorem.
The aim of this theorem is to reduce the problem of finding the integrals of a
differential system to that of finding the integrals of a differential system which is
in involution. While the actual theorem we prove is not quite strong enough to do
this, it suffices for the analysis of most differential systems which arise in practice.

We begin with the following fundamental definition.

Definition 3.1. Given an exterior differential ideal I ⊂ Ω∗(M) and an integer n,
a prolongation sequence for I is a sequence of manifolds {Mk | k ≥ 0} (where
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M0 = M) together with immersions ιk : Mk → Gn(TMk−1) for k > 0 with the
following properties:

(i) The map ῑk : Mk → Mk−1 is a submersion for all k > 0. Here, ῑk is the
composition Mk → Gn(TMk−1)→Mk−1.

(ii) ι1(M1) ⊂ Gn(I) and for all k ≥ 1, ιk+1(Mk+1) ⊂ Gn(I(k), Ω(k)) where
(I(k), Ω(k)) is the pull-back to Mk of the canonical differential system with inde-
pendence condition on Gn(TMk−1).

To define a prolongation sequence for a pair (I, Ω), we modify (ii) to require
that ι1(M1) ⊂ Gn(I, Ω).

Note that one particular example of a prolongation sequence when I = 0 is
to let M1 = Gn(TM), let (I(1), Ω(1)) be the canonical exterior differential system
with independence condition on Gn(TM), and then, by induction, define Mk+1 =
Gn(I(k), Ω(k)) and let (I(k+1), Ω(k+1)) be the restriction to Mk+1 of the canonical
exterior differential system with independence condition on Gn(TMk) for all k > 0.
The resulting sequence is called the tautological prolongation sequence.

We can now state our main theorem concerning prolongation sequences.

Theorem 3.2. If S = {(Mk, ιk) | k > 0} is a prolongation sequence for I over
M = M0, then there exists an integer k0 such that, for k ≥ k0, each of the
systems (I(k), Ω(k)) is involutive and moreover, ιk+1(Mk+1) is an open subset of
Gn(I(k), Ω(k)).

Before we begin the proof of Theorem 3.2, we shall establish a piece of nota-
tion concerning prolongation sequences that will be useful in the sequel. Fix a
prolongation sequence S = {(Mk, ιk) | k > 0} over a base manifold M = M0.

A sequence of elements y = (y0, y1, y2, . . . ) with yk ∈ Mk which satisfies the
condition ῑk(yk) = yk−1 for all k > 0 will be called a coherent sequence. Note that
y1 ⊂ Ty0M is an n-plane by definition. Let us define Qy = Ty0M/y1 and Ey = y1.

Also, we remind the reader of the following algebraic notation from Chapters IV
and V (also, see Chapter VIII) which will be used extensively in the proof. If V
is a (real) vector space of dimension n, then there is a natural pairing Sk(V ∗) ⊗
V → Sk−1(V ∗) which, in the interpretation of Sk(V ∗) as the space of polynomial
functions on V of degree k, corresponds to partial differentiation. The extension of
this mapping, by tensoring with a space W , W ⊗ Sk(V ∗)⊗ V →W ⊗ Sk−1(V ∗) is
the obvious one. Moreover, if α and β are differential forms on a manifold M which
have values in the spaces W ⊗Sk(V ∗) and V respectively, then α∧β (or simply αβ
if α is of degree 0) will denote the W ⊗ Sk−1(V ∗)-valued differential form obtained
by using exterior form multiplication and the above pairing. One algebraic lemma
which we shall use rather frequently is the following consequence of the polynomial
version of Poincaré’s lemma:

If β is a V -valued 1-form on M whose components are linearly independent and
a is a function on M with values in W ⊗ Sk(V ∗) ⊗ V ∗ with the property that
(aβ) ∧ β = 0, then a actually has values in W ⊗ Sk+1(V ∗) ⊂W ⊗ Sk(V ∗)⊗ V ∗.

Proof of Theorem 3.2. Fix a coherent sequence y in S. Let dim M = n + s. To
avoid trivialities, we assume that n and s are both positive. Let U0 be an open
neighborhood of y0 on which there exist local coordinates (x1, . . . , xn, u1, . . . , us) =
(x, u) centered on y0 so that Ω(0) = dx1 ∧ dx2 ∧ · · · ∧ dxn does not vanish on
y1. Clearly, du|y0 induces an isomorphism of Qy with Rs, and dx|y0 induces an
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isomorphism of Ey with Rn. We shall identify these spaces from now on and speak
of du as having values in Qy and dx as having values in Ey.

Let U1 ⊂ ῑ−1
1 (U0) be an open neighborhood of y1 with the property that Ω(0)

does not vanish on any of the n-planes in ι1(U1) ⊂ Gn(TU0). There exists a unique
function p1 : U1 → Hom(Ey, Qy) ∼= Qy⊗E∗

y with the property that, for all z1 ∈ U1,
ι1(z1) is the null space of the Qy-valued 1-form du−p1(z1)dx at z0 = ῑ1(z1). By our
hypothesis that ι1 be an immersion, it follows that (ῑ1, p1) : U1 → U0 ×Qy ⊗E∗

y is
an immersion. In particular, p1 is an immersion when restricted to any fiber of ῑ1.
It follows that, for each z1 ∈ U1, dp1 induces an injection ker(dῑ1)|z1 → Qy ⊗ E∗

y.
We let A(1)(z1) ⊂ Qy ⊗ E∗

y denote dp1(ker(dῑ1)|z1). Then A(1) is a smooth sub-
bundle of the trivial bundle over U1 whose fiber is Qy ⊗ E∗

y. By definition, dp1

induces an isomorphism of the sub-bundle ker(dῑ1) ⊂ TU1 with the bundle A(1).
For convenience of notation, we define A(0) to be the trivial bundle over U0 whose
typical fiber is Qy. By pull-back, we regard A(0) as being well-defined over U1 as
well.

To keep our notation as simple as possible, we shall write x and u for the functions
ῑ∗1(x) and ῑ∗1(u) on U1. Then the components of the Qy-valued 1-form ϑ0 = du−
p1dx span the pull-back of the canonical Pfaffian system I(1) on Gn(TU0) to U1.
Moreover, the canonical independence condition may be taken to be Ω(1) = dx1 ∧
dx2 ∧ · · · ∧ dxn. We now want to derive the structure equations of (I(1), Ω(1)).

Let σ1 : U1 →M2 be a section of the submersion ῑ2 which satisfies σ1(y1) = y2.
(We may have to shrink U1 to do this.) Let P (z1) = ι2(σ1(z1)). Then P ⊂ TU1

is a rank n sub-bundle whose fiber at each point of U1 is an integral element of
(I(1), Ω(1)). It follows easily that there exists a unique Qy ⊗ E∗

y-valued 1-form π1

on U1 with the following properties:
(1) dp1 = π1 + Bϑ0 + Tdx on U1 for some B and T .
(2) At each z1 ∈ U1, π1 takes values in A(1)(z1).
(3) At each z1 ∈ U1, P (z1) is the kernel of π1 and ϑ0.

Note that on ker(dῑ1), we have dp1 = π1. Also note that the functions B and T
have values in Qy ⊗ E∗

y ⊗Q∗
y and Qy ⊗E∗

y ⊗E∗
y, respectively.

We now have the structure equations

(56) dϑ0 = −dp1 ∧ dx ≡ −(π1 + Tdx) ∧ dx mod I(1).

Moreover, since the distribution P (which is annihilated by π1 and ϑ0) is a distri-
bution of integral elements of (I(1), Ω(1)), it follows that (Tdx) ∧ dx = 0 on U1.
Thus, we get the structure equation

(57) dϑ0 ≡ −π1 ∧ dx mod I(1).

Note that the Ey ⊕Qy ⊕Qy ⊗E∗
y-valued 1-form (dx, ϑ0, π1) has constant rank

and induces an isomorphism of TU1 with the bundle Ey ⊕ A(0) ⊕A(1).
At this point, we may continue our construction by induction. Suppose that for

each integer k in the range 1 ≤ k < q, we have constructed an open neighborhood
Uk of yk so that Uk ⊂ ῑ−1

k (Uk−1). Suppose also that for each k in this range,
we have constructed a vector bundle A(k) over Uk which is a sub-bundle of the
trivial bundle with typical fiber Qy ⊗Sk(E∗

y). By the obvious pull-back, we regard
forms and bundles defined over Uj for j < k as being well-defined over Uk. We
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suppose that these bundles satisfy A(k) ⊂ (A(k−1))(1) for all 1 ≤ k < q. (Note
that we do not assume that (A(k−1))(1) is a vector bundle, indeed, it may not have
constant rank.) Finally, we suppose that we have constructed a sequence of 1-forms
(dx, ϑ0, ϑ1, . . . , ϑq−2, πq−1) with the following properties:

(1) For k < q − 1, the Qy ⊗ Sk(E∗
y)-valued 1-form ϑk is well defined on Uk+1

and takes values in the sub-bundle A(k). The Qy ⊗ Sq−1(E∗
y)-valued 1-form πq−1

is well defined on Uq−1 and takes the values in the sub-bundle A(q−1).
(2) At each point of Uq−1, the 1-form (dx, ϑ0, ϑ1, . . . , ϑq−2, πq−1) induces an

isomorphism of TUq−1 with Ey ⊕A(0) ⊕ A(1) · · · ⊕ A(q−1).
(3) For each k < q, the components of the forms {ϑ0, ϑ1, . . . , ϑk−1} span the

Pfaffian system I(k) restricted to Uk. Furthermore, they satisfy the structure equa-
tions

(58) dϑj ≡ −ϑj+1 ∧ dx mod {ϑ0, ϑ1, . . . , ϑj}

for j < q − 2 and

(59) dϑq−2 ≡ −πq−1 ∧ dx mod {ϑ1, ϑ1, . . . , ϑq−2}.

Now, let Uq ⊂ ῑ−1
q (Uq−1) be an open neighborhood of yq. Then there exists

a unique function pq : Uq → Qy ⊗ Sq−1(E∗
y) ⊗ E∗

y with the property that if
zq−1 = ῑq(zq) where zq ∈ Uq , then pq(zq) ∈ A(q−1)(zq−1) ⊗ E∗

y and so that the
A(q−1)(zq−1)-valued 1-form πq−1 − pq(zq)dx annihilates the integral element ιq(zq)
of (I(q−1), Ω(q−1)). Since πq−1 ∧ dx ∈ I(q−1) must vanish on ιq(zq), we must have
(pq(zq)dx)∧ dx = 0. By the lemma, this implies that pq(zq) ∈ Qy ⊗Sq(E∗

y). Thus,
we must have

(60) pq(zq) ∈ (A(q−1)(zq−1) ⊗E∗
y) ∩Qy ⊗ Sq(E∗

y) = (A(q−1)(zq−1))(1).

Just as in the above discussion of the case q = 1, the assumption that ιq is an
immersion implies pq is an immersion when restricted to the fibers of ῑq. We define
A(q)(zq) ⊂ Qy ⊗ Sq(E∗

y) to be the vector space dpq(ker(dῑq)|zq). It then follows
that A(q) is a smooth sub-bundle of the trivial bundle over Uq whose typical fiber is
Qy ⊗ Sq(E∗

y). Since, by (60), we have pq(ῑ−1
q (zq−1)) ⊂ (A(q−1)(zq−1))(1), it follows

that A(q)(zq) ⊂ (A(q−1)(zq−1))(1) for all zq ∈ ῑ−1
q (zq−1). Thus A(q) ⊂ (A(q−1))(1).

Now define ϑq−1 = πq−1 − pqdx. Then the equation (58) holds for all j < q− 1.
Moreover, it is clear that the components of the forms
{ϑ0, ϑ1, . . . , ϑq−2, ϑq−1} generate the Pfaffian system I(q) on Uq. It remains to
construct the appropriate form πq with values in A(q) and verify the analogue of
(59) to complete the induction step.

First, we note that since πq−1 is well-defined on Uq−1, it follows that dπq−1 can
be expressed in terms of the forms {dx, ϑ0, ϑ1, . . . , ϑq−2, πq−1}. Using the fact that
πq−1 ≡ pqdx mod I(q), we then obtain a formula of the form

(61) dπq−1 ≡ Tq−1(dx∧ dx) mod I(q)

where Tq−1 is some function on Uq with values in A(q−1) ⊗ Λ2(E∗
y).
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It follows that we have the structure equation

(62) dϑq−1 ≡ −dpq ∧ dx + Tq−1(dx ∧ dx) mod I(q).

Next let σq : Uq → Mq+1 be a section of the submersion ῑq+1 which satisfies
σq(yq) = yq+1. (We may have to shrink Uq to do this.) Let P (zq) = ιq+1(σq(zq)).
Then P ⊂ TUq is a rank n sub-bundle whose value at each point of Uq is an integral
element of (I(q), Ω(q)). It follows easily that there exists a unique Qy ⊗ Sq(E∗

y)-
valued 1-form πq on Uq with the following properties:

(1) dpq ≡ π1 + Rqdx mod I(q) on Uq for some function Rq which has values in
Qy ⊗ Sq(E∗

y) ⊗E∗
y.

(2) At each zq ∈ Uq , πq takes values in A(q)(zq).
(3) At each zq ∈ Uq , P (zq) is in the kernel of πq.

Note that on ker(dῑq), we have dpq = πq. It follows that the 1-form (dx, ϑ0, ϑ1, . . . , ϑq−1, πq)
induces an isomorphism of TUq with Ey⊕A(0)⊕A(1) · · ·⊕A(q). Also, equation (7)
becomes

(63) dϑq−1 ≡ −πq ∧ dx− (Rqdx)∧ dx + Tq−1(dx ∧ dx) mod I(q).

However, since the distribution P is a distribution of integral elements of I(q) and
since πq vanishes on P , it follows that (Rqdx) ∧ dx − Tq−1(dx ∧ dx) = 0 on Uq .
Thus, (63) simplifies to

(64) dϑq−1 ≡ −πq ∧ dx mod I(q).

Setting Ω(q) = dx1 ∧ dx2 ∧ · · · ∧ dxn, this completes the induction step.
Now, for every coherent sequence z = (z0, z1, z2, . . . ) with zk ∈ Uk, we have the

sequence of vector spaces A(k)(z) = A(k)(zk) ⊂ Qy ⊗ Sk(E∗
y) which have the prop-

erty that A(k)(z) ⊂ (A(k−1)(z))(1) for all k > 0 and the property that dimA(k)(z)
is independent of the coherent sequence z. By Proposition 3.10 of Chapter VIII, it
follows that there exists an integer k0 >> 0 so that, for all k ≥ k0 and all coherent
sequences z, A(k)(z) is involutive and moreover A(k+1)(z) =

(
A(k)(z)

)(1). More-
over, k0 can be bounded above by a constant which depends only on the sequence
of integers dk = dimA(k)(z).

Now assume that k ≥ k0 is fixed. The structure equations of (I(k), Ω(k)) on Uk

are then given by

(65)
dϑj ≡ 0 mod I(k) 0 ≤ j < k − 1

dϑk−1 ≡ −πk ∧ dx mod I(k).

Since πk is a 1-form which maps ker(dῑk) surjectively onto A(k) ⊂ Qy ⊗ Sk(E∗
y),

and since, by Proposition 3.10 of Chapter VIII, A(k)(zk) is involutive as a tableau
in (A(k−1)(zk)) ⊗ E∗

y, it follows immediately from the above structure equations

that (I(k), Ω(k)) is involutive on Uk. Since A(k+1)(zk+1) =
(
A(k)(zk)

)(1) for all
zk+1 ∈ ῑ−1

k+1(zk), it follows for dimension reasons that ιk+1(Uk+1) is an open subset
of Gn(I(k), Ω(k)).

Since this construction was undertaken with respect to any coherent sequence
y, it follows that there is a k0 sufficiently large so that (I(k), Ω(k)) is involutive on
Mk for all k ≥ k0 and that, for dimension reasons, ιk+1(Mk+1) is an open subset
of Gn(I(k), Ω(k)) for all such k. �
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§4. The Process of Prolongation.

The reader may well wonder about the relevance of Theorem 3.2 for the compu-
tation of examples. The aim of prolongation, of course, is to reduce the study of
the integral manifolds of an arbitrary differential system to the case of an involutive
differential system, the case to which the vast majority of the theory applies. In
this last section of the chapter, we will discuss just how successful this program is.
Let us begin with the simplest case.

Theorem 4.1. Let I ⊂ Ω∗(M) be a differential ideal, and let

{(M (k), I(k), Ω(k)) | k > 0}

be the sequence of its prolongations. Suppose that, for each k > 0, the space
Vn(I(k−1), Ω(k−1)) = M (k) is a smooth submanifold of Gn(TM (k−1)) and that the
projection M (k) →M (k−1) is a surjective submersion. Then there exists an integer
k0 ≥ 0 such that (I(k), Ω(k)) is involutive on M (k) for all k ≥ k0.

Proof. This follows immediately from Theorem 3.2 since {(M (k), I(k), Ω(k)) | k > 0}
is clearly a prolongation sequence. �

While Theorem 4.1 is somewhat satisfying, it is of limited use in practice for
the following reason. In order to verify the hypotheses of Theorem 4.1 for a given
differential system I, one must be able to compute the entire prolongation sequence
{(M (k), I(k), Ω(k)) | k > 0}. In the process of doing this computation, of course,
one usually checks whether (I(k), Ω(k)) is involutive while one is computing M (k+1).
Thus, in practice, before one can apply Theorem 4.1 (assuming that it does, indeed,
apply), one finds an involutive prolongation of I anyway, and then Theorem 2.1
takes over to ensure that all higher prolongations are involutive.

Nevertheless, there are cases where Theorem 4.1 is useful. Although the termi-
nology is not explained until Chapter VIII, we give one such example here because
of its close association with Theorem 4.1. The reader may also want to compare
Theorem 2.16 of Chapter IX, where the following result is interpreted in the lan-
guage of jet bundles.

Theorem 4.2. Let I ⊂ J ⊂ T ∗ = T ∗(M) be a pair of sub-bundles defining a linear
Pfaffian system on a manifold M . Set L = J/I and let A ⊂ I∗ ⊗ L be the tableau
bundle of (I, J). Suppose that

(i) There is an integral element of (I, J) at every point of M ,
(ii) A is 2-acyclic at each point of M , i.e., Hp,2(Ax) = 0 for all x ∈ M and

p > 0, and
(iii) The subspaces A(k) ⊂ I∗⊗S(k+1)(L) have constant rank on M for all k ≥ 0.

Then the hypotheses of Theorem 4.1 are fulfilled for the prolongation sequence

{(M (k), I(k), Ω(k)) | k > 0}.

In particular, (I(k), Ω(k)) is involutive for all k sufficiently large.

The proof of Theorem 4.2 will only be indicated here. The hypotheses (i) and (iii)
(for k = 0) guarantee that Vn(I, Ω) = M (1) is a smooth manifold which submerses
onto M . The hypothesis (ii) then guarantees that the Pfaffian system (I(1), Ω(1))
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has all of its torsion absorbable, i.e., that the set Vn(I(1), Ω(1)) = M (2) surjects
onto M (1). Then (iii) (for k = 1) guarantees that M (2) is a smooth submanifold.
This then continues indefinitely. The important point is that the hypotheses (ii)
and (iii) ensure that M (k) is a smooth submanifold submersing onto M (k−1) for all
k > 1. For more details, see §2 of Chapter VIII.

It may seem that Theorem 4.2 would only be marginally more useful than The-
orem 4.1. However, for an interesting application, the reader may consult Gasqui
[1979b]. The essential point is that the hypotheses of Theorem 4.2 are algebraic
pointwise conditions on the structure equations of (I, J) and hence are checkable
without having to compute the prolongations (which may depend on high deriva-
tives of the original system).

Let us say that a linear Pfaffian system (I, J) which satisfies the hypotheses of
Theorem 4.2 is 2-acyclic. We then have the following easy corollary of Theorem 4.2,
which may be regarded as a generalization of the Cartan–Kähler theorem for linear
Pfaffian systems.

Corollary 4.3. If (I, J) is a real analytic, 2-acyclic linear Pfaffian system, then
there exist real analytic integral manifolds of (I, J).

Proof. By Theorem 4.2, some finite prolongation of (I, J) is real analytic and in-
volutive. Now apply the Cartan–Kähler theorem. �

Looking over the examples from §1, we see that the first two examples had the
property that, at each stage, the prolongation M (k) was a smooth submanifold
for which the basepoint projection M (k) → M (k−1) was a surjective submersion.
(Actually, we only checked this until we reached a value of k for which the system
(I(k), Ω(k)) was involutive on M (k), for then Theorem 2.1 implies that all higher
prolongations will have this property.)

In practice, however, examples such as Example 1.3 are often encountered. In
that example, the reader will recall, that when M (1) = V4(I, Ω+) we had a sub-
mersion M (1) → M , but that the basepoint projection V4(I(1), Ω+) → M (1) was
neither surjective nor submersive. Nevertheless, we were able to reduce the analysis
of Example 1.3 to the involutive case by applying a sequence of prolongations. It
is natural to ask if this can be done for any differential system I.

Practically nothing can be said about the prolongations of a general smooth
differential system without making various constant rank assumptions which quickly
become too cumbersome to be useful. Therefore, for the remainder of this section
we shall assume that the exterior differential system I ⊂ Ω∗(M) is real analytic
with respect to some fixed real analytic structure on M . Then the set Vn(I) is a
real analytic subset of Gn(M) and, as such, has a canonical coarsest real-analytic
stratification

Vn(I) =
⋃

β∈B

Sβ,

for which each stratum Sβ is a smooth, analytically irreducible submanifold of
Gn(M). Just as in §1, we define the (first) prolongation of I to be the exterior
differential system (

I(1), Ω(1)
)

=
⋃

β∈B

(
P|Sβ , Ψ|Sβ

)
,

where the underlying manifold M (1) is defined to be the disjoint union of the strata
Sβ and (P, Ψ) is the canonical differential system with independence condition on
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Gn(M). (In the case that an independence condition Ω has been specified, we re-
strict our attention to Gn(M, Ω) ⊂ Gn(M).) The higher prolongations are then
defined inductively: M (k) is the disjoint union of the strata of the canonical strati-
fication of Vn(I(k−1)) and (I(k), Ω(k)) is the differential system with independence
condition got by restricting the canonical differential system with independence
condition on Gn(M (k−1), Ω(k−1)) to each stratum of Vn(I(k−1)). Let us denote
the inclusion mapping of M (k) into Gn(M (k−1), Ω(k−1)) by ιk and, for 0 ≤ j < k,
denote the natural projection mapping from M (k) to M (j) by πk

j .

Theorem 4.4. If I ⊂ Ω∗(M) is a real analytic differential system on M and M (k)

is empty for some k > 0, then there are no n-dimensional real analytic integral
manifolds of I.

Proof. Suppose that f : Nn ↪→M were an n-dimensional, irreducible, real analytic
integral manifold of I. Then Vn(I) is non-empty and N has a natural lifting
f(1) : N ↪→ Vn(I). Since N is irreducible, it follows that there is a unique stratum of
M (1) which intersects f(1)(N) in an analytic manifold of dimension n. Let N1 ⊂ N

denote the inverse image of this stratum under f(1). Then f(1) : N1 ↪→ M (1) is
an n-dimensional, irreducible, real analytic integral manifold of (I(1), Ω(1)). This
process can clearly be continued inductively to produce a non-trivial n-dimensional,
irreducible, real analytic integral manifold of (I(k), Ω(k)), denoted by f(k) : Nk ↪→
M (k), for all k > 0. In particular, it follows that M (k) is non-empty for all k. �

It is natural to ask whether the contrapositive converse of Theorem 4.4 is true,
namely, whether or not the non-emptiness of M (k) for all k > 0 is sufficient to
imply that there are non-empty n-dimensional real analytic integral manifolds of I.
Unfortunately, a definitive answer to this question does not seem to be available,
though, for a related result due to Malgrange and phrased in the language of jets,
the reader may consult Theorem 2.2 of Chapter IX. One statement which would
imply this converse is the following:

Prolongation Conjecture. If I ⊂ Ω∗(M) is a real analytic differential system
on M and M (k) is non-empty for all k > 0, then there exists a k0 ≥ 0 so that
for all k ≥ k0 there exists an analytic subvariety S(k) ⊂ M (k) which intersects
each component of M (k) in a (possibly empty) proper analytic sub-variety so that
(I(k), Ω(k)) is involutive on M (k) \ S(k). Moreover, for every real analytic integral
manifold f : Nn ↪→M of I there exists an open submanifold Nk ⊂ N together with
an immersion f(k) : Nk ↪→ M (k) \ S(k) which is an ordinary integral manifold of
(I(k), Ω(k)) and which satisfies f = πk

0 ◦ f(k) on Nk ⊂ N .

The reader may be surprised by the appearance of the “singular subvariety” S(k)

in the above statement. However, it is easy to see that such a singular subvariety can
occur in such a way that it will not be removed by any finite prolongation. Such
examples are furnished by the theory of non-regular singular points of ordinary
differential equations. Thus, consider the differential system (I, Ω) on M = R2

generated by the single 1-form θ = x2 du− u dx and let Ω = dx. The curve u = 0
is clearly an integral manifold of (I, Ω), and it is easy to see that M (k) = R2 for
all k > 0. However, the integral elements which lie over the locus x = 0 are not
ordinary for any k > 0. The problem is, of course, caused by the fact that the
differentials of the maps πk

j drop rank along the locus x = 0.
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If the Prolongation Conjecture were known to be true, then we could conclude
that all of the real analytic integrals of a differential system could be constructed
by suitable applications of the Cartan–Kähler theorem, a highly desirable situa-
tion. However, at present, we can only say that the evidence for the Prolongation
Conjecture is rather strong: Although many examples of prolongation have been
computed, no counterexamples to the conjecture have ever been found. More-
over, under appropriate non-degeneracy hypotheses, the Prolongation Conjecture
has been proved. One version, due to Kuranishi [1957], is known as the Cartan–
Kuranishi prolongation theorem. Unfortunately, the non-degeneracy hypotheses in
Kuranishi’s theorem are rather difficult to make explicit (and often difficult to check
in practice), so we shall refer the reader to Kuranishi’s paper for the precise state-
ment of his result. The reader may also consult Kuranishi [1967] and Chapter IX
for versions of this theorem which apply directly to P.D.E.

In practical calculations, all of the maps πk
j are submersions away from proper

analytic sub-varieties for j sufficiently large, and, in that case, the conjecture fol-
lows from Theorem 3.2. Nevertheless, a proof of the full Prolongation Conjecture
remains an interesting problem.

An alternative approach, which avoids the difficulty caused by the fact that
the maps πk

j need not have constant rank, is to consider another definition of
prolongation (which, for clarity’s sake, we shall call fine prolongation). Let I ⊂
Ω∗(M) be a real analytic differential system. Then the set Vn(I) has a coarsest
real analytic stratification

Vn(I) =
⋃

β∈B′

S′
β ,

(which may be finer than the original stratification defined above) with the property
that each stratum S′

β is connected and smooth and moreover that the basepoint
projection π1

0 : Vn(I)→M has constant rank when restricted to each stratum S′
β .

Let us define M 〈1〉 to be the disjoint union of the strata S′
β , and let (I〈1〉, Ω〈1〉)

denote the differential system with independence condition induced on M 〈1〉 by its
canonical inclusion into Gn(M). We then continue the construction inductively,
except that we require that Vn(I〈k−1〉, Ω〈k−1〉) be given the coarsest smooth strat-
ification with connected strata for which all of the mappings {πk

j | 0 ≤ j < k} have
constant rank when restricted to any stratum. We then define M 〈k〉 to be the dis-
joint union of these strata and define (I〈k〉, Ω〈k〉) to be the differential system with
independence condition induced on M 〈k〉 by its inclusion into Gn(M 〈k−1〉, Ω〈k−1〉).
Note that according to this definition, fine prolongation is not purely inductive, i.e.,
we do not necessarily have that M 〈2〉 is equal to (M 〈1〉)〈1〉. We continue to denote
the inclusion mapping of M 〈k〉 into Gn(M 〈k−1〉, Ω〈k−1〉) by ιk and, for 0 ≤ j < k,
we continue to denote the natural projection mapping from M 〈k〉 to M 〈j〉 by πk

j .
We shall call the sequence

S(I) = {(M 〈k〉, I〈k〉, Ω〈k〉) | k > 0}
the fine prolongation sequence of I, with similar terminology for a differential
system with independence condition (I, Ω). As in §3, we shall call a sequence
y = (y0, y1, y2, . . . ) with y0 ∈ M and yk ∈ M 〈k〉 which satisfies πk

k−1(yk) = yk−1

for all k > 0 a fine coherent sequence for I.
The proof of Theorem 4.4 now goes over with only slight modifications to estab-

lish the following result.
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Theorem 4.5. If I ⊂ Ω∗(M) is a real analytic differential system on M and there
exists an n-dimensional real analytic integral manifold of I, then there exist fine
coherent sequences y for I. In particular, M 〈k〉 is non-empty for all k > 0.

Proof. As in the proof of Theorem 4.4, given an irreducible real analytic n-dimensional
integral manifold of I, f : Nn ↪→ M , we can construct a decreasing sequence of
submanifolds Nk ⊂ N with the property that each Nk is equal to N minus a
proper analytic subvariety and so that there exists a lifting f〈k〉 : Nk ↪→ M 〈k〉 of
f restricted to Nk which is an integral of (I〈k〉, Ω〈k〉). The intersection of all of
these submanifolds, N∞ ⊂ N is equal to N minus a countable number of proper
real-analytic submanifolds and hence is non-empty. Clearly, if we let y ∈ N∞ be
fixed, then the sequence y = (f(y), f〈1〉(y), f〈2〉(y), . . . ) is a fine coherent sequence
for I. �

It is certainly reasonable to conjecture that the Prolongation Conjecture is true
when “prolongation sequence” is replaced by “fine prolongation sequence,” and it
seems that, in the “fine” case, one can even dispense with the singular locus in the
statement. However, this version of the Prolongation Conjecture, which might be
called the “Fine Prolongation Conjecture,” has not yet been proved either.

Finally, let us indicate our reasons for believing a weaker conjecture which is a
sort of converse to Theorem 4.5.

Conjecture. If I ⊂ Ω∗(M) is a real analytic differential system on M and there
exists a fine coherent sequence for I, then there exists an n-dimensional real analytic
integral manifold of I.

The outline of an argument for this conjecture is: Let S(I) be the fine prolon-
gation sequence of I, and let y be a fine coherent sequence for I. For each k > 0,
consider the set of linear maps (dπj

k)yj : Tyj M
〈j〉 → TykM 〈k〉 for all j > k. Because

of the identity πi
j ◦ πj

k = πi
k for all i > j > k, there exists an integer ik > k so that

(dπj
k)yj(Tyj M

〈j〉) = (dπik

k )yik
(Tyik

M 〈ik〉) for all j ≥ ik. By the local constancy of
the ranks of differentials of the mappings πj

k, it follows that there exists a unique,
smooth, real analytic submanifold M

〈k〉
y ⊂ M 〈k〉 in a neighborhood of yk with the

property that, for all j > k, there is a neighborhood of yj ∈ M 〈j〉 so that πj
k re-

stricted to this maps into M
〈k〉
y and is a submersion when regarded as a mapping

into M
〈k〉
y . Although the argument is tedious, it seems to be true that the natural

inclusion of M
〈k+1〉
y into Gn(M 〈k〉, Ω〈k〉) actually has image in Gn(M 〈k〉

y , Ω〈k〉), at
least on a neighborhood of yk+1. Assuming this, it then would then follow that
the sequence {M 〈k〉

y | k > 1} is a prolongation sequence, as defined in §3. By
Theorem 3.2, it would follow that the system (M 〈k〉

y , I〈k〉, Ω〈k〉) is involutive for
k sufficiently large. In particular, there would exist integral manifolds of such a
system, and hence of the original system I.

Of course, the Fine Prolongation Conjecture would be a considerably stronger
statement.

æ
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CHAPTER VII

EXAMPLES

This chapter is a collection of examples designed to illustrate the various phe-
nomena which occur in the application of differential systems to problems arising
in differential geometry and, more generally, in partial differential equations. We
have chosen these examples partly on the basis of their intrinsic interest but mainly
in the hopes that the reader can use them as a guide to developing facility in
computation.

§1. First Order Equations for Two Functions of Two Variables.

In this example, we shall make a fairly thorough study of the exterior differen-
tial systems which arise in the study of systems of first order partial differential
equations for two functions of two variables. These cases have the advantage of
displaying many of the features of differential systems in general (characteristic
variety, torsion, prolongation, etc.) while they remain sufficiently simple that an
essentially complete treatment can be undertaken. In the interests of simplicity, we
will make constant rank and genericity assumptions whenever they are convenient.

If two variables, say z and w, are regarded as functions of two other variables,
say x and y, then the general system of r first order partial differential equations
for z and w as functions of x and y can be written in the form

(1) F ρ(x, y, z, w, zx, zy, wx, wy) = 0 1 ≤ ρ ≤ r.

Here the functions F ρ are assumed to be smooth functions of their arguments and,
for the sake of simplicity, we assume that at each common zero of the functions F ρ

in (x, y, z, w, zx, zy, wx, wy)-space, the equations (1) implicitly define some set of r
of the functions zx, zy, wx, wy as smooth functions of the remaining variables. Note
that this assumption implies that the number of equations r is at most 4.

Examples of such systems of partial differential equations arising in geometry
are the volume preserving equation,

(2) zxwy − zywx = 1,

the Cauchy–Riemann equations,

(3) zx −wy = zy + wx = 0,

and the equations which assert that the pair of functions z(x, y) and w(x, y) induce
an isometry between the metrics

h2 = E(z, w)dz2 + 2F (z, w)dz ◦ dw + G(z, w)dw2

and

h1 = e(x, y)dx2 + 2f(x, y)dx ◦ dy + g(x, y)dy2 ,
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(4)

E(z, w)z2
x + 2F (z, w)zxwx+G(z, w)w2

x = e(x, y)

E(z, w)zxzy + F (z, w)(zxwy + zywx)+G(z, w)wxwy = f(x, y)

E(z, w)z2
y + 2F (z, w)zywy+G(z, w)w2

y = g(x, y).

We want to see how the methods of exterior differential systems apply in such
cases. For the sake of uniformity and simplicity of notation, we shall introduce the
following change of notation. We rename the variables x, y, z, w, zx, zy, wx, wy as
x1, x2, z1, z2, p1

1, p
1
2, p

2
1, p

2
2 respectively. Of course, the reader will recognize these as

the standard coordinates on the jet space J1(R2, R2). The system of equations (1)
then become

(5) F ρ(x1, x2, z1, z2, p1
1, p

1
2, p

2
1, p

2
2) = 0 1 ≤ ρ ≤ r.

By our hypothesis, these equations define a submanifold M ⊂ J1(R2, R2) of codi-
mension r such that the source-target projection M → R2 × R2 is a submersion.

The contact system on J1(R2, R2) is generated by the 1-forms

(6) ϑa = dza −
∑

pa
i dxi 1 ≤ a ≤ 2

and the canonical independence condition is given by the 2-form Ω = dx1 ∧ dx2.
Clearly, the 1-forms {ϑ1, ϑ2, dx1, dx2} remain independent when restricted to M .
We let I ⊂ Ω1(M) denote the Pfaffian system generated by the pair {ϑ1, ϑ2} after
restriction to M and let J denote the Pfaffian system generated by the forms
{ϑ1, ϑ2, dx1, dx2} after restriction to M . The 1-forms {dpa

i | 1 ≤ i, a ≤ 2} are
clearly not linearly independent modulo J after they have been restricted to M . In
fact we must have r relations of the form

(7)
∑

bρi
a dpa

i ≡ 0 mod J 1 ≤ ρ ≤ r

where bρi
a = ∂F ρ/∂pa

i . These relations are obtained by expanding the identities on
M given by dF ρ = 0.

In studying the structure relations (7), it is often helpful to adapt the given bases
of I and J to the problem at hand. Thus, on an open set U ⊂M , let {ϑ1, ϑ2, ω1, ω2}
denote any set of 1-forms which have the property that {ϑ1, ϑ2} is a basis for the
sections of I restricted to U and {ϑ1, ϑ2, ω1, ω2} is a basis for the sections of J
restricted to U . Then there exist functions Aa

b and Bi
j on U so that the following

relations hold:

(8)
ϑa = Aa

bϑb

dxi ≡ Bi
jω

j mod I

If we now choose 1-forms πa
i subject to the condition that

(9) πa
i =

∑
Aa

bBj
i dpb

j +
∑

Sa
ijω

j mod I

where Sa
ij = Sa

ji, then we have the familiar structure equations

(10) dϑa ≡ −
∑

πa
i ∧ ωi mod I
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together with symbol relations of the form

(11)
∑

bρi
a πa

i ≡
∑

Cρ
ijω

j mod I 1 ≤ ρ ≤ r

where each 2 × 2 matrix bρ = (bρi
a ) is obtained from the corresponding matrix

bρ = (bρi
a ) by the formula bρ = B−1bρA−1.

For example, in the volume preserving example, the submanifold M is defined
by the equation

(12) p1
1p

2
2 − p1

2p
2
1 = 1.

The symbol relation corresponding to (7) is the equation

(13) p2
2dp1

1 − p2
1dp1

2 − p1
2dp2

1 + p1
1dp2

2 = 0.

If we set ϑa = ϑa and set

(14)
(

dx1

dx2

)
=
(

p2
2 −p2

1

−p1
2 p1

1

)(
ω1

ω2

)

then, taking Sa
ij = 0, the relation corresponding to (11) becomes simply

(15) π1
1 + π2

2 ≡ 0 mod I.

For the purpose of computing Cartan characters and characteristics, relation (15)
is much easier to deal with than (13).

As another example, consider the isometry problem of the two metrics h1 and
h2 mentioned above. Let ω1, ω2 be an orthonormal coframing for the metric h1

and let η1, η2 be an orthonormal coframing for the metric h2. Define the matrices
A and B so that ηa = Aa

bdzb and dxi = Bi
jω

j . (Note that A is a function of the
z variables and B is a function of the x variables.) If P = (pa

i ) is the matrix of
solutions to the equations given in (4), then one easily sees that the matrix APB
is an orthogonal matrix. Conversely, if we set P = A−1gB−1 where g is any 2× 2
orthogonal matrix, then the matrix P satisfies the equations given in (4). Thus, in
this case, M is diffeomorphic to R2 ×R2 × O(2). Regarding ϑ = (ϑa), dz = (dza),
and dx = (dxi), etc. as columns, we may write on M ,

(16) ϑ = g−1Aϑ = g−1A(dz − Pdx) = g−1η − ω.

Using the fact that dη = −ϕ∧η and dω = −ψ∧ω where ϕ and ψ are skew-symmetric
matrices, we may compute that

(17)

dϑ = −g−1ϕ ∧ η + dg−1 ∧ η + ψ ∧ ω

≡ −(g−1dg + g−1ϕg − ψ) ∧ ω mod I

≡ −π ∧ ω mod I

where π is a skew-symmetric matrix by virtue of the fact that g is an orthogonal
matrix. Thus, in this basis, the symbol relations of the Pfaffian system I are simply

(18) π1
1 = π2

2 = π1
2 + π2

1 = 0.
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The reader should compare these with the symbol relations one gets from (4) by
naively differentiating. We will return to this example below.

In the general case, we want to take advantage of changes of basis of the form
(10)–(11) to reduce the symbol relations to as simple a form as possible. It is
clear that we want to normalize the linear span of the matrices {bρ | 1 ≤ ρ ≤ r}
in the vector space of all 2 × 2 matrices under the obvious action of the group
GL(2, R) × GL(2, R). We will now treat the four possible values of r as separate
cases.

Case 1: r = 1.

In this case there is a single symbol matrix which we may as well denote by b
instead of b1. The admissible substitutions (10)–(11) allow us to pre- and post-
multiply the 2×2 matrix b by arbitrary invertible matrices. It follows that the only
invariant of the matrix b is its rank, which must be 1 or 2. We will assume that
this rank is constant on M . It follows that there are two subcases.

Subcase 1.1: b has rank 1.

We may now choose our bases so that the single symbol relation is of the form

(19) π2
2 ≡ C1ω

1 + C2ω
2 mod I.

Replacing π2
2 by π2

2 − C1ω
1 − C2ω

2 and π2
1 by π2

1 − C1ω
2, we may assume that

C1 = C2 = 0. Of course, we still have the structure equations

(20) dϑa ≡ −πa
i ∧ ωi mod I.

It follows that the torsion of the system vanishes identically. By inspection, we
have s′1 = 2 and s′2 = 1. Moreover, the integral elements at a point depend on
s′1 + 2s′2 = 4 parameters, namely ϑa = 0 and

(21)

π1
1 = λ1ω

1 + λ2ω
2

π1
2 = λ2ω

1 + λ3ω
2

π2
1 = λ4ω

1

and of course π2
2 = 0. Thus, the system is involutive.

The r × s symbol matrix σξ at the covector ξ = ξiω
i is, in this case, the 1 × 2

matrix σξ = (0, ξ2). Thus, the symbol matrix has rank 1 except when ξ = ξ1ω
1

(when it has rank 0). Thus, the characteristic variety is Ξx = P(Jx/Ix) ∼= P1 for
all x ∈ M . However, the characteristic sheaf consists of Ξx plus the “embedded
component” [ω1] ∈ P1.

Examples of this type of equation are given by wy = 0 and wy = z. It is
easily shown that the Pfaffian systems I associated to these two equations are not
diffeomorphic. (Consider the form ϑ2 in an adapted coframing satisfying π2

2 = 0 for
each of the above systems. This form is canonically defined up to a multiple and yet
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it is of different Pfaff type for each of the two systems.) Nevertheless, there exists an
O.D.E. method for constructing the integral manifolds of such I, thereby avoiding
the use of the Cartan–Kähler theorem and proving a smooth existence theorem
for the solutions of the given equation. The method is as follows: Construct an
adapted coframing ϑ1, ϑ2 of I with the property that π2

2 = 0 and that ϑ1 is of Pfaff
rank 5. (This can always be done.) Placing ϑ1 in Pfaff normal form (which requires
only O.D.E.), we may specify integral manifolds of ϑ1 in terms of a single function
of 2 variables. These integral manifolds are of dimension 4 in M . If R is such an
integral, then the structure equations show that ϑ2 restricts to be of Pfaff rank 3
on R and hence its integrals can be specified by a single function of 1 variable and
have codimension 2 in R. These resulting 2-dimensional integrals are the desired
integrals of I. We leave further details to the reader.

Subcase 1.2: b has rank 2.

This is, in some sense, the generic case for single equations. We may now choose
our bases so that the single relation has the form

(22) π1
2 − π2

1 = C1ω
1 + C2ω

2 mod I.

Replacing π1
1 by π1

1−C2ω
2 and π2

2 by π2
2 +C1ω

1, we may assume that C1 = C2 = 0.
Thus, the torsion always vanishes.

We now observe that the system is involutive. By inspection, we see that s′1 = 2
and s′2 = 1. Moreover, the integral elements at a point of M depend on s′1 +2s′2 = 4
parameters, namely ϑa = 0 and

(23)

π1
1 = λ1ω

1 + λ2ω
2

π1
2 = π2

1 = λ2ω
1 + λ3ω

2

π2
2 = λ2ω

1 + λ4ω
2.

The symbol matrix at a covector ξ = ξ1ω
1 + ξ2ω

2 is the 1 × 2 matrix σξ =
(−ξ2, ξ1). Thus, the symbol matrix always has rank 1. In particular, it is never
injective. It follows that the characteristic variety satisfies Ξx = P(Jx/Ix) ∼= P1 for
all x ∈ M . All of this is in accordance with the general theory of characteristic
varieties developed in Chapter V.

Note that the Cartan–Kähler theory predicts that the general solution of such
a system will depend on 1 function of 2 variables. The standard example of an
equation which falls into this subcase is the equation zy = wx. The general solution
of this equation is given by the formula

(24) z = fx and w = fy

where f is an arbitrary function of x and y. A more interesting equation whose
“general solution” can be found explicitly is the volume preserving equation (2).
The solutions where zx �= 0 can be described locally in parametric form by letting
h be an arbitrary function of two auxiliary variables s and t which satisfies hst �= 0
and setting

(25)
x = ht(s, t) y = t

z = hs(s, t) w = s.
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A similar formula holds for those solutions where zy �= 0. Of course, for the generic
single equation for two functions of two variables, the general solution cannot be
written down so explicitly.

Case 2: r = 2.

This is, in many ways, the most interesting of the cases. The symbol matrices
{b1, b2} span a two-dimensional subspace of the space of 2×2 matrices. We begin by
classifying the possible two-dimensional subspaces under the equivalence generated
by pre- and post-multiplication by invertible matrices. It turns out that there are
exactly 5 equivalence classes. This is proved by noting that the determinant func-
tion on the space of 2× 2 matrices is a conformally invariant quadratic form under
the natural action of GL(2, R)×GL(2, R). To see this, note that if R is a 2×2 matrix
and (A, B) ∈ GL(2, R) × GL(2, R), then det(ARB−1) = (det(A)/det(B))det(R).
Thus, a natural invariant of a two-dimensional subspace of the space of 2× 2 ma-
trices is the type of the quadratic form det after it has been restricted to the given
subspace. This crude classification can be refined slightly to give the following list
of representatives of the 5 equivalence classes:

B =
{(

x1 x2

0 0

)∣∣∣xi ∈ R
}

(26.1)

B =
{(

x1 0
x2 0

) ∣∣∣xi ∈ R
}

(26.2)

B =
{(

0 −x1

x1 x2

) ∣∣∣xi ∈ R
}

(26.3)

B =
{(

0 x1

x2 0

)∣∣∣xi ∈ R
}

(26.4)

B =
{(

x1 x2

x2 −x1

) ∣∣∣xi ∈ R
}

(26.5)

For the sake of simplicity, we shall assume that the symbol relations of our
system of two equations have constant type in the above classification. We shall
now proceed to analyse each of these subcases separately.

Subcase 2.1: The symbol relations are of type (26.1).

In this case, we may change bases so that the symbol relations take the form

(27) π1
1 ≡ C11ω

1 + C12ω
2

π1
2 ≡ C21ω

1 + C22ω
2

}
mod I

Since we may modify the forms π1
j by a symmetric linear combination of the ωj ,

we see that the torsion of the system vanishes if and only if C12 ≡ C21. If the
torsion of the system does not vanish identically, then we may restrict to the locus
C12 − C21 = 0. In the generic case, this gives an extra equation which, adjoined
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to the given two, gives a system of 3 equations. (We will treat this case below in
Case 3.) On the other hand, if the identity C12 ≡ C21 holds, then the structure
equations of the system reduce to the form

(28) dϑ1 ≡ 0
dϑ2 ≡ −π2

1 ∧ ω1 − π2
2 ∧ ω2

}
mod I.

By inspection, we have s′1 = s′2 = 1. The space of integral elements at a point of M
clearly depends on 3 parameters. Thus, the system is in involution and the general
solution (at least in the analytic case) depends on one function of two variables.

The symbol matrix σξ at a non-zero covector ξ = ξiω
i is the 2× 2 matrix

(
ξ1 0
ξ2 0

)

Since σξ always has rank 1, every covector is characteristic. Of course, this implies
that a 2-dimensional integral of I cannot be determined by knowledge of any its
1-dimensional subintegrals.

Finally, we remark that, in fact, every involutive system of this type is locally
equivalent to the standard example

(29) zx = zy = 0.

In particular, the analytic assumption is not needed. This equivalence follows
by examining the structure equations (28) closely and showing that they actually
“uncouple” into the the equations

(30)
dϑ1 ≡ 0 mod ϑ1

dϑ2 ≡ −π2
1 ∧ ω1 − π2

2 ∧ ω2 mod ϑ2.

The result then follows by applying the Frobenius theorem and the Pfaff–Darboux
theorem. (See Chapter II.)

Subcase 2.2: The symbol relations are of type (26.2).

In this case, we may, by admissible basis change, assume that the symbol rela-
tions are of the form

(31) π1
2 ≡ C11ω

1 + C12ω
2

π2
2 ≡ C21ω

1 + C22ω
2

}
mod I

Replacing πj
2 by πj

2 − Cj1ω
1 − Cj2ω

2 and πj
1 by πj

1 − Cj1ω
2 for j = 1 and 2,

we see that we may assume that Cij = 0. Thus, the torsion always vanishes for
systems of this type. The structure equations of the system are now of the form

(32) dϑ1 ≡ −π1
1 ∧ ω1

dϑ2 ≡ −π2
1 ∧ ω1

}
mod I.
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Inspection now shows that s′1 = 2 and s′2 = 0. Moreover, the space of integral
elements at each point of M is clearly of dimension 2. Thus, the system is involutive.
Thus, by the Cartan–Kähler theorem, the integral manifolds (in the real-analytic
category) depend on two functions of two variables.

The symbol matrix σξ at a non-zero covector ξ = ξ1ω
1 + ξ2ω

2 is the 2×2 matrix(
ξ2 0
0 ξ2

)
.

It follows that the characteristic variety at each point x of M is the point [ω1] ∈
P(Jx/Ix). Note that it should be counted with multiplicity 2.

An example of this type of P.D.E. is given by the pair of equations

(33)
zzx + wzy = f(x, y, z, w)

zwx + wwy = g(x, y, z, w)

where, in order to avoid singularities, we assume that the functions f and g do not
simultaneously vanish.

Actually, using the techniques of Chapter II, an alternative method of describing
the integral manifolds of systems in this subcase is available. By the structure
equations (32), it follows that the Cartan system of the Pfaffian system I is the
Pfaffian system C(I) generated by the 1-forms ϑ1, ϑ2, ω1, π1

1, π
2
1. Since M is of

dimension 6, it follows that the Cauchy leaves of I are curves. In fact, any two
dimensional integral manifold N2 ⊂ M6 of (I, Ω) is a union of integral curves of
C(I). To see this, note that on any such integral N , the 2-forms πj

1 ∧ ω1 must
vanish. This implies that, on N , there must be relations of the form πj

1 = λjω1 for
some functions λj. It follows that all of the forms in C(I) vanish when restricted
to the integral curves of ω1 on N . Thus, these curves are integral curves of C(I).
Conversely, by the general theory of Cauchy characteristics developed in Chapter II,
if P 1 is any integral curve of the system (I, ω1), then P is transverse to the leaves
of C(I). Hence the union of the leaves of C(I) which pass through P is a smooth
surface which is an integral of (I, Ω). Thus, the construction of integrals of (I, Ω)
reduces to the two O.D.E. problems of constructing the integral curves of C(I)
and constructing integrals of (I, ω1). In particular, one does not need to apply the
Cartan–Kähler theorem. Thus, our description of the integrals of (I, Ω) does not
depend on the assumption of real analyticity.

In fact, even more is true. Since the system generated by ϑ1, ϑ2, and ω1 is
the restriction to M of the Frobenius system generated by dz1, dz2, dx1, and
dx2, it follows that the system generated by ϑ1, ϑ2, and ω1 is itself Frobenius. It
easily follows that every point of M has local coordinates (a1, a2, b1, b2, x, y) so that
the system I has generators of the form ϑ̃1 = da1 − b1dx and ϑ̃2 = da2 − b2dx.
(These coordinates can be found using O.D.E. methods alone.) Then the general
integral of (I, Ω) in this neighborhood can be described implicitly by the 4 equations
aj = fj(x) and bj = dfj/dx (j = 1, 2), where f1 and f2 are arbitrary functions of
x. In particular, all of the differential systems in this subcase are locally equivalent.
It is an interesting exercise to reduce the system (33) to this standard form.
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Subcase 2.3: The symbol relations are of type (26.3).

In this case, we may change bases so that the symbol relations take the form

(34) π1
2 − π2

1 ≡ C11ω
1 + C12ω

2

π2
2 ≡ C21ω

1 + C22ω
2

}
mod I

Just as before, by adding appropriate linear combinations of the forms ω1 and ω2 to
the forms πi

j, we may assume that the Cij are all zero. Thus, the torsion vanishes.
The structure equations now take the form

(35) dϑ1 ≡ −π1
1 ∧ ω1 − π1

2 ∧ ω2

dϑ2 ≡ −π1
2 ∧ ω1

}
mod I.

Inspection shows that s′1 = 2 and s′2 = 0. Moreover, the integral elements of (I, Ω)
at a point x of M depend on 2 parameters, namely

(36)

π1
1 = λ1ω

1 + λ2ω
2

π1
2 = π2

1 = λ2ω
1

π2
2 = 0

and of course ϑa = 0. Thus, the system is involution and the general solution, in
the analytic category, depends on two functions of one variable.

The symbol matrix σξ at a covector ξ = ξ1ω
1 + ξ2ω

2 is the 2× 2 matrix(
ξ2 ξ1

0 ξ2

)
.

It follows that σξ has rank 2 except when ξ2 = 0, in which case, it has rank
1. It follows that the characteristic variety at each point of M is of the form
Ξx = [ω1] ∈ P(Jx/Ix). Of course, the characteristic sheaf will count this point with
multiplicity 2.

An example of this type of system is the pair of equations

(37) zy − wx = wy − z = 0.

Note that if we solve the first equation by introducing a potential function u
so that z = ux and w = uy, then the remaining equation becomes the familiar
parabolic equation ux = uyy. Thus, we shall say that systems which fall into this
subcase are parabolic.

Note that the system I has no Cauchy characteristics. However, the integrals of
I are still foliated by the “characteristic curves” ω1 = 0. Moreover, on any integral
of (I, Ω), we have π1

2 ∧ω1 = 0, so π1
2 = λω1 for some smooth function λ. With this

in mind, we define the Pfaffian system M on M to be the system spanned by the
1-forms ϑ1, ϑ2, ω1, π1

2. It is easy to show that this span is well-defined independent
of the choice of bases of J and I which put the structure equations of I in the form
(35). Moreover, every integral of (I, Ω) is foliated by integral curves ofM and these
curves are clearly the characteristic curves. These are, of course, the characteristics
in the classical sense of Monge (as well as in the modern sense).



236 VII. Examples

The case where the system M is of Frobenius type (so that the characteristics
obey four “conservation laws”) is important because one can show that the system
M is of Frobenius type if and only if the system I is locally diffeomorphic to the
system given by the equations

(38) zy − wx = wy = 0.

This is one of those cases which Cartan described as “having characteristics de-
pending on constants,” meaning that the maximal integrals of M depend only on
constants (in this case, four constants). The fact that one can write down the
general integral of such a system I by means of O.D.E. is no accident, but follows
from a general procedure due to Darboux and Cartan whenever the system has
characteristics depending on constants. Of course, one does not expect the general
parabolic system to be solvable by O.D.E., and indeed one need only consider the
system (37) whose solutions are equivalent to the solutions of the one-dimensional
heat equation to see that the general solution cannot be written as an explicit func-
tion of two functions of one variable and a finite number of their derivatives. In this
case, M fails to be a Frobenius system. Roughly speaking, the non-integrability of
M corresponds to the original system of P.D.E. having parabolic “diffusion effects.”

Subcase 2.4: The symbol relations are of type (26.4).

In this case, by admissible basis change, we may assume that the symbol relations
are of the form

(39) π1
2 ≡ C11ω

1 + C12ω
2

π2
1 ≡ C21ω

1 + C22ω
2

}
mod I.

Again, by adding appropriate multiples of ω1 and ω2 to the 1-forms πi
j, we may

assume that the functions Cij are zero. Thus, the torsion vanishes and the structure
equations now take the form

(40) dϑ1 ≡ −π1
1 ∧ ω1

dϑ2 ≡ −π2
2 ∧ ω2

}
mod I.

Inspection shows that s′1 = 2 and s′2 = 0. Moreover, the integral elements at a
point of M clearly depend on 2 parameters, namely ϑa = 0 and πi

i = λiωi and
π1

2 = π2
1 = 0. Thus, the system is involutive and, in the analytic category, the

general integral of (I, Ω) depends on two functions of one variable.
The symbol matrix σξ at a non-zero covector ξ = ξ1ω

1 + ξ2ω
2 is the 2×2 matrix(

ξ2 0
0 ξ1

)
.

It follows that the characteristic variety Ξx at each point x of M is the pair of
points {[ω1], [ω2]} ∈ P(Jx/Ix).

A simple example of this type of system is the pair of equations

(41) zy = wx = 0.



§1. First Order Equations for Two Functions of Two Variables 237

The general solution is, of course, z = f(x) and w = g(y) where f and g are
arbitrary functions of one variable. Note that this system is hyperbolic in the
classical sense. In fact, it is easy to see that the general pair of equations whose
symbol relations can be taken to be of the form (26.4) is hyperbolic in the classical
sense. Thus, we shall call the equations which fit into this subcase hyperbolic.

Again, there are no Cauchy characteristics. Nevertheless, the two characteristic
foliations of an integral given by ω1 = 0 and ω2 = 0 define important geometric
features of the integral manifolds. We shall not enter into a discussion of the
classification of hyperbolic systems up to diffeomorphism. This would require a
discussion of the equivalence problem of Élie Cartan which is too lengthy to enter
into here. However, we can indicate some basic invariants of the system I which
can be used to determine whether a given system is equivalent to the “flat” system
(41). Suppose, for the sake of convenience, that M is oriented. Then any local
basis {ϑ1, ϑ2} of I which satisfies the structure equations (40) and the condition
ϑ1 ∧ dϑ1 ∧ ϑ2 ∧ dϑ2 > 0 is unique up to a change of basis of the form ϑ̃a = λaϑa

where λ1, λ2 �= 0, as is easily verified. Using this, we can define two rank 3 Pfaffian
systems M1 and M2 on M as follows. Write

(42.1)

dϑ1 ≡ 0
dϑ2 ≡ −π2

2 ∧ ω2

dπ1
1 ≡ a1π

2
2 ∧ ω2

dω1 ≡ a2π
2
2 ∧ ω2

⎫⎪⎬
⎪⎭ mod {ϑ1, ϑ2, ω1, π1

1}

(42.2)

dϑ2 ≡ 0
dϑ1 ≡ −π1

1 ∧ ω1

dπ2
2 ≡ a3π

1
1 ∧ ω1

dω2 ≡ a4π
1
1 ∧ ω1

⎫⎪⎬
⎪⎭ mod {ϑ1, ϑ2, ω2, π2

2}

where the functions ai are some smooth functions locally defined on M . Replacing
π1

1 , ω1, π2
2 , and ω2 respectively by π1

1 + a1ϑ
2, ω1 + a2ϑ

2, π2
2 + a3ϑ

1, and ω2 + a4ϑ
1,

we may assume that all of the ai are zero. We now have, in addition to (40), the
refined structure equations

(43.1) dϑ1 ≡ dω1 ≡ dπ1
1 ≡ 0 mod {ϑ1, ϑ2, ω1, π1

1}

(43.2) dϑ2 ≡ dω2 ≡ dπ2
2 ≡ 0 mod {ϑ1, ϑ2, ω2, π2

2}.

It is now an elementary matter to see that the two Pfaffian systems

(44.1) M1 = span{ϑ1, ω1, π1
1}

(44.2) M2 = span{ϑ2, ω2, π2
2}

are well-defined globally on M , that is, they depend only on the (hyperbolic) Pfaf-
fian system I and the orientation of M (reversing the orientation of M switches the
two systems). On each two dimensional integral N2 of (I, Ω), each of the systems
Ma restrict to have rank 1. Thus, each such N is foliated by integral curves of
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Ma. This pair of foliations is exactly the pair of foliations by characteristic curves
in the classical sense.

As in the parabolic case, we say that the characteristics of (I, Ω) depend on con-
stants if both of the Ma are Frobenius systems. In this case, the integrals of (I, Ω)
can locally be written down explicitly using only O.D.E. as follows: Supposing that
each of the Ma is completely integrable, we know that M can be covered by open
sets of the form U = Y 1 × Y 2 where each Y a is a three dimensional ball and the
leaves of the Frobenius system Ma are given by fixing a point in the Y a-factor. It
easily follows that ϑa is a non-zero multiple of a contact form, say ϑ̃a, well defined
on Y a. (The explicit construction of the factors Y a and the forms ϑ̃a requires
O.D.E. techniques.) It is now immediate that the integrals of (I, Ω) which lie in U
are simply products of the form P 1 × P 2 where each P a is a contact curve in the
contact manifold (Y a, ϑ̃a). Clearly, such a system is equivalent to the “uncoupled”
system (41).

Actually, for the reduction of the initial value problem for integrals of (I, Ω)
to an O.D.E. problem, it suffices that at least one of the systems Ma be Frobe-
nius. Of course, for the general hyperbolic system, we do not expect either of the
systems Ma to be Frobenius. In Darboux [1870], a far-reaching generalization of
the above construction is presented which takes into account any possible “higher”
conservation laws for characteristics.

Subcase 2.5: The symbol relations are of the form (26.5).

In this case, we may, by admissible basis change, assume that the symbol rela-
tions are of the form

(45) π1
1 − π2

2 ≡ C11ω
1 + C12ω

2

π1
2 + π2

1 ≡ C21ω
1 + C22ω

2

}
mod I.

Again, by adding appropriate multiples of ω1 and ω2 to the 1-forms πi
j, we may

assume that the functions Cij are zero. Thus, the torsion vanishes and the structure
equations now take the form

(46) dϑ1 ≡ −π1
1 ∧ ω1 + π2

1 ∧ ω2

dϑ2 ≡ −π2
1 ∧ ω1 − π1

1 ∧ ω2

}
mod I.

Inspection shows that s′1 = 2 and s′2 = 0. Moreover, the integral elements of (I, Ω)
at a point of M depend on 2 parameters, namely ϑ1 = 0 and

(47)
π1

1 = π2
2 = λ1ω

1 + λ2ω
2

π1
2 = −π2

1 = λ2ω
1 − λ1ω

2

It follows that the system (I, Ω) is involution. In the analytic category, the general
integral depends on two functions of one variable.

The symbol matrix σξ at a non-zero covector ξ = ξ1ω
1 + ξ2ω

2 is the 2×2 matrix(
ξ1 −ξ2

ξ2 ξ1

)
.
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It follows that the characteristic variety Ξx at each point x of M is empty. On the
other hand, the complex characteristic variety is not empty. In fact, since det(σξ) =
(ξ1)2 + (ξ2)2, it follows that ΞC

x consists of the two points [ω1 ±
√
−1 ω2]. Again,

this is in agreement with the predictions of the general theory for the dimension
and degree of ΞC

x .
A simple example of a system whose symbol relations are of this type are the

Cauchy–Riemann equations:

(48) zx −wy = zy + wx = 0.

In fact, it is easy to see that a pair of equations is elliptic in the classical sense if
and only if its symbol relations are of the type given by the subspace (26.5). Thus,
we shall refer to this type as elliptic.

The “complexity” of the characteristic variety suggests that we study the system
in a complex basis. Let us temporarily use the notation

(49)

ϑ = ϑ1 +
√
−1 ϑ2

π = π1
1 +

√
−1 π2

1

ω = ω1 +
√
−1 ω2.

Then the structure equations (46) become

(50) dϑ ≡ −π ∧ ω
dϑ̄ ≡ −π̄ ∧ ω̄

}
mod I.

In fact, if we choose an orientation for M , then these equations plus the condition√
−1 ϑ∧dϑ∧ϑ̄∧dϑ̄ > 0 uniquely specify ϑ ∈ IC up to a complex multiple. Moreover,

we have

(51)

dϑ ≡ 0
dϑ̄ ≡ −π̄ ∧ ω̄
dπ ≡ a1π̄ ∧ ω̄
dω ≡ a2π̄ ∧ ω̄

⎫⎪⎬
⎪⎭ mod {ϑ, ϑ̄, ω, π}.

Replacing ω by ω+a2ϑ̄ and π by π+a1ϑ̄, we obtain, in addition to (49), the refined
structure equations

(52) dϑ ≡ dω ≡ dπ ≡ 0 mod {ϑ, ϑ̄, ω, π}.

(Note the analogy with the hyperbolic case.) It is now an elementary matter to see
that the complex Pfaffian systemM spanned by the 1-forms {ϑ, π, ω} is well defined
on M , depending only on the elliptic Pfaffian system I and the given orientation.
(If one reverses the orientation, then the system M will be replaced by M̄.) Note
that M defines a unique almost complex structure on M for which the system M
is the space of forms of type (1, 0). By construction, the integrals of (I, Ω) are,
in the terminology of Gromov [1985], “pseudo-holomorphic curves” for the given
almost complex structure. In fact, the integrals of (I, Ω) are precisely the M-
pseudo-holomorphic curves in M which are also integrals of the complex Pfaffian
form ϑ (well-defined up to a complex multiple).
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The integrability of the almost complex structure M is the elliptic analogue
of the notion of “characteristics depending on constants” in the hyperbolic case.
By an application of the Newlander–Nirenberg theorem, it can be shown that the
necessary and sufficient condition that the system I be locally equivalent to the one
derived from the Cauchy–Riemann equations is that the system M be Frobenius (in
the complex sense). This is a geometric indication of the special place the Cauchy–
Riemann equations occupy in the study of elliptic systems for two functions of two
variables.

Case 3: r = 3.

In the case where there are 3 symbol relations, we may choose bases of I and J
as in (8)–(10) and the resulting 1-forms πa

i will satisfy 3 linear relations modulo J .
It follows that, modulo J , we may assume that all of the 1-forms πa

i are multiples
of a single 1-form π. Thus, we may write

(53) πa
i ≡ Ra

i π mod J.

The 2× 2 matrix R may be changed by pre- and post-multiplication by invertible
2×2 matrices when we change to another adapted basis of I and J . Thus, the only
invariant of R is its rank, which must be either 1 or 2. For the sake of simplicity, we
shall assume that the rank of R is constant on M . This allows us to divide Case 3
into two subcases.

Subcase 3.1: The rank of R is 1.

In this case, we may choose our bases of I and J so that the symbol relations
become

(54) π1
2 ≡ π2

1 ≡ π2
2 ≡ 0 mod J.

(Note that we are reducing modulo J , not I, at this point). It follows that the
structure equations for I can be written in the form

(55) dϑ1 ≡ −π1
1 ∧ ω1 + C1ω1 ∧ ω2

dϑ2 ≡ C2ω1 ∧ ω2

}
mod I

where C1 and C2 are smooth functions on M . Replacing π1
1 by π1

1 + C1ω2, we see
that we may assume that C1 = 0. On the other hand, we clearly cannot get rid
of the term involving C2, which represents the unabsorbable torsion. In fact, it is
clear that there are no integrals of (I, Ω) outside of the locus where C2 = 0.

If C2 �= 0, then in the generic case, C2 will vanish along a hypersurface in H
in M . This locus may be regarded as a set of 4 equations for the two unknowns
functions. We will return to this case below. We now pass on to the case where C2

vanishes identically. In this case, the structure equations (55) simplify to

(56) dϑ1 ≡ −π1
1 ∧ ω1

dϑ2 ≡ 0

}
mod I.
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Inspection shows that s′1 = 1 and s′2 = 0. Moreover, the integral elements at a
general point of M depend on 1 parameter, namely ϑa = 0 and

(57) π1
1 = λω1.

It follows that the system (I, Ω) is involution. In the real analytic case, the general
integral depends on one function of one variable.

The symbol matrix σξ at a non-zero covector ξ = ξ1ω
1 + ξ2ω

2 has the form⎛
⎝ ξ2 0

0 ξ1

0 ξ2

⎞
⎠

Consequently, σξ is injective if and only if ξ2 �= 0. Thus, at each point of M , Ξx

consists of the point [ω1].
As a point of interest, although we shall not prove it here, we remark that there

are locally only two systems of this kind up to diffeomorphisms which preserve the
Pfaffian system I. The first is described by the equations

(58) zy = wx = wy = 0

and its general solution is given by z = f(x) and w = c where f is an arbitrary
function of x and c is a constant. The second is described by

(59) zy = wx − z = wy = 0

with general solution z = f ′(x) and w = f(x) where f is an arbitrary function of x.
The difference in the two systems is that, for the former, the first derived system
I(1) is a Frobenius system while for the latter, I(1) is not a Frobenius system.

Subcase 3.2: The rank of R is 2.

This is the generic case for systems of 3 equations for two functions of two
variables. In this case we may choose bases of I and J so that the matrix R
becomes the identity matrix. Thus, the symbol relations take the form

(56) π1
1 − π2

2 ≡ π1
2 ≡ π2

1 ≡ 0 mod J.

Thus, writing τ for π1
1 , the structure equations may be written in the form

(61) dϑ1 ≡ −τ ∧ ω1 + C1ω1 ∧ ω2

dϑ2 ≡ −τ ∧ ω2 + C2ω1 ∧ ω2

}
mod I.

Replacing τ by τ + C1ω2 − C2ω1, we see that we may assume that the functions
Ca vanish identically. Thus, the torsion of this system is identically zero. The
structure equations now simplify to

(62) dϑ1 ≡ −τ ∧ ω1

dϑ2 ≡ −τ ∧ ω2

}
mod I.
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Inspection shows that s′1 = 1 and s′2 = 0. However, there is a unique integral
element of (I, Ω) at each point of M , given by ϑa = τ = 0. Thus, the system is not
involutive.

The symbol matrix σξ at a non-zero covector ξ is the 3× 2 matrix⎛
⎝ ξ1 ξ2

ξ2 0
0 ξ1

⎞
⎠ .

Consequently, σξ is always injective. Thus, the complex characteristic variety is
empty.

Since there is a unique integral element at each point of M , the prolongation
of (I, Ω) is particularly easy to compute. We may identify the space of integral
elements of (I, Ω) with M itself and the differential system I(1) is just the Pfaffian
system I+ of rank 3 which is generated by the 1-forms ϑ1, ϑ2, and τ . Since I+ is a
rank 3 Pfaffian system on a manifold of dimension 5, we know that I+ is involutive
if and only if it is a Frobenius system. By the structure equations (62), we already
know that dϑa ≡ 0 mod I+. It is clear that there exists a function C on M so that
dτ ≡ Cω1 ∧ ω2 mod I+. This function C vanishes if and only if the system I+

is differentially closed. In this case, i.e., C ≡ 0, the integrals of the system (I, Ω)
clearly depend on 3 constants. In the generic case, however, not only will C not
be identically zero, the locus where C = 0 will define a hypersurface in M which
represents yet a fourth first order equation which must be adjoined to the given
three. We will consider this case below.

As an example of this type of system of P.D.E., let us consider the problem
introduced at the beginning of this section of determining the isometries between
two metrics on regions of the plane (see the discussion in the paragraph contain-
ing equations (16) through (18). As equation (18) shows, this system falls into
Subcase 3.2. In order to investigate the closure of the related system I+, we shall
explicitly parametrize the group O(2). Recall that O(2) has two components, each
of which is diffeomorphic to a circle. Thus, the general element of O(2) can be
written in the form

(63) g =
(

cos t sin t
∓ sin t ± cos t

)
.

It then follows from equation (17) that the matrix π is skew-symmetric with upper
right-hand entry π1

2 = dt± ϕ1
2 − ψ1

2 . (The ±-sign is to be taken in agreement with
the same sign in (61).) If we set

τ = dt± ϕ1
2 − ψ1

2 ,

then the differential system I+ is generated by ϑ1, ϑ2, and τ .
We have the well-known formulae

dϕ1
2 = K(z, w)η1 ∧ η2

dψ1
2 = k(x, y)ω1 ∧ ω2,

where K is the Gauss curvature of the metric h2 and k is the Gauss curvature of
the metric h1. Using the easily computed identity η1 ∧ η2 ≡ ±ω1 ∧ ω2 mod I, we
obtain

dτ ≡ (K − k)ω1 ∧ ω2 mod I+.
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Thus, the function C = K − k plays the role of the torsion of I+. The function C
can vanish identically only if each of the functions K and k are equal to the same
constant. Thus, we recover the well-known fact that there exists a three-parameter
family of local isometries between two metrics in the plane if and only if they
each have the same constant Gauss curvature. More generally, since any integral
manifold of (I, Ω) must lie in the locus C = 0, we see that any isometry between
two such metrics must preserve their Gauss curvatures. It would be possible to
pursue the study of this system further and arrive at a complete answer to the
problem of determining when two metrics on the plane are locally isometric, but
since our interest in this problem is only in the fact that it provides an example of
a system in Subcase 3.2, we shall not go further into its analysis. Note, however,
that this problem is not generic in the above sense because the locus C = 0 actually
represents an equation of order zero relating the unknown functions z and w to the
independent variables x and y.

Case 4: r = 4.

In this case there are 4 independent relations of the form (11). This means that
we may write these relations in the form

(64) πa
i ≡

∑
Ca

ijω
j mod I.

It follows that the structure equations of I are of the form

(65) dϑa ≡ (Ca
12 −Ca

21)ω
1 ∧ ω2 mod I.

Thus, it follows that the torsion of the system is represented by the two functions
Ca = Ca

12−Ca
21. These functions vanish identically if and only if the system I is a

Frobenius system. In particular, I is Frobenius if and only if it is involutive.
At the other extreme, in the generic case, the equations C1 = C2 = 0 implicitly

define the functions z and w as functions, say f and g, of x and y. If these functions
f and g do not solve the given equations, then there is no solution.

æ

§2. Finiteness of the Web Rank.

The theory of webs had its origin in algebraic geometry and the theory of abelian
integrals. For a more detailed introduction to the theory than we provide here, the
reader should consult Chern and Griffiths [1978]. For our purposes, the following
description will suffice. Let Nn be a smooth manifold of dimension n. A d-web
of codimension r on N is a d-tuple of foliations W = (F1,F2, . . . ,Fd) on N , each
of codimension r, which satisfies the condition that the foliations Fa are pairwise
transverse. (Actually, in algebraic geometry, this transversality condition is only
supposed to hold on a dense open set in N .) Associated to each foliation Fa is
the Pfaffian system Ia of rank r consisting of those 1-forms which vanish on the
leaves of Fa. Of course, since Fa is a foliation, the Pfaffian system Ia is a Frobenius
system. For each non-negative integer p which is less than or equal to r, we let
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Ωp(Ia) denote the space of p-forms on N which may be expressed locally as sums of
products of elements of Ia. Thus, if x1

a, x2
a, . . . , x

r
a is a set of local functions whose

differentials span Ia on the domain of their definition, then every Φ ∈ Ωp(Ia) can
be expressed uniquely on this domain in the form

(66) Φ =
∑
|J|=p

fJdxJ
a

for some functions fJ . Given a d-web of codimension r, W, an abelian p-equation
for W is a d-tuple (Φ1, Φ2, . . . , Φd) where each Φa ∈ Ωp(Ia) is a closed form and
the d-tuple satisfies

(67) Φ1 + Φ2 + · · ·+ Φd = 0.

The space of all such abelian p-equations for W obviously forms a vector space
which we shall denote by Ap(W). For the webs which occur in algebraic geometry,
the dimension of this vector space is finite for global reasons. This dimension is
usually called the abelian p-rank of W, and is an important invariant of W.

It turns out that the finiteness of the abelian p-rank of W is a consequence
of our general theorems about the characteristic variety of a differential system.
In particular, the finiteness result we shall prove does not depend on any global
conditions. For simplicity, we shall restrict ourselves to a discussion of the 1-rank.
However, we will generalize the definition of web somewhat. Let us define a d-
pseudowebW on N to be a d-tuple (I1, I2, . . . , Id) of (non-singular) Pfaffian systems
on N which are everywhere transverse: (Ia)x∩(Ib)x = 0 for all x ∈ N and all a �= b.
Note that we do not assume that the Pfaffian systems Ia are Frobenius and we do
not assume that they have the same rank. Just as above, we define the vector
space of abelian 1-equations A1(N,W) to be the space of d-tuples (η1, η2, . . . , ηd)
of closed 1-forms on N with ηa ∈ Ia and satisfying

(68) η1 + η2 + · · ·+ ηd = 0.

We then have the following proposition.

Proposition 2.1. If N is connected, the dimension of A1(N,W) is finite.

Proof. Let V be a real vector space of dimension n and let U be an open neighbor-
hood in N on which there exists a V -valued coordinate system y : U → V . Let ra

be the rank of the Pfaffian system Ia and let Sa be a real vector space of dimen-
sion ra. Let Aa(y) : V → Sa be a surjective linear map (depending on y) so that
ωa = Aa(y)dy is an Sa-valued 1-form satisfying the condition that the components
of ωa span Ia|U .

Let X = Rd×(S1)∗×(S2)∗× . . .×(Sd)∗×U and let z1, z2, . . . , zd be coordinates
on the Rd-factor while pa : X → (Sa)∗ is the projection onto the (Sa)∗ factor. Let
M ⊂ X be the sub-locus defined by the n equations

(69)
∑

a

paAa = 0.

(Note that the left hand side of (4) is a function on X with values in V ∗.) Let I
denote the Pfaffian system on M which is generated by the d 1-forms ϑa where

(70) ϑa = dza − paωa = dza − (paAa)dy.
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We let I denote the differential ideal generated by I and we let Ω be the inde-
pendence condition Ω = dy1 ∧ dy2 ∧ · · · ∧ dyn. Then it is clear that (I, Ω) is in
linear form. An integral of (I, Ω) is a submanifold of M of the form za = fa(y)
and pa = ga(y) on which the forms ϑa vanish. On such an integral, the forms
ηa = ga(y)Aa(y)dy clearly satisfy (η1, η2, . . . , ηd) ∈ A(U,W). Conversely, given
(η1, η2, . . . , ηd) ∈ A(U,W), there exist unique functions ga(y) with values in (Sa)∗

so that ηa = ga(y)Aa(y)dy. Also, since each of the forms ηa is closed, there exist
functions fa, unique up to additive constants, so that ηa = dfa. It follows that the
map given by (fa, ga) �→ (ga(y)Aa(y)dy), from the integrals of (I, Ω) with domain
N to A(U,W) is a surjective vector space mapping whose kernel consists of the
vector space of dimension d given by setting all of the fa equal to constants and
the ga equal to zero. Thus, in order to show that A(U,W) has finite dimension,
it suffices to show that the space of integrals of (I, Ω) with domain N is a finite
dimensional space. In turn, in order to show this, by Theorem 3.12 of Chapter V,
it will suffice to show that the associated complex characteristic variety is empty.

To prove that the complex characteristic variety is empty, we examine the tableau
of (I, Ω). By the above description, if we let W = Rd, then the tableau at a point
m = (y, z, p) ∈ M is the space

(71) Am =
{
(taAa(y)) ∈W ⊗ V ∗

∣∣∣∑
a

taAa = 0
}

(here the variable ta runs over the vector space (Sa)∗. If ξ ∈ V ∗ were a non-zero
covector such that [ξ] were characteristic, then there would be a non-zero w ∈ W
so that w ⊗ ξ ∈ Am. Writing w = (wa), this becomes waξ = taAa for some set of
ta ∈ (Sa)∗ where the sum w1 + · · ·+ wd = 0. By this latter condition, it follows
that at least two of the wa are non-zero. However, if wa �= 0, then we clearly have
ξ ∈ A∗

a((Sa)∗) ⊂ V ∗. Since the assumption of transversality of the Pfaffian systems
Ia clearly implies that A∗

a((Sa)∗) ∩ A∗
b((Sb)∗) = 0 for all a �= b, we are lead to a

contradiction. Thus, there cannot be any (complex) characteristic covectors. Thus,
ΞC

m is empty. �
We remark that the problem of determining good upper bounds for the dimension

of A1(N,W) for a general d-web of codimension r is rather subtle, being connected
with Castelnuovo’s bound and the theory of special divisors in algebraic geometry.
See Chern and Griffiths [1978].

§3. Orthogonal Coordinates.

This example is a continuation of Example 3.2 of Chapter III and of Example 1.3
of Chapter V. We will follow the notation developed there. Recall that we are given
a Riemannian metric g on a manifold N of dimension n and we wish to know when
there exist local coordinates (called orthogonal coordinates) x1, x2, . . . , xn on N so
that the metric takes the diagonal form

(72) g = g11(dx1)2 + g22(dx2)2 + · · ·+ gnn(dxn)2.

As in Example 3.2 of Chapter III, we let F → N denote the orthonormal frame
bundle of the metric g and we let ωi, ωij = −ωji denote the canonical 1-forms on
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F . These forms satisfy the structure equations

(73)

dωi = −
∑

j

ωij ∧ ωj

dωij = −
∑

k

ωik ∧ ωkj + 1
2

∑
k,l

Rijklωk ∧ ωl.

We saw, in the aforementioned example, that our problem was equivalent to finding
integrals of the differential system I generated by the 3-forms Φi = ωi∧dωi subject
to the independence condition Ω = ω1 ∧ ω2 ∧ · · · ∧ ωn. Moreover, we saw that the
space of integral elements of (I, Ω) at a point of F was naturally an affine space
of dimension n2 − n. Namely, if {pij}i 	=j is any collection of n2 − n real numbers,
and f ∈ F is fixed, then the n)plane in TfF annihilated by the 1

2(n2 − n) 1-forms
ϑij = ωij + pijωi − pjiωj is an integral element of (I, Ω) and conversely, every
integral element of (I, Ω) based at f is of this form for some unique collection of
real numbers {pij}i 	=j .

It follows that the first prolongation of (I, Ω) may be described in the following
simple manner: Let F (1) = F × Rn(n−1) and let {pij}i 	=j be a set of (linear)
coordinates on the second factor. Then I(1) is the differential system generated by
the 1

2 (n2−n) 1-forms ϑij = ωij + pijωi− pjiωj. We may now compute the exterior
derivatives of these 1-forms as follows: First, set Ωij = dωij +

∑
ωik ∧ ωkj. Then,

we have

(74)

dϑij = dpij ∧ ωi − dpji ∧ ωj + pij ∧ dωi − pji ∧ dωj

+ Ωij −
∑

k

ωik ∧ ωkj

≡ dpij ∧ ωi − dpji ∧ ωj +
∑

k

[pijpikωi ∧ ωk − pjipjkωj ∧ ωk]

+ Ωij +
∑

k

(pikωi − pkiωk) ∧ (pjkωj − pkjωk) mod I(1)

≡ π̃ij ∧ ωi − π̃ji ∧ ωj + Ωij mod I(1)

where we have set, for all i �= j,

(75) π̃ij = dpij −
∑

k

[(pij − pkj)pikωk − 1
2
pikpjkωj ].

It follows from (74) that, on an integral manifold of I(1), the 4-form
Ωij ∧ ωi ∧ ωj must vanish for all i �= j. Recalling from the Cartan structure
equations that

(76) Ωij = 1
2

∑
k,l

Rijklωk ∧ ωl,

we see that, at any coframe f ∈ F which is part of an integrable orthonormal
coframe, we must have Rijkl(f) = 0 whenever all of i, j, k, and l are distinct.
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Of course, if n = 3, then this last condition is trivially fulfilled at all coframes
f . Moreover, we have already seen in §3 of Chapter III that when n = 3 the
system (I, Ω) is involutive on F . By the prolongation theorem of §2 of Chapter VI,
it follows that (I(1), Ω) is involutive in this dimension. Moreover, as computed
in Example 1.3 of Chapter V, the characteristic variety at each integral element
consists of 3 lines in general position.

On the other hand, if n ≥ 4, then the structure equations of the Pfaffian system
I(1) on F (1) are written in the form

(77) dϑij ≡ π̃ij ∧ ωi − π̃ji ∧ ωj + 1
2

∑
k,l

Rijklωk ∧ ωl mod I(1).

This is clearly a system in linear form. By the above remark, the torsion of this
system does not vanish at any point (f, p) ∈ F (1) where Rijkl(f) �= 0 for some
quadruple of distinct indices (i, j, k, l).

Rather than try for an exhaustive treatment, let us just consider the case where
g is a metric on M with the property that Rijkl vanishes identically as a function
on F whenever i, j, k, and l are distinct. Because this is a linear, constant coef-
ficient system of equations on the Riemann curvature tensor which must hold in
all orthonormal coframes, it follows that this condition is equivalent to assuming
the vanishing of a certain number of the irreducible components of the Riemann
curvature tensor under the action of the orthogonal group. Now it is well-known
(see Besse [1986]) that for n ≥ 4, Kn, the space of Riemann curvature tensors in
dimension n, decomposes into 3 irreducible subspaces under the action of O(n).
These subspaces correspond to the scalar curvature, the traceless Ricci curvature,
and the Weyl curvature. This gives an O(n)-invariant decomposition of a general
Riemann curvature tensor into the form

(78) Rijkl = R(δikδjl − δilδjk) + (Sikδjl − Silδjk + Sjlδik − Sjkδil) + Wijkl,

where R is a scalar, Sij = Sji and satisfies
∑

i Sii = 0, and Wijkl has the same
symmetries as the Riemann curvature tensor but in addition satisfies the trace
condition

∑
i Wijik = 0. It is clear that if W (the Weyl curvature) vanishes, then

Rijkl vanishes whenever all of the indices i, j, k, and l are distinct. Moreover, it is
not difficult to exhibit a Weyl curvature tensor which satisfies W1234 �= 0. It follows
that the necessary and sufficient condition that Rijkl vanish identically in all frames
whenever i, j, k, l are distinct is that the Weyl component of the curvature be zero.
Thus, we shall assume W ≡ 0 from now on. It is not difficult to show that when
n ≥ 4 this condition is equivalent to the condition that the metric g be conformally
flat (see Besse [1986]).

Since we are assuming that the Weyl curvature is zero, we have the formula

(79) Rijkl = Hikδjl −Hilδjk + Hjlδik −Hjkδil

where, for simplicity, we have set Hij = Sij + 1
2
Rδij . This gives the following simple

formula for the curvature form Ωij :

(80) Ωij =
∑

k

[Hikωk ∧ ωj −Hjkωk ∧ ωi].
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It follows that by writing πij for π̃ij −
∑

k Hjkωk for i �= j, the structure equations
for I(1) simplify to the equations

(81) dϑij ≡ πij ∧ ωi − πji ∧ ωj mod I(1).

Thus, the torsion of I(1) is zero whenever the Weyl tensor vanishes identically.
We are now going to show that the system (I(1), Ω) is involutive. We begin by

calculating the space of integral elements of (I(1), Ω). On an integral element of
(I(1), Ω) at a given point of F (1), the 2-forms
πij ∧ ωi − πji ∧ ωj must vanish even though the 1-forms ωi must remain linearly
independent. It follows, in particular, that πij ∧ωi ∧ωj must vanish also whenever
i �= j. Thus, on any integral element E, πij must be a linear combination of the
two 1-forms ωi and ωj. Let us write

(82) πij = Aijωi + Bijωj

for this linear relation which holds on E. Substituting (82) into the 2-form πij ∧
ωi−πji∧ωj yields the 2-form (Bij +Bji)ωi∧ωj. Thus, it follows that the matrix B
must be skew-symmetric. Conversely, if Aij and Bij = −Bji are any collection of
3
2 (n2 − n) numbers (remember that we always have i �= j), then the relations (82)
and the conditions ϑij = 0 clearly suffice to define an integral element of (I(1), Ω)
at every point of F (1). Thus, the space of integral elements of (I(1), Ω) at each
point of F (1) is an affine space of dimension 3

2
(n2 − n).

To complete the proof of involutivity, it will suffice to show that we have s′1 =
s′2 = 1

2(n2 − n) while s′k = 0 for all k > 2. We will do this by explicitly computing
the polar equations for a pair of vectors v and w lying in the integral element
E. Let e1, e2, . . . , en be the basis of E which is dual to ω1, ω2, . . . , ωn. Let v =
a1e1 + · · ·+ anen and w = b1e1 + · · ·+ bnen where ak, bk are (at the moment) an
arbitrary set of 2n numbers. The polar equations of the zero-dimensional subspace
E0 ⊂ E are clearly the 1-forms ϑij. Thus, we have s′0 = 1

2(n2 − n). The polar
equations of the 1-dimensional subspace E1 ⊂ E which is spanned by v consists of
the forms ϑij and forms αij which satisfy αij ≡ aiπij − ajπji mod ω. As long as
none of the numbers ai are zero, the rank of the polar equations of E1 is clearly
(n2 − n). It follows that we must have s′1 = 1

2
(n2 − n). Now let E2 ⊂ E be the

vector space spanned by v and w. (In order for this space to be of dimension 2,
we must have aibj − ajbi �= 0 for at least one pair i �= j). The polar equations
of E2 are spanned by the forms ϑij, the forms αij, and 1-forms βij which satisfy
βij ≡ biπij − bjπji mod ω. It follows that if aibj − ajbi �= 0 for all pairs i �= j,
then the rank of the polar equations of E2 will be 3 · 1

2 · (n2 − n). Of course, this
implies that s′2 = 1

2
· (n2 − n) and that s′k = 0 for all k > 2 (since 3 · 1

2
· (n2 − n) is

the codimension of E itself). Thus, (I(1), Ω) is involutive.
It is interesting to compute the characteristic variety of this differential system.

Appealing to Theorem 3.2 of Chapter V, we see that since s′2 = 1
2 · (n2 − n) and

s′k = 0 for all k > 2, it follows that the characteristic variety is a curve of degree
1
2 ·(n2−n) in RPn−1. From the above computation of the characters, it follows that
a 2-plane E2 ⊂ E is regular if and only if it has a basis v and w as above satisfying
the condition aibj − ajbi �= 0 for all pairs i �= j. In other words, E2 is regular if
and only if the 2-forms ωi ∧ ωj are non-zero for all i �= j. It follows immediately
that a covector ξ = ξ1ω1 + · · ·+ ξnωn is characteristic if and only if it is of the form
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ξ = ξiωi + ξjωj for some pair (i, j). Thus, the characteristic variety consists of the
1
2 · (n2 − n) lines joining the n points [ωi] ∈ P(E∗).

In closing, we note that since every metric in dimensions greater than 3 for which
the Weyl tensor vanishes is conformally flat, and since a conformal change of metric
does not change the status of orthogonal coordinates, we see that in the case where
the Weyl curvature vanishes, we may assume that the metric g is actually flat. In
particular, we may assume that the metric is real analytic. Then the Cartan–Kähler
theorem may be applied to show that the space of local orthogonal coordinates on
flat space depends on 1

2 · (n2− n) functions of two variables. Note also that, as the
theory predicts, the characteristic variety restricted to any solution is integrable.
In fact, if x1, x2, . . . , xn are local orthogonal coordinates, then the characteristic
hypersurfaces are those on which some pair of functions xi, xj become functionally
dependent.

§4. Isometric Embedding.

In §3 of Chapter III, we applied differential systems to prove the Cartan–Janet
embedding theorem. This theorem asserts that if g is a real analytic metric on a
manifold N of dimension n, then g can be locally induced by local embeddings into
the Euclidean space En+r for any
r ≥ 1

2 · n · (n − 1). In this section, we develop the application of differential
systems to the study of the isometric embedding problem in the “overdetermined”
case r < 1

2 · n · (n − 1). Here, prolongation and the characteristic variety play an
important role.

We shall adopt a slightly different approach to isometric embedding than that
in Chapter III. There, we chose specific framings of various manifolds in order to
avoid the complications which would have been induced into the calculations by the
variable framings. Here, in order to simplify calculation of the characteristic variety
and other geometric quantities, we will employ a more invariant formulation. We
begin by reviewing the structure equations of a Riemannian metric. We shall adopt
the index ranges

1 ≤ i, j, k ≤ n

n + 1 ≤ a, b, c ≤ n + r

1 ≤ A, B, C ≤ n + r.

Let g be a Riemannian metric on a manifold N of dimension n. Let x : F →
N be the orthonormal frame bundle on N which consists of (n + 1)-tuples f =
(x; e1, e2, . . . , en) where x ∈ N and e1, e2, . . . , en is an orthonormal basis of TxN .
Of course, the group O(n) acts on F on the right in the usual way and makes F
into a principal right O(n)-bundle over N . The tautological 1-forms ωi on F are
defined by setting ωi(v) = g(x∗(v), ei) for all v ∈ TfF with f = (x; e1, e2, . . . , en).
The Levi–Civita connection forms on F are the unique 1-forms ωij = −ωji which
satisfy the first structure equation of Cartan

(83) dωi = −
∑

j

ωij ∧ ωj.
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These forms also satisfy the second structure equations of Cartan

(84) dωij = −
∑

k

ωik ∧ ωkj + 1
2

∑
k,l

Rijklωk ∧ ωl

where the functions Rijkl are well defined on F and satisfy the symmetries

(85)
Rijkl = −Rjikl = −Rijlk

Rijkl + Riklj + Riljk = 0.

Just as in §3 of Chapter III, we shall regard the functions Rijkl as the components
of a function R which takes values in the vector space Kn ⊂ Λ2(Rn) ⊗ Λ2(Rn)
defined by the symmetries (85). Of course, the group O(n) acts linearly on Kn in
the obvious way and the map R : F → Kn is equivariant.

Let En+r be given its standard metric, and let F(En+r) denote the orthonormal
frame bundle of En+r. We shall denote elements of F(En+r) as f = (y; e1, e2, . . . , en+r).
Of course, the group O(n + r) acts on the right on F(En+r) and makes it into a
principal right fiber bundle over En+r. We shall denote the tautological forms on
F(En+r) by ηA and the associated Levi–Civita forms by ηAB = −ηBA. Since En+r

is flat, these forms satisfy the structure equations

(86)

dηA = −
∑
B

ηAB ∧ ηB

dηAC = −
∑
B

ηAB ∧ ηBC .

Let M be the manifold of 1-jets of isometries from N to En+r. Thus, an element
of M consists of a triple m = (x, y, l) where x ∈ N , y ∈ En+r, and l : TxN →
TyEn+r is a linear map which is an isometry onto its image. We can embed M
into Gn(T (N × En+r)) by letting m = (x, y, l) correspond to the n-plane E =
{(v, l(v)) | v ∈ TxN} which lies in T(x,y)(N ×En+r). The canonical Pfaffian system
on Gn(T (N × En+r)) then restricts to M to be the Pfaffian system I0 of rank
n + r which we wish to study. We let J0 be the canonical independence bundle. It
contains I0 and is of rank 2n + r. In fact, J0 is the bundle of semi-basic 1-forms
for the projection M → N × En+r.

The difficulty of working directly with the Pfaffian system I0 on M is that there
is no canonical set of generators for I0 on M . To remedy this, consider the product
manifold F × F(En+r). There is a canonical projection q : F × F(En+r) → M
defined by letting q(f, f ) be the triple (x, y, l) where x ∈ N is the base point of f ,
y ∈ En+r is the base point of f , and l : TxN → TyEn+r is the linear map which
satisfies l(ei) = ei. Let O(n) × O(r) be the subgroup of O(n + r) which preserves
the n-plane spanned by the first n elements of a given orthonormal basis of En+r.
The group O(n) × O(r) acts on F × F(En+r) by the diagonal action in the O(n)-
factor and in the standard way in the O(r)-factor. It is clear that the orbits of
O(n)×O(r) are the fibers of q. Thus, F×F(En+r) has the structure of a principal
right O(n) ×O(r)-bundle over M .

It is easy to see that the Pfaffian system I0 on M pulls back up to F×F(En+r) to
be spanned by the 1-forms {ηi−ωi | 1 ≤ i ≤ n} and the 1-forms {ηa | n < a ≤ n+r}.
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Let I0 denote the differential system generated by I0 on either M or F ×F(En+r).
The structure equations above give the formulas

(87)

d(ηi − ωi) ≡ −
∑

j

(ηij − ωij) ∧ ωj

dηa ≡ −
∑

j

ηaj ∧ ωj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ mod I0

which make clear the fact that, on F ×F(En+r), the orbits of O(n)×O(r) are the
Cauchy leaves of I0. Moreover, the independence condition on M pulled up to F ×
F(En+r) can be represented by the n-form Ω =
ω1 ∧ ω2 ∧ · · · ∧ ωn. To include the Cauchy characteristics, we shall define an
augmented independence condition on F × F(En+r) by letting Ω+ be the form
of degree n+ = n + 1

2n(n− 1) + 1
2r(r − 1) obtained by wedging together the forms

ωi, {ωij | i < j}, and the forms {ηab | a < b}.
It is now easy to see that every n+-dimensional integral element E+ of (I0, Ω+) on

F×F(En+r) pushes down to M to be an n-dimensional integral element E = q∗(E+)
of (I0, Ω). Conversely, for every point (f, f ) ∈ F×F(En+r) in the fiber over m ∈M ,
the inverse image of an integral element E ⊂ TmM of (I0, Ω) is an integral element
E+ = q−1

∗ (E) ⊂ T(f,f )F ×F(En+r) of (I0, Ω+).
By the equations (87), the integral elements of (I0, Ω+) based at a point (f, f ) ∈

F ×F(En+r) are parametrized by a collection of 1
2 (n2 + n)r numbers h = (haij) =

(haji) in the following way: For each such collection, the n+-plane which is anni-
hilated by the 1-forms of I0 together with the 1-forms ηij − ωij and the 1-forms
ηai − haijωj is an integral element of (I0, Ω+) and, conversely, every integral ele-
ment of (I0, Ω+) is of this form. Thus, the space Vn(I0, Ω+) of integral elements of
(I0, Ω+) is diffeomorphic to the product F×F(En+r)×(Rr⊗S2(Rn)). Accordingly,
we shall denote the elements of Vn(I0, Ω+) by triples (f, f, h).

Now, the group O(n) × O(r) acts in the obvious way on the vector space Rr ⊗
S2(Rn). If we let O(n)×O(r) act on F×F(En+r)×(Rr⊗S2(Rn)) by the consequent
natural diagonal action, then the quotient will clearly be the space of integral
elements of (I0, Ω) on M . Thus,

M (1) = (F × F(En+r) × (Rr ⊗ S2(Rn)))/O(n) ×O(r).

Geometrically, we may represent the elements of M (1) as quadruples (x, y, l, H)
where (x, y, l) ∈ M is as before and H : S2(TxN) → (l(TxN))⊥ is a linear map.
Here, (l(TxN))⊥ is the r-dimensional vector space which is perpendicular to l(TxN)
in TyEn+r. As to be expected, the elements of M (1) are identifiable with the 2-jets
of smooth maps which are isometries up to first order.

For simplicity, we shall denote by I (instead of I
(1)
0 ) the Pfaffian system which

is generated on F × F(En+r) × (Rr ⊗ S2(Rn)) by the 1-forms ϑi, ϑa, ϑij = −ϑji,
and ϑai where

(88)

ϑi = ηi − ωi

ϑa = ηa

ϑij = ηij − ωij

ϑai = ηai −
∑

j

haijωj.
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Of course, I is also well-defined as a Pfaffian system on M (1) and moreover, the
Cauchy leaves of I on F × F(En+r) × (Rr ⊗ S2(Rn)) are the orbits of the group
O(n)×O(r). We let I denote the differential system generated by I on either M (1)

or F × F(En+r)× (Rr ⊗ S2(Rn)).
The structure equations of I are easily obtained in the form

(89)

dϑi ≡ dϑa ≡ 0

dϑij ≡ 1
2Tijklωk ∧ ωl

dϑai ≡ −
∑

j

πaij ∧ ωj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

mod I

where the forms πaij = πaji are given by the formula

(90) πaij = dhaij −
∑

k

[hakjωki + haikωkj] +
∑

b

hbijηba.

and the functions Tijkl are given by the formulas

(91) Tijkl =
∑

a

[haikhajl − hailhajk]− Rijkl.

It is clear from (89) that there are no integral elements of (I, Ω+) at points of
F × F(En+r) × (Rr ⊗ S2(Rn)) where any of the functions Tijkl are non-zero (the
functions Tijkl represent non-absorbable torsion).

The usual prescription for continuing the prolongation process at this point is to
restrict to the subspace of F ×F(En+r)× (Rr ⊗S2(Rn)) where all of the functions
Tijkl vanish. If we let Z ⊂ F × F(En+r) × (Rr ⊗ S2(Rn)) denote the locus of
common zeros of the collection of functions

T = {Tijkl | 1 ≤ i, j, k, l ≤ n},

and let q(Z) ⊂ M (1) denote its image in M (1), then q(Z) represents the 2-jets of
mappings of N to En+r which induce an isometry to first order and which satisfy
the Gauss equations Tijkl = 0. (Note that, from a given 2-jet of an immersion
into Euclidean space, one can only compute the 1-jet of the induced metric. The
Gauss equations demonstrate the remarkable fact that, even though one needs
the the full 3-jet of the immersion to compute the full 2-jet of the metric, the
Riemannian curvature tensor of the induced metric (which depends only on partial
2-jet information) can be computed using only the 2-jet of the immersion.)

Unfortunately, Z will not, in general, be a smooth manifold. To avoid this
difficulty, we shall restrict our attention to a more manageable subspace. Let Z ⊂ Z
denote the subspace consisting of the ordinary zeros of the collection T . (Recall
that if P is a smooth manifold and P is a collection of smooth functions on P , then
a point p ∈ P is called an ordinary zero of the collection P if there exists an integer
k, an open neighborhood U of p, and a set of functions f1, f2, . . . , fk ∈ P whose
differentials are linearly independent on U which have the property that an element
q ∈ U is a simultaneous zero of all of the functions in P if and only if it is is a zero of
the functions f1, f2, . . . , fk. The integer k is, of course, the codimension of the zero
locus of the functions in P at p.) Moreover, since we are only interested in integrals
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of (I, Ω+), we may as well restrict to Z∗ ⊂ X, the open subset of Z on which the
form Ω+ is non-zero. Assuming that Z∗ is non-empty (as it will be in many of
the specific examples below), we can study the restriction of the differential system
(I, Ω+) to Z∗. Note that since the collection T and the form Ω+ are invariant (up
to sign) under the action of the group O(n) × O(r), it follows that Z and Z∗ are
invariant under this action and thus are unions of its orbits. Let Y ⊂ M (1) be the
image of Z under the quotient mapping. Then Y is a smooth submanifold of M (1).
Moreover, if Y ∗ ⊂ Y is the open subset where Ω does not vanish, then Y ∗ is clearly
the image of Z∗ under the quotient map. In fact, Z∗ is an O(n)×O(r)-bundle over
Y ∗.

In order to study the restriction of the Pfaffian system I to Z∗ or Y ∗, we shall
need some information about the differentials of the functions in T . Let us set

(92) τijkl = dTijkl −
∑
m

[Tmjklωmi + Timklωmj + Tijmlωmk + Tijkmωml].

The structure equations (84) can be differentiated to yield the following formula
for the derivative of Rijkl

dRijkl =
∑
m

[Rmjklωmi + Rimklωmj + Rijmlωmk + Rijkmωml + Rijklmωm].

where the functions Rijklm are uniquely specified by this formula and represent the
components of ∇R, the covariant derivative of the Riemann curvature tensor. If we
regard hij = (haij) as an Rr-valued function on F ×F(En+r)× (Rr ⊗S2(Rn)) and
use the standard inner product on Rr , then the formula for Tijkl can be simplified
to the formula

Tijkl = hik · hjl − hil · hjk −Rijkl.

It follows that if we let πij = (πaij) denote the corresponding Rr-valued 1-form,
then the formula for the differentials of the functions Tijkl can be written in the
form

(93) τijkl = hik · πjl − hil · πjk + πik · hjl − πil · hjk −
∑
m

Rijklmωm.

On Z, we have dTijkl = τijkl. If C is the codimension of Z in F×F(En+r)×(Rr⊗
S2(Rn)) at (f, f , h) ∈ Z, then exactly C of the forms τijkl are linearly independent
at (f, f , h) and the vanishing of the C corresponding functions Tijkl suffice to define
Z in a neighborhood of (f, f , h). Moreover, since Z∗ is an open subset of Z, it follows
that, if (f, f , h) ∈ Z∗, then these C 1-forms must be linearly independent from the 1-
forms ωi. In particular, at points of Z∗, the number of linearly independent 1-forms
among the τijkl is the same as the number of linearly independent 1-forms among
the τijkl mod {ω1, . . . , ωn}. This latter rank clearly depends only on the “second
fundamental form” h. This justifies the following terminology: We shall speak of
Y ∗ as the space of 2-jets of isometric immersions with ordinary second fundamental
form. The local isometric embeddings of N into En+r which correspond to integrals
of I on Z∗ will be referred to as ordinary isometric embeddings. We now proceed
to investigate the ordinary isometric embeddings.

Upon restriction to Z∗, the new relations on the forms in the coframing

ϑi, ϑa, ϑij, ϑai, πij, ωi, ωij, ηab
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will all be generated by setting the differentials of the Tijkl equal to zero. Since, on
Z, we have dTijkl = τijkl, it follows that the structure equations of I on Z∗ are

(94)

dϑi ≡ dϑa ≡ 0

dϑij ≡ 0

dϑai ≡ −
∑

j

πaij ∧ ωj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

mod I

where the relations on the forms πij are spanned by πij = πji and

(95) hik · πjl − hil · πjk + πik · hjl − πil · hjk ≡
∑
m

Rijklmωm mod I.

Of course, one does not expect this system to be involutive in general. For one
thing, we have not yet made any assumption about r, the embedding codimen-
sion. However, we can already gain some useful information about the isometric
embedding problem by examining the characteristic variety of the symbol relations
(95).

Assume that E is an integral element of (I, Ω) at a point (x, y, l, H) of Y ∗.
We want to compute the condition that a covector ξ ∈ E∗ be characteristic. Let
(f, f , h) ∈ Z∗ be an element which lies over (x, y, l, H) and has the property that
ξ(q∗(v)) = λωn(v) for some non-zero real number λ and every v ∈ E+ where
E+ = q−1

∗ (E) is the associated integral element of (I, Ω+) on Z∗. Since O(n) acts
transitively on the unit sphere in Rn, such an element (f, f , h) clearly exists. The
annihilator of E+ is spanned by the 1-forms in I together with some Rr-valued
1-forms

(96) ψij = ψji = πij −
∑

k

hijkωk,

where the vectors hijk = hjik = hikj in Rr satisfy the equations

(97) hik · hjlm − hil · hjkm + hjl · hikm − hjk · hilm = Rijklm(f).

The polar equations of the hyperplane ωn = 0 in E+ are spanned by the 1-forms
in I together with the 1-forms Ψ = {ψij | i < n and i ≤ j}. It follows that this
hyperplane is characteristic if and only if not all of the components of the 1-form
ψnn can be obtained as linear combinations of the components of the forms in Ψ.
Now, because Z∗ is an open subset of the space of ordinary zeros of the functions
T , aside from the symmetry ψij = ψji, the only relations among the forms ψij are

(98) hik · ψjl − hil · ψjk + hjl · ψik − hjk · ψil = 0.

All of the relations in (98) which involve ψnn in a non-trivial way can be obtained
by letting i and k be strictly less than n and setting j and l equal to n. This gives
rise to the relations

(99) hik · ψnn ≡ 0 mod Ψ
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for all pairs i and k which are strictly less than n. This set of relations implies
ψnn ≡ 0 mod Ψ if and only if the set of vectors {hij | i, j < n} spans the entire
vector space Rr. Thus, the hyperplane ωn = 0 in E+ is characteristic if and
only if, when we regard h as a quadratic form h =

∑
i,j hijωi ◦ ωj with values

in Rr , there exists a non-zero vector w ∈ Rr so that w · h is a multiple of ωn.
Translating this into a statement about the original integral element E of (I, Ω)
based at (x, y, l, H) ∈ Y ∗, we see that, after we make the natural identification
E ∼= TxN , a covector ξ ∈ E∗ is characteristic if and only if there exists a non-zero
vector w ∈ (l(TxN))⊥ so that w ·H = λ ◦ ξ for some λ ∈ E∗. We record this as the
following fundamental proposition.

Proposition 4.1. If E is an integral element of (I, Ω) based at (x, y, l, H) in Y ∗,
then a covector ξ ∈ E∗ is characteristic if and only if there exists a non-zero vector
w ∈ (l(TxN))⊥ so that w ·H = λ ◦ ξ for some λ ∈ E∗.

Of course, Proposition 4.1 can be applied directly only to the cases where the
system (I, Ω) has been shown to be involutive. However, as discussed in Chap-
ter V, the characteristic variety can only decrease in size when one prolongs. Thus,
Proposition 4.1 serves as an important means of deriving an “upper bound” for the
characteristic variety.

Proposition 4.1 also serves as motivation for the definition of a sort of charac-
teristic variety associated to any “second fundamental form.” Thus, let W be any
r-dimensional Euclidean vector space and let V be any n-dimensional real vector
space. Given an element H ∈ W ⊗ S2(V ∗), which we may regard as a quadratic
form on V with values in W , we define ΞH ⊂ PV ∗ by the condition that [ξ] ∈ ΞH if
and only if there exists some non-zero w ∈ W so that w ·H = λ◦ ξ for some λ ∈ V ∗

(note that we do not require λ to be non-zero). By tensoring with C, we may define
the associated complex variety ΞC

H . It will also be useful to let |H | ⊂ S2(V ∗) denote
the linear subspace spanned by the quadratic forms w · H as w ranges over all of
W .

As a first application of Proposition 4.1, we consider the “underdetermined” case
when r > 1

2n(n− 1).

Proposition 4.2. If r > 1
2n(n− 1), then ΞH = PV ∗ for all H ∈ W ⊗ S2(V ∗).

Proof. Note first that if dim |H | < r, then there exists a vector w ∈ W so that
w·H = 0 and hence every covector is characteristic. On the other hand, if dim |H | =
r, then for every non-zero ξ ∈ V ∗, the linear space (ξ) = {λ◦ ξ | λ ∈ V ∗} must have
non-trivial intersection with |H | for dimension reasons. Thus, again, every covector
in V ∗ must be characteristic. �

The “determined” case is also quite interesting:

Proposition 4.3. If r = 1
2n(n − 1), then for all H ∈ W ⊗ S2(V ∗), ΞC

H is either
all of P(V C)∗ or else is an algebraic hypersurface in P(V C)∗ of degree n. Moreover,
if n > 2, then the real characteristic variety ΞH is never empty.

Proof. Again, if dim |H | < r, then every covector is characteristic and there is
nothing to prove. Thus, we may assume for the rest of the proof that dim |H | = r.
Let h1, h2, . . . , hr be a basis of |H | ⊂ S2(V ∗). Let x1, x2, . . . , xn be a basis of
V ∗ and let ξ =

∑
i ξix

i be a general element of V ∗ where we regard the ξi as
variables. Since S2(V ∗) is of dimension r + n, let ∆ be a basis of Λr+n(S2(V ∗)).
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Then there exists a homogeneous polynomial P (ξ1, ξ2, . . . , ξn) of degree n (with
real coefficients) so that

(100) h1 ∧ h2 ∧ · · · ∧ hr ∧ (ξ ◦ x1) ∧ (ξ ◦ x2) ∧ · · · ∧ (ξ ◦ xn) = P (ξ)∆.

Clearly, [ξ] ∈ P(V C)∗ is characteristic if and only if P (ξ) = 0. The stated properties
of ΞC

H now follow immediately.
To show that ΞH is non-empty whenever n > 2, let us set Q = S2(V ∗)/|H |.

Then Q a real vector space of dimension n. For any element b of S2(V ∗), let us
let [[b]] ∈ Q denote its reduction mod |H |. Suppose now that ΞH were empty.
Then for any two non-zero elements α, β ∈ V ∗, we must have α ◦ β /∈ |H | and thus
[[α ◦ β]] �= 0. It follows that if we define µ : V ∗ × V ∗ → Q by µ(α, β) = [[α ◦ β]],
then µ is a symmetric multiplication without zero divisors. Thus, if we choose any
non-zero e ∈ V ∗, then we may define a V ∗-valued product α ◦ β by letting α ◦ β
be the unique element of V ∗ which satisfies µ(e, α · β) = [[α ◦ β]]. This product
defines the structure of a commutative (though not necessarily associative) algebra
on V ∗. By construction, this algebra has a unit e and has no zero divisors. By
the commutativity of V ∗, it follows that we may choose a basis of V ∗ in which all
of the maps mα : V ∗ → V ∗ given by mα(β) = α · β are simultaneously in (real)
Jordan canonical form. From this, it immediately follows that these maps cannot
all be invertible unless n ≤ 2. �

Note that in the case n = 2, we have r = 1. Thus |H | consists of the multiples
of a single quadratic form on V , say b. If b is positive (or negative) definite, then
b = ±ξ ◦ ξ̄ where ξ is a complex-valued 1-form on V . Thus, in this case, ΞH consists
of the two (non-real) points {[ξ], [ξ̄]} in P(V C)∗. The case of isometric embedding
when n = 2 and r = 1 has been discussed rather thoroughly in Chapters IV and V.
We shall not discuss it further here.

It is interesting to remark that considerations from algebraic geometry allow us
to compute the dimension and degree of ΞC

H for “generic” H . The dimension is easy:
Since we have already treated the other cases, we may assume that r < 1

2n(n− 1).
Then for generic H ∈ W ⊗ S2(V ∗), we will have dim |H | = r, and |H | will be a
generic r-plane in S2(V ∗). The cone C ⊂ S2(V ∗) which consists of quadratic forms
of rank 2 or less is a singular cone of dimension 2n − 1. For dimension reasons, if
r + 2n − 1 ≤ 1

2
n(n + 1) = dimS2(V ∗), then for generic H , |H |C ∩ CC = {0}. It

then follows from Proposition 4.1 that if r ≤ 1
2 (n− 1)(n− 2) then, for generic H ,

ΞC

H = ∅. If r = k +1+ 1
2
(n−1)(n−2) where 0 ≤ k < n−1, then the above general

position argument shows that, again for generic H , dimΞC
H = k.

The degree of ΞC

H is somewhat more difficult to compute. We shall not reproduce
the argument here, instead we refer the reader to Bryant, Griffiths and Yang [1983],
where it is shown that, for generic H ,

deg ΞC

H =
(

2n− 2− k
n− 1

)
.

Returning to the case r = 1
2n(n−1), let us say that an element H ∈W ⊗S2(V ∗)

is non-degenerate if ΞH is not all of PV ∗. Note that the condition of non-degeneracy
depends only on the subspace |H | ⊂ S2(V ∗). In order to have non-degeneracy, |H |
must have dimension r. Moreover, as (100) shows, the coefficients of P (ξ) are linear
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in the Plücker coordinates of the subspace |H | in Gr(S2(V ∗)). It follows that the
set of non-degenerate elements of W ⊗S2(V ∗) is an open subset U in W ⊗ S2(V ∗).
We can say more. Suppose that H ∈ W ⊗ S2(V ∗) is non-degenerate and that
ξ ∈ V ∗ is non-characteristic for H . Let x1, x2, . . . , xn be a basis of V ∗ with the
property that ξ = xn. We may expand H in the form H =

∑
i,j hijx

i ◦xj where the
hij = hji are vectors in W . It follows immediately that the hypothesis that ξ not
be characteristic is equivalent to the condition that the r vectors {hij | i ≤ j < n}
be linearly independent. This leads to the following important observation.

Recall that K(V ) ⊂ Λ2(V ∗) ⊗ Λ2(V ∗), the space of Riemann curvature tensors
on V is defined to be the kernel of the natural map from Λ2(V ∗) ⊗ Λ2(V ∗) to
V ∗ ⊗ Λ3(V ∗) obtained by “skew symmetrizing on the last three indices.” (When
V is explicitly identified as Rn, we use the already established notation Kn instead
of K(Rn).) It is well known that K(V ) is actually a subspace of S2(Λ2(V ∗)) ⊂
Λ2(V ∗) ⊗ Λ2(V ∗) and has dimension n2(n2 − 1)/12. There is a natural map γ :
W ⊗ S2(V ∗)→ K(V ) which is defined in indices by setting

(101) γ(H)ijkl = hik · hjl − hil · hjk

where we have expanded H in indices as H =
∑

i,j hijx
i ◦ xj . It is important to

note that, since no inner product on V is used in the definition of γ, this map is
equivariant under the action of the group O(W )×GL(V ). We shall return to this
point later.

Referring to Lemma 3.10 of Chapter III, we have the proposition

Proposition 4.4. If r = 1
2
n(n−1) and U ⊂W ⊗S2(V ∗) is the open set consisting

of non-degenerate elements, then γ : U → K(V ) is a surjective submersion.

This leads to the following strengthening of Theorem 3.11 of Chapter III.

Proposition 4.5. If r = 1
2n(n − 1) and Z ⊂ F × F(En+r) × (Rr ⊗ S2(Rn)) is

the set of zeros of the collection T = {Tijkl}, then ZU = Z ∩ (F × F(Cn+r) × U)
consists entirely of ordinary zeros of T . Moreover, ZU is an open subset of Z∗

on which the differential system (I, Ω+) is involutive with Cartan characters sp =
1
2n(n− p)(n − p + 1) for p ≤ n on the open subset ZU/(O(n)×O(r)) ⊂ Y ∗.

Proof. The function T : F × F(En+r) × (Rr ⊗ S2(Rn)) → Kn with components
Tijkl can be written in the form T = γ−R where γ : Rr ⊗ S2(Rn)→ Kn is defined
above and R : F → Kn is the Riemann curvature tensor. Since γ is a surjective
submersion when restricted to U ⊂ Rr ⊗ S2(Rn), it follows that T is a surjective
submersion when restricted to F×F(En+r)×U . Of course, this immediately implies
that any zero of T which lies in F × F(En+r) × U must be an ordinary zero of T .
This establishes that ZU ⊂ Z. Moreover, since T is a surjective submersion when
restricted to any fiber of the form {f} × {f} × U , it follows that the projection
ZU → F × F(En+r) is a surjective submersion. Thus, it follows that Ω+ does not
vanish on ZU . In particular, ZU ⊂ Z∗.

The proof of Theorem 3.11 can now easily be adapted to show that ZU is a open
submanifold of the space of ordinary integral elements of the differential system with
independence condition (Io,+, Ω+) on F × F(En+r), where Io,+ is the differential
ideal generated by the 1-forms in Io together with the 1-forms ϑij = ηij − ωij.
Moreover, that proof further shows that (Io,+, Ω+) is involutive on F × F(En+r)
with Cartan characters s̄p = 1

2
n(n − p) for p ≤ n and s̄p = 0 for n < p ≤ n+.
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Thus, the differential system (I, Ω+) on ZU is seen to be (an open subset of)
the ordinary prolongation of the involutive system (Io,+, Ω+). By Theorem 2.1
of Chapter VI, it follows that (I, Ω+) is involutive on ZU with Cartan characters
sp = 1

2
n(n− p)(n − p + 1) for p ≤ n and sp = 0 for n < p ≤ n+. The remainder of

the proposition now follows upon quotienting by the Cauchy leaves. �
Combining Propositions 4.3–5, we arrive at the following result for isometric

embedding in the determined case r = 1
2
n(n− 1).

Theorem 4.6. The differential system for isometrically embedding a given met-
ric on Nn into the Euclidean space of dimension n + 1

2
n(n − 1) = 1

2
n(n + 1) in

such a way that the second fundamental form is non-degenerate is an involutive
differential system with independence condition (I, Ω) on the manifold of 2-jets of
immersions of Nn into En(n+1)/2 which are infinitessimal isometries, satisfy the
Gauss equations, and induce non-degenerate second fundamental forms. Moreover,
the characters of this system are sp = 1

2n(n− p)(n − p + 1) for all p ≤ n.

Given such a non-degenerate isometric immersion, u : N → En(n+1)/2, the com-
plex characteristic variety ΞC

x ⊂ P(T C
x N) is an algebraic hypersurface of degree n.

Moreover, if n ≥ 3, then the real characteristic variety Ξx is non-empty for all
x ∈ N .

Proof. Omitted. �
Note that, as a consequence of the non-emptyness of the real characteristic va-

riety when n ≥ 3, it follows that the determined isometric embedding problem is
never elliptic for n ≥ 3, a result first noted by Tanaka [1973].

However, this does not mean that the isometric embedding problem in the
smooth category is out of the reach of analysis when n ≥ 3. In fact, in Bryant,
Griffiths and Yang [1983], it is shown that a careful study of the characteristic
variety when n = 3 can be coupled with the Nash–Moser Implicit Function The-
orem to prove the existence of a smooth isometric embedding N3 ↪→ E6 in some
neighborhood of any point x ∈ N for which the Riemann curvature tensor is suit-
ably non-degenerate. By applying more subtle results from the theory of P.D.E. of
principal type, Yang and Goodman have been able to weaken this non-degeneracy
assumption to the assumption that the Riemann curvature tensor be non-zero at
x. At present, it is unknown whether there exists a local embedding on a neigh-
borhood of a point where the Riemann curvature tensor vanishes. The analytical
difficulties are similar to (but more complicated than) the difficulties one faces in
trying to isometrically embed an abstract surface N2 into E3 on a neighborhood of
a point where the Gauss curvature vanishes. Also, Yang has some results on smooth
solvability in the case n = 4. These results depend on the theory of P.D.E. of real
principal type and show existence of an isometric embedding in a neighborhood of
a point x ∈ N4 where the metric satisfies some open condition on a finite jet of
the metric at that point. For more details, see Goodman and Yang [1990]. In the
cases n ≥ 5, the analysis is complicated by the fact that the characteristic variety
is generally no longer smooth (Bryant, Griffiths and Yang [1983]).

We now turn to the overdetermined cases r < 1
2n(n − 1). In these cases, the

Gauss equations represent non-trivial obstructions to isometric embedding. For
example, when n = 2, isometric embeddings satisfying the condition r = 0 exist
only when the Gauss curvature of the metric g vanishes identically. Since we have
already dealt with this case in §1, we shall henceforth assume that n > 2.
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A fundamental part of the problem is to study the mapping
γ : W ⊗ S2(V ∗)→ K(V ). Since the dimensions of S2(V ∗) and K(V ) are 1

2n(n + 1)
and n2(n2 − 1)/12 respectively, it is clear that when n is large, the value of
r = dimW must also be large if we are to have surjectivity of the map γ.

Let us make a detailed study of the case n = 3. Since, K(V ) has dimension 6,
it follows that K(V ) = S2(Λ2(V ∗)). Thus, K(V ) can be regarded as the space of
quadratic forms on Λ2(V ). The values of r which we will be interested in are r = 1
and r = 2.

In the case r = 1, the space W ⊗ S2(V ∗) is identified with S2(V ∗), the space
of quadratic forms on V . If h ∈ S2(V ∗), we may diagonalize h in the form h =
λ1(x1)2 + λ2(x2)2 + λ3(x3)2, where x1, x2, x3 is a basis of V ∗ and the λi are real
numbers. It then follows that

γ(h) = λ2λ3(x2 ∧ x3)2 + λ3λ1(x3 ∧ x1)2 + λ1λ2(x1 ∧ x2)2

as an element of S2(Λ2(V ∗)) = K(V ). Note that, as a quadratic form, γ(h) has
type (3, 0), (1, 2), (1, 0), (0, 1), or (0, 0). Conversely, any quadratic form on Λ2(V )
whose type belongs to this list can be realized as γ(h) for some h ∈ S2(V ∗).

In fact, the map γ can be understood quite easily in terms of matrices. If we
fix a basis x1, x2, x3 of V ∗, then we may identify elements h in S2(V ∗) with 3 × 3
symmetric matrices in the usual way. Using the corresponding basis x2∧x3, x3∧x1,
x1 ∧ x2 of Λ2(V ∗), we may also identify elements K in S2(Λ2(V ∗)) = K(V ) with
3×3 symmetric matrices. Under these identifications, it is easy to see that the map
γ becomes identified with the map Adj, which associates to each 3 × 3 symmetric
matrix its adjoint matrix (i.e., the matrix of signed 2×2 minors). Since the identities

det(Adj(h)) = (det(h))2

Adj(Adj(h)) = det(h) · h

hold for all 3 × 3 symmetric matrices, it follows easily that Adj is a 2-to-1 local
diffeomorphism from the open set of invertible 3 × 3 symmetric matrices to the
open set of 3 × 3 symmetric matrices with positive determinant. In particular, it
follows that γ is a 2-to-1 local diffeomorphism from the open set of non-degenerate
quadratic forms on V to the open set of quadratic forms on Λ2(V ) with positive de-
terminant. Thus, if h is a non-degenerate quadratic form on V , then the differential
of γ at h is an isomorphism and hence is surjective.

In the case r = 2, we may let w1, w2 be an orthonormal basis of W . If we write
h ∈ W ⊗S2(V ∗) in the form h = w1⊗h1 +w2⊗h2 where h1, h2 belong to S2(V ∗),
then γ(h) = γ(h1) + γ(h2). Since any non-zero quadratic form q on Λ2(V ) can be
written as a sum q = q1 + q2 where each qi has positive determinant, it follows
that when r = 2, the map γ : W ⊗ S2(V ∗) → K(V ) is surjective and, moreover, if
O ⊂ W ⊗ S2(V ∗) is the open set on which the differential of γ is surjective, then
γ(O) contains all non-zero elements of K(V ). In fact, O can be characterized as
the set of h ∈ W ⊗ S2(V ∗) with the property that |h| contains a non-degenerate
quadratic form.

If h ∈W ⊗S2(V ∗) satisfies γ(h) = 0, then it is not difficult to see that h can be
written in the form h = w1⊗ (x1)2 +w2⊗ (x2)2 where w1, w2 form an orthonormal
basis of W and x1, x2 are elements of V ∗. Since such an h does not belong to O, it
follows that γ(O) = K(V )− {0}.
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Let us see how this analysis is reflected in the corresponding isometric embedding
problems. First, the case r = 1 corresponds to the problem of isometrically embed-
ding N3 into E4. For simplicity, let us consider the case where the Riemann cur-
vature tensor is non-degenerate at every x ∈ N when regarded as a quadratic form
on Λ2(TxN). This corresponds to the assumption that R : F → K3

∼= S2(Λ2(R3))
satisfies det(R(f)) �= 0 for all f ∈ F .

If det(R(f)) < 0 for all f ∈ F , then by our above discussion, the function
T (f, f , h) = γ(h) −R(f) never vanishes on F ×F(E4)× (R1 ⊗ S2(R3)). Thus Z is
empty and hence there do not exist any local isometric embeddings of N into E4.
This situation occurs, for example, when all of the sectional curvatures of N are
negative since then, R is everywhere negative definite.

On the other hand, if det(R(f)) > 0 for all f ∈ F , then the above discussion
shows that for each f ∈ F , there exist exactly two solutions of the equation γ(h) =
R(f), each of which is the negative of the other. Let us write h(f) for the unique
element of S2(R3) which has positive determinant and which satisfies γ(h(f)) =
R(f). Then Z consists of the triples (f, f ,±h(f)). Since the 6 components of γ
have linearly independent differentials along Z, it follows that Z∗ = Z = Z. When
we restrict to Z∗, the symbol relations (13) may be solved for the πij in the form

(102) πij ≡ (det(R))−3/2
∑
m

Rijmωm mod I.

Here, the functions Rijk = Rjik are some universal polynomial expressions which
are of degree 4 in the components Rijkl and linear in the components Rijklm.
Referring to the structure equations (12), we see that the torsion of the system
(I, Ω+) on Z∗ vanishes if and only if Rijk = Rikj.

Let us define Tijk = Rijk − Rikj. Due to the symmetry Rijk = Rjik, there are
only 8 independent functions among the Tijk. It is easy to see that these functions
are the components of a well-defined tensor T of rank 8 on N . On any neighborhood
of a point where T is non-zero, there is no local isometric embedding of N into E4.
On the other hand, if T vanishes identically (and det(R) > 0) then the system
I is a Frobenius system on Z∗. Since it is clear that the group of rigid motions
of E4 acts transitively on the space of leaves of I, it follows that there exist local
isometric embeddings of N into E4 and that they are unique up to rigid motions.
Incidentally, even though T has 8 components, it can be shown that T satisfies
a set of 3 linear conditions whose coefficients are linear in the components of R.
Thus, the condition T = 0 is actually only 5 conditions on a metric g which satisfies
det(R) > 0. In fact, a little algebra shows that these 5 conditions can be expressed
as the vanishing of a tensor of rank 5 whose components are cubic polynomials
which are quadratic in the components of R and linear in the components of ∇R.

We now turn to the case r = 2. Let us begin by assuming that the metric g has
the property that its Riemann curvature tensor R does not vanish identically at
any point of N . As we have seen, when r = 2, the map γ : W ⊗ S2(V ∗) → K(V )
restricts to become a surjective submersion γ : O → K(V ) − {0}. Let O∗ ⊂ O be
the dense open subset consisting of those h ∈ O so that |h| has dimension 2. It
then follows that ZO∗ = Z ∩ (F × F(E5)×O∗) consists entirely of ordinary zeros
of the collection T and that ZO∗ ⊂ Z∗. Since R is non-vanishing on F , it is not
difficult to see that ZO∗ is a dense open subset of Z∗ and that its projection onto
F ×F(E5) is a surjective submersion. If the sectional curvature of g is everywhere
negative, then it can be shown that, in fact, Z = ZO∗ = Z∗.



§4. Isometric Embedding 261

We now proceed to investigate the symbol and torsion of the system (I, Ω+) on
ZO∗ . Of course, the symbol relations (95) play the crucial role.

Suppose that (f, f , h) ∈ ZO∗ . Since h ∈ O∗, it follows easily that there exists
an orthonormal basis w1, w2 of R2 = W so that, when we expand h in the form
h = w1 ⊗ h1 + w2 ⊗ h2, the quadratic form h2 is non-degenerate and not positive
definite. Let v ∈ R3 be a null vector for h2 which is not a null vector for h1. Since
the results of computing the ranks of polar equations, etc. for I will be the same at
all points on a given O(2)×O(3)-orbit in ZO∗ , we may assume that v is a multiple
of the first element of the standard basis of R3. It follows that when we expand h
in the form h =

∑
i,j hijx

i ◦ xj, the vector h11 is a non-zero multiple of w1 and the
quadratic form h2 = w2 · h is non-degenerate.

We now want to show that the symbol relations (95) and πij = πji at (f, f , h) ∈
ZO∗ imply that s′1 = 6 and s′p = 0 for all p > 1. To see this, it suffices to show that
the reduced symbol relations allow us to express all of the components of π22, π23,
and π33 as linear combinations of the forms in J (= span of the forms in I and the
forms ωi) and the components of π11, π12, and π13. If we let K denote the span of
the forms in J and the components of π11, π12 and π13, then the symbol relations
(13) imply

(103)

h11 · π22 ≡ 0
h11 · π23 ≡ 0

h11 · π33 ≡ 0
−h13 · π22 + h12 · π23 ≡ 0

−h13 · π23 + h12 · π33 ≡ 0
h33 · π22 − 2h23 · π23 + h22 · π33 ≡ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

mod K

(For example, the fourth relation is obtained by setting (i, j, k, l) = (1, 2, 2, 3) in
(95).) The first three relations in (103) show that the w1-components of π22, π23,
and π33 belong to K. Due to the non-degeneracy of h2, the last three relations
in (103) then show that the w2-components of π22, π23, and π33 also belong to
K. Since there are at least 6 linearly independent components among the πij, it
follows that all of the components of π11, π12, and π13 are linearly independent.
Thus, s′1 = 6 and s′p = 0 for all p > 1, as claimed.

It follows by Cartan’s test that the space of integral elements of (I, Ω+) based
at any point of ZO∗ is of dimension at most 6. We are now going to show that if
the torsion of (I, Ω+) vanishes at (f, f , h) ∈ ZO∗ , then there exists a 6-parameter
family of integral elements of (I, Ω+) based at (f, f , h) ∈ ZO∗ . To do this, we must
show that the homogeneous system

(104) hik · hjlm − hil · hjkm + hjl · hikm− hjk · hilm = 0

for the R2-valued unknowns hijk = hjik = hikj has a 6-parameter family of solu-
tions. Note that by Cartan’s test, this system of equations cannot have more than
6 linearly independent solutions. We shall show that, for an open subset of h ∈ O∗,
(104) has exactly 6 linearly independent solutions. By the principle of specialization
and the upper bound on the space of solutions of (104) given by Cartan’s test, this
will imply that (104) has exactly 6 linearly independent solutions for all h ∈ O∗.

Our argument will use the GL(V )-equivariance of the equations (104). For an
open set of h ∈ R2⊗S3(R3), the corresponding two dimensional space of quadratic
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forms |h| has the property that it contains no perfect squares (i.e., rank 1 quadratic
forms) and the property that there exists a basis of R3 in which the elements of |h|
are diagonalized. Let x1, x2, x3 be linear coordinates on R3 so that such an h can
be written in the form

h = h11(x1)2 + h22(x2)2 + h33(x3)2

where the vectors hii lie in R2. Note that the hypothesis that |h| does not contain
any rank 1 quadratic forms implies that the vectors h11, h22, h33 are pairwise linearly
independent. The equations (104) may now be written in the form

(105)

h11 · h23m = 0
h22 · h31m = 0
h33 · h12m = 0

h22 · h33m − h33 · h22m = 0
h33 · h11m − h11 · h33m = 0
h11 · h22m − h22 · h11m = 0

for all m. A priori, this is 18 equations for the 20 unknown components of the 10
vectors hijk. However, at most 14 of these equations can be linearly independent.
To see this, note that if we set m = 1 (resp. 2, 3) in the first (resp. second, third)
equations of (105) and use the symmetry of hijk, then we get the 3 equations
hkk · h123 = 0. Due to the linear dependence of the three vectors hkk, these 3
equations are linearly dependent. Also, if we set m = 1 in the fourth equation
of (105), then we see that it is a linear combination of the second equation (with
m = 3) and the third equation (with m = 2). Similarly, the fifth equation with
m = 2 and the sixth equation with m = 3 are linear combinations of previous
equations. Thus, there are at most 14 linearly independent equations in (105). It
follows that the solution space of (105) must have dimension at least 20 − 14 = 6.
Since we have already seen that the solution space has dimension at most 6, we are
done.

Our analysis so far of the case r = 2 has shown that the homogeneous symbol
relations of the system (I, Ω+) onZO∗ are involutive and that the Cartan characters
are s′1 = 6 and s′p = 0 for all p > 1. Thus, if the torsion vanishes identically, then
the system (I, Ω+) on ZO∗ is involutive. However, in general, the torsion does not
vanish identically on ZO∗ . On heuristic grounds, this is obvious since the generic
metric on N3 cannot be isometrically embedded into E5. It is of some interest to
see what the torsion of the system actually is. We claim that the unabsorbable
torsion of the system (I, Ω+) on ZO∗ takes values in a vector space of dimension
1. To see this, note that the components of ∇R satisfy the second Bianchi identity,
namely

(106) Rijklm + Rijmkl + Rijlmk = 0.

This implies that there are only 15 independent components of the covariant de-
rivative of the Riemann curvature tensor. In other words, there is a subspace
K1(V ) ⊂ K(V ) ⊗ V ∗ of dimension 15 in which ∇R takes values (for general n,
dimK1(V ) = n2(n2 − 1)(n + 2)/24, see Berger, Bryant and Griffiths [1983]). For
h ∈ O∗, define γh : W ⊗ S3(V ∗)→ K1(V ) by the formula in indices

(107) (γh(p))ijklm = hik · pjlm − hil · pjkm + hjl · pikm − hjk · pilm



§4. Isometric Embedding 263

where p =
∑

ijk pijkx
i ◦ xj ◦ xk belongs to W ⊗ S3(V ∗). We have already seen

that γh has rank 14 for all h ∈ O∗. It follows that there exists a linear functional
λh : K1(V ) → R whose coefficients are polynomials in h of degree 14 so that
kerλh = imγh. In particular, the torsion of (I, Ω+) is absorbable at (f, f , h) if and
only if λh(∇R(f)) = 0.

It can happen that λh(∇R(f)) vanishes identically on ZO∗ . For example, if the
Riemannian manifold (N3, g) is locally symmetric, then ∇R ≡ 0, so, a fortiori,
λh(∇R) ≡ 0. A more general family of metrics for which this condition holds is
the family of metrics induced on the non-degenerate quadratic hypersurfaces in E4.
In fact, these examples, together with the corresponding metrics induced on the
space-like portions of non-degenerate quadratic hypersurfaces in Minkowski space
M4 exhaust the list of metrics with non-degenerate curvature on 3-manifolds on
which this condition holds (see Berger, Bryant and Griffiths [1983]).

Thus, let us assume that g has the property det(R) �= 0 and that λh(∇R) ≡ 0.
By our above description, such metrics are known to be real analytic in appropriate
local coordinates. As we have shown, the system (I, Ω) on YO∗ = ZO∗/O(2)×O(3)
is involutive. It follows that we may apply the Cartan–Kähler theorem to this
system to conclude that such metrics can be locally isometrically embedded into
E5 and that the general such embedding depends locally on 6 functions of 1 variable.
Note that when det(R) > 0, such metrics can be isometrically embedded into E4,
but that they are rigid there.

More information about these embeddings can be obtained by studying the char-
acteristic variety of the system (I, Ω). For each integral element E of (I, Ω) the
complex characteristic variety consists of 6 points. In fact, by our above computa-
tion of the complex characteristic variety ΞC

H for H ∈W ⊗S2(V ∗), these points are
described as follows. If E is an integral element based at (x, y, l, H) ∈ YO∗ , then
|H | ⊂ S2(E∗) has dimension 2 and contains at least one non-degenerate quadratic
form. In the terminology of algebraic geometry, |H | is called a pencil of quadrics. If
h1 ∈ |H | is non-degenerate and h2 ∈ |H | is linearly independent from h1, then the
degenerate quadrics in |H | are of the form h2 + th1 where t is a root of the cubic
equation det(h2 + th1) = 0. For each such root (counted with multiplicity) the
quadric h2 + th1 factors in the form λ ◦µ where λ, µ ∈ (E∗)C are well defined up to
scalar multiples. There are six such elements of (E∗)C (counted with multiplicity).
These give rise to the 6 points in P(E∗)C which constitute ΞC

E .
For the generic pencil of quadrics |H | ⊂ S2(E∗), the base locus B consists of 4

points in PEC in general position except for the condition of being invariant under
conjugation. Let us say that H is general if the base locus of |H | consists of 4
points. Conversely, given a conjugation-invariant set B of 4 points in PEC with
no 3 on a line, there is a unique real pencil of quadrics |HB| whose elements pass
through all 4 points of B. The corresponding characteristic variety ΞB ⊂ P(EC)∗

consists of the 6 lines which pass through 2 of the 4 points of B. Note that if all
of the points of B are real, then all of the 6 points of ΞB are also real. If 2 of the
points of B are real and the other 2 are non-real complex conjugates, then 2 of
the 6 points of ΞB are real. If B consists of 2 pairs of non-real complex conjugate
points, then 2 of the points of ΞB are real. In each case, note that ΞB contains
at least 2 real points. Thus, it follows that the system (I, Ω) is never elliptic on
YO∗ = ZO∗/O(2)×O(3).

Let us say that an immersion u : N3 → E5 is general if the induced second
fundamental form Hx is general for all x ∈ N . We have seen that general isometric
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immersions exist locally and depend on 6 functions of 1 variable for the special case
of (N3, g) = (S3, can) since the canonical metric on S3 satisfies ∇R ≡ 0. We shall
now show that the integrability of the characteristic variety obstructs the existence
of a global general isometric immersion of (S3 , can) into E5.

Proposition 4.7. There does not exist a general isometric immersion
u : S3 → E5 when S3 is given any one of the metrics induced by immersion as
an ellipsoidal hyperquadric in E4.

Proof. Suppose that such a u exists. Consider the associated integral û : S3 → YO∗

of (I, Ω). Via û, the characteristic variety of (I, Ω) restricts to the projectivized
complexified cotangent bundle of S3 to become a submanifold Ξû ⊂ P(T ∗S3)C

whose base point projection Ξû → S3 makes Ξû into a covering space of degree 6.
By simple connectivity of S3, it follows that Ξû is the disjoint union of 6 copies
of S3. Moreover, the base locus Bû ⊂ P(TS3)C dual to Ξû is a covering space
Bû → S3 of degree 4 and hence consists of the disjoint union of 4 copies of S3 .
The fiber (Bû)x ⊂ P(TxS3)C at each point x ∈ S3 consists of 4 (distinct) points in
general position subject only to the condition of being invariant under conjugation.
It follows easily that the number of real points in (Bû)x is the same for all x ∈ S3 .

If all of the points in (Bû)x are real (for all x), then due to the fact that GL(3, R)
acts transitively on the set of quadruples of points in RP2 in general position, it
follows easily that there exists a coframing η1, η2, η3 on S3 (not necessarily orthog-
onal) with the property that the 6 projectivized 1-forms

{[η1], [η2], [η3 + η1 + η2], [η3 + η1 − η2], [η3− η1 + η2], [η3− η1 − η2]}

are sections of Ξû. By the involutivity of (I, Ω) on YO∗ , any 1-form η for which [η]
is a section of Ξû is integrable, i.e., η ∧ dη = 0. Applying this integrability to each
of the 6 1-forms above gives 6 equations which are equivalent to the 6 relations

(108) ηi ∧ dηj + ηj ∧ dηi = 0

for all i and j. It is easy to show that this is equivalent to the condition that there
exist a 1-form λ so that dηi = λ∧ ηi for all i. Differentiating this last relation gives
the condition dλ∧ ηi = 0 for all i. Since dλ is a 2-form, it follows that dλ = 0. Due
to the simple connectivity of S3, it follows that there exists a function l on S3 so
that λ = dl. It then follows that the coframing η̃i = e−lηi satisfies dη̃i = 0 for all
i. Since S3 clearly does not have any closed coframing, we have a contradiction.

In the case that 2 of the points in (Bû)x are real (for all x), then it is not difficult
to see that there exists a coframing η1, η2, η3 on S3 (not necessarily orthogonal)
with the property that the 6 projectivized 1-forms

{[η1], [η2], [η3 + iη1 + η2], [η3 + iη1 − η2], [η3− iη1 + η2], [η3 − iη1 − η2]}

are sections of Ξû. In the case that none of the points in (Bû)x are real (for all
x), then it is not difficult to see that there exists a coframing η1, η2, η3 on S3 (not
necessarily orthogonal) with the property that the 6 projectivized 1-forms

{[η1], [η2], [η3 + iη1 + iη2], [η3 + iη1 − iη2], [η3− iη1 + iη2], [η3 − iη1 − iη2]}

are sections of Ξû. In either case, applying the integrability of the characteristic
variety shows that the equations (108) hold for this coframing. We have already seen
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that the equations (108) lead to a contradiction when the domain of the coframing
is S3 �

Note that there do exist immersions of S3 into E5 which are general. For example,
if we regard E5 as the space of traceless symmetric 3 × 3 matrices and let Σ ⊂ E5

denote the set of such matrices whose eigenvalues are {1,−1, 0}, then the universal
covering space of Σ is easily seen to be S3 and it is not difficult to see that the
second fundamental form of Σ is general at all points (use the fact that Σ is an
orbit of SO(3) under its natural irreducible action on E5). Of course, the induced
metric on Σ, even though homogeneous, cannot be locally isometric to any of the
“quadric” metrics for which the system (I, Ω) is involutive on YO∗ .

As our final example in the case r = 2, let us consider the case where the metric
g is flat. Then, the Riemann curvature satisfies R ≡ 0 on F . Let us describe the set
of ordinary zeros of the function T on F ×F(E5)× (R2⊗ (S2(R3)). Since R ≡ 0, it
follows that T (f, f , h) = γ(h), and since the differential of γ is not surjective at any
h ∈ R2 ⊗ S(R3) for which γ(h) = 0, we cannot directly apply the implicit function
theorem to conclude that T−1(0) = F × F(E5) × γ−1(0) has any smooth points.
Nevertheless, by our previous discussion, we can parametrize γ−1(0) as follows. Let
O(2) denote the set of orthonormal bases (w1, w2) of W = R2. Then there exists a
map µ : O(2)× V ∗ × V ∗ →W ⊗ S2(V ∗) defined by

µ(w1, w2; x1, x2) = w1 ⊗ (x1)2 + w2 ⊗ (x2)2

whose image is precisely γ−1(0) ⊂W ⊗ S2(V ∗). If we let D ⊂ R5 ×R3 = V ∗ × V ∗

denote the open set of pairs (x1, x2) of elements of V ∗ which satisfy x1 ∧ x2 �= 0,
then it is easy to see that the differential of µ has its maximum rank 7 precisely
on the open subset O(2) × D. In fact, µ(O(2) × D) ⊂ γ−1(0) consists of the set
of h ∈ γ−1(0) for which |h| is of dimension 2 and is a smooth submanifold of
W ⊗ S2(V ∗) of dimension 7. Any point h ∈ γ−1(0) for which |h| has dimension 1
or 0, is in the closure of µ(O(2) × D) but is not a smooth point of γ−1(0). Thus,
in order to see that F ×F(E5)× µ(O(2)×D) is the space of ordinary zeros of the
collection T , it suffices to show that the differentials of the functions in T contain
at least 5 linearly independent 1-forms at every point of F ×F(E5)×µ(O(2)×D).
To see this, note that we may take advantage of the GL(V )-equivariance of the
map γ. Let h ∈ µ(O(2)×D) and write h in the form h = w1 ⊗ (x1)2 + w2 ⊗ (x2)2.
(The elements x1, x2 are not necessarily an orthonormal pair in V .) Making the
appropriate GL(V ) change of basis for the 1-forms on F ×F(E5)× (W ⊗S2(V ∗)),
we can assume that h11 and h22 are an orthonormal basis of W and that all other
hij are zero. Then a basis for the 1-forms τijkl at (f, f , h) can be expressed in the
form

(109)
τ2323 = h22 · π33, τ3131 = h11 · π33

τ1212 = h11 · π22 + h22 · π11, τ3112 = −h11 · π23

τ1223 = −h22 · π13, τ2331 = 0.

It follows that there exist 5 linearly independent 1-forms among the τijkl at (f, f , h),
as we wished to show. Thus, Z = Z∗ = F × F(E5) × µ(O(2)× D).

We are now going to show that the differential system (I, Ω+) is involutive on
Z∗ with Cartan characters s1 = 6, s2 = 1, and sp = 0 for all p > 2. First, note that
since R ≡ 0, we must have ∇R ≡ 0 as well. Thus, the torsion of the differential
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system vanishes identically on Z∗. Examining the symbol relations, i.e., the right
hand sides of (109), we see by inspection that there is a flag contained in each
integral element which has the characters s′1 = 6, s′2 = 1, and s′p = 0 for all p > 2.
Direct calculation the the space of integral elements at each point of Z∗ shows that
there exists an 8-parameter family of integral elements at every point of Z∗. Thus,
by Cartan’s test, it follows that the system is in involution, as claimed. Note that
applying Proposition 4.1 shows that the characteristic variety ΞH of an element
H = w1 ⊗ (x1)2 + w2 ⊗ (x2)2 consists of the line [ξ1x

1 + ξ2x
2] in PV ∗. Note that

ΞH has degree and dimension 1 in accordance with the general theory. It follows
that the submanifolds N3 ⊂ E5 on which the induced metric is flat and whose
second fundamental forms have rank 2 at each point depend on one function of two
variables (in Cartan’s terminology).

For further examples of isometric embedding for special metrics in codimensions
below the natural embedding codimension, the reader may consult the aforemen-
tioned paper (Berger, Bryant and Griffiths [1983]) and its references to the work
of Cartan. In particular, Cartan’s study of γ−1(0) ⊂ Kn constitutes his theory of
“exteriorly orthogonal quadratic forms” which he used to study the isometric em-
beddings of En into E2n and Hn into E2n−1 (here, Hn denotes hyperbolic n-space).
In the latter problem, the analog of the equations (108), which are consequences
of the integrability of the characteristic variety, can be used to prove the existence
of “generalized Tschebysheff coordinates” which can be associated to any isometric
embedding of Hn into E2n−1 (see Moore [1972]).
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CHAPTER VIII

APPLICATIONS OF

COMMUTATIVE ALGEBRA AND

ALGEBRAIC GEOMETRY TO THE STUDY OF

EXTERIOR DIFFERENTIAL SYSTEMS

A linear Pfaffian differential system on a manifold M is given by sub-bundles

I ⊂ J ⊂ T ∗(M)

such that
dI ⊂ {J}

where {J} ⊂ Ω∗(M) is the algebraic ideal generated by the sections of J . Setting

L = J/I

it follows that the exterior derivative induces a bundle mapping (cf. Section 5 of
Chapter IV)

δ : I → (T ∗(M)/J) ⊗ L.

Dualizing and using (T ∗(M)/J)∗ ∼= J⊥, this is equivalent to a bundle mapping

(1) π : J⊥ → I∗ ⊗ L.

Locally, this mapping is given by the tableau matrix π as discussed in Chapter IV.
Much of the discussion in the preceeding chapters has centered around fibrewise
constructions, such as the symbol and characteristic variety, associated to the map-
ping (1). In this chapter we will isolate and considerably extend these discussions.

Given vector spaces W and V , a tableau has been defined to be a linear subspace

A ⊂W ⊗ V ∗,

and the associated symbol has been defined to be

B = A⊥ ⊂W ∗ ⊗ V.

As explained in Chapter IV, the first prolongation A(1) ⊂W ⊗ S2V ∗ is defined by

A(1) = {P ∈W ⊗ S2V ∗ : v P ∈ A for all v ∈ V },

and A is said to be involutive in case equality holds in the inequality given by
Cartan’s test (cf. Proposition 3.6 in Chapter IV). This chapter will be an algebraic
study of involutive tableau. Three of the basic results are stated in (2.4), (2.5) and
(3.3) below.

One of the most useful exterior algebra facts is the Cartan lemma, and in Sec-
tion 2 we begin with a generalization (Proposition 2.1) of this lemma that plays a
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critical role in the theory of exterior differential systems. This lemma leads natu-
rally to the definition of the Spencer cohomology groups Hk,q(A) of a tableau. The
crucial role played by these groups in the development of the subject of overdeter-
mined P.D.E. systems will be explained in Chapters IX and X. For us the main fact
will be the characterization of involutive tableau as those for which all Hk,q(A) = 0,
k ≥ 1 (cf. the discussion in Section 1 of Chapter X). This result, which among other
things implies that the prolongation of an involutive tableau is involutive, will be
proved in Sections 2 and 3 below. Actually, we have chosen to also give a direct
proof of the result that “A involutive ⇒ A(1) involutive” in Section 2, as among
other things it shows how one is led naturally to the Spencer cohomology groups by
purely differential system considerations. For another example of how cohomology
naturally arises, it has been remarked in Chapter IV and will proved below that
the torsion of a linear Pfaffian differential system lies in the family of vector spaces
H0,2(Ax), where Ax is the tableau lying over x ∈M .

In Section 3 we dualize Cartan’s test for involution. This is done by introducing
a graded module MA naturally associated to a tableau A, and the condition that
A be involutive is seen to be that MA admit a quasi-regular sequence. The lat-
ter condition is, by more or less standard commutative algebra, equivalent to the
vanishing result

Hk,q(MA) = 0, k ≥ 1

for the Koszul homology groups of the module MA. These Koszul homology groups
then turn out to be dual to the Spencer cohomology groups, thus establishing the
equivalence of involutivity and the vanishing of Spencer cohomology. At the end of
Section 3, this characterization of involutivity is used to prove the fact that, given
a tableau A, there is a q0 such that the prolongations A(q) of A are involutive for
q ≥ q0, a result used in the proof of the Cartan–Kuranishi theorem. In fact, we
prove the stronger result that q0 depends only on the sequence of numbers dimA(q);
this requires a localization argument and is related to the construction of Hilbert
schemes in algebraic geometry.

In Section 4, we further pursue the use of Koszul homology by showing that
the above vanishing result leads to a natural definition of what is meant by an
involutive module, and then it is shown that involutive modules have canonical free
resolutions where the maps are homogeneous of degree one. This translates into
statements such as: the compatibility equations for an involutive, overdetermined
linear P.D.E. system are of first order (see Theorem 1.8, Chapter X), and so forth.
The results in this section will be used in Section 6 when Guillemin’s normal form
is discussed.

In Section 5 we introduce what amounts to the micro-localization of a linear
Pfaffian differential system. The concepts an involutive sheaf and of the character-
istic sheaf of a tableau are introduced, and more or less standard algebro-geometric
results are used to prove a number of results about these, culminating in the proof
of Theorem 3.15 in Chapter V and the proof of Proposition 3.10 below, which is
the essential algebraic step in the proof of Theorem 3.1 in Chapter VI.

The formal introduction of homological methods is due to Spencer [1961]. Most
all of the results in this chapter were found in the early and middle 1960’s and are
due to Guillemin, Quillen, Spencer and Sternberg with crucial input coming from
Mumford and Serre. In addition to Spencer’s paper cited above, we would like
to call attention to Singer and Sternberg [1965], Guillemin and Sternberg [1964],
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Quillen [1964] and Guillemin [1968] where much of the theory first appeared.

§1. Involutive Tableaux.

We begin by introducing some notations. Let W be a vector space with basis
{wa}, V a vector space with basis {vi} and dual basis {xi}, SqV ∗ the qth symmetric
product of V ∗, and W ⊗ SqV ∗ the W -valued polynomials of the form

P = P a
I wa ⊗ xI

where I = (i1, . . . , iq) runs over multi-indices of length q and xI = xi1 . . . xiq . By

∂P

∂xi
= vi P

we mean the formal derivative treating W as constants. We repeat and generalize
some definitions from Chapter IV.

Definition 1.1. i) A linear subspace A ⊂ W ⊗ V ∗ will be called a tableau. More
generally, a subspace

A ⊂W ⊗ Sp+1V ∗

will be called a tableau of order p. ii) Given a tableau of order p, we inductively
define the qth prolongation

A(q) ⊂W ⊗ Sp+q+1V ∗

by A(0) = A and

A(q) = {P ∈ W ⊗ Sp+q+1V ∗ :
∂P

∂xi
∈ A(q−1) for all i}.

To motivate this definition in the case p = 0 of an ordinary tableau, we suppose
that the linear Pfaffian system (I, Ω) has no integrability conditions, and we denote
its first prolongation by (I(1), Ω) on the manifold M (1). If Ax denotes the tableau
of (I, Ω) at a typical point x ∈M , then the fibre of

π : M (1) →M

over x is an affine linear space whose associated vector space is A
(1)
x (cf. (125) in

Chapter IV).
Now (I(1), Ω) is again a linear Pfaffian differential system whose tableau at a

point y with π(y) = x is A
(1)
x . Assuming again that there are no integrability

conditions, the second prolongation is a linear Pfaffian differential system (I(2), Ω)
over the manifold M (2) where

π(1) : M (2) →M (1)

is a family of affine linear spaces whose associated linear space z ∈ M (2) is A
(2)
x

where (π(1) ◦ π)(z) = x.
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In summary, in the absence of integrability conditions the fibres of the prolonga-
tions

π(q−1) : M (q) →M (q−1)

are affine linear spaces whose associated vector spaces are the prolongations A(q) of
a tableau A. More precisely, if x0, x1, x2, . . . is a sequence of points xq ∈M (q) with
π(q−1)(xq) = xq−1, then Axq = A

(q)
x0 .

Returning to the general discussion, if we denote by S+V ∗ =
⊕

q≥1 SqV ∗ the
maximal ideal in the polynomial algebra SV ∗ =

⊕
q≥1 SqV ∗ and define the total

prolongation to be
A =

⊕
q≥0A

(q) ⊂W ⊗ S+V ∗,

then it is clear that

A is the largest graded subspace of W ⊗ S+V ∗(2)
that is closed under differentiation and satisfies

A ∩ (W ⊗ Sp+1V ∗) = A, A ∩ (W ⊗ SqV ∗) = 0
for q ≤ p.

We note that the grading on A is shifted by p + 1 from that on S+V ∗; that is
A(q) ⊂W ⊗ Sp+q+1V ∗.

Another useful characterization of prolongations is based on the following obser-
vation: If we consider each of

Sp+1V ∗ ⊗ SqV ∗, SpV ∗ ⊗ Sq+1V ∗, and Sp+q+1V ∗

as subspaces of ⊗p+q+1V ∗, then

(3) (Sp+1V ∗ ⊗ SqV ∗) ∩ (SpV ∗ ⊗ Sq+1V ∗) = Sp+q+1V ∗,

and consequently

(4) A(q) = (A⊗ SqV ∗) ∩ (W ⊗ Sp+q+1V ∗).

We shall now recall and extend the concept of involution for a tableau. Referring
to a definition from Chapter IV we have the subspaces

A
(q)
i = {P ∈ A(q) :

∂P

∂x1
= · · ·= ∂P

∂xi
= 0},

where x1, . . . , xn is assumed to be a general basis of V ∗. Remark that

(5) A
(q)
i = (Ai)(q)

where Ai = A
(0)
i , and that

A(q)
n = (0), A

(q)
0 = A(q).

The proof of Proposition 3.6 in Chapter IV works equally for a general tableau and
gives:
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Proposition 1.2. We have

dimA(1) ≤ dimA + dimA1 + · · ·+ dim An−1

with equality holding if, and only if, the maps

(6)
∂

∂xi
: A

(1)
i−1 → Ai−1

are surjective for i = 1, . . . , n.

If we define the characters s1, . . . , sn of a tableau A by (cf. Definition 3.5 in
Chapter IV)

s1 + · · ·+ sk = dimA − dimAk,

then the inequality in Proposition 1.2 is

dimA(1) ≤ s1 + 2s2 + · · ·+ nsn.

Here and throughout this chapter we have dropped the primes since these are the
only characters which we shall consider, and we shall also set s = dimW instead
of using s0 as was done in Chapter IV.

Definition 1.3. A tableau of order p is involutive if

dimA(1) = dimA + dimA1 + · · ·+ dimAn−1.

Being involutive is equivalent to the maps (6) being surjective. This is equivalent
to the equality

dimA(1) = s1 + 2s2 + · · ·+ nsn

in Cartan’s test, which agrees with Definition 3.7 in Chapter IV.

The following are the basic properties of involutive tableaux:

Every prolongation of an involutive tableau is involutive.(7)

If A is any tableau, then there is a q0 such that the(8)

prolongations A(q) are involutive for q ≥ q0.

These will be proven later in this chapter. For the moment we shall use (7) to prove
the relations (which we have already encountered in Chapter III)

(9)

s
(1)
n = sn

s
(1)
n−1 = sn + sn−1

...
...

s
(1)
1 = sn + · · ·+ s1

where the s
(1)
k are the characters of A(1). As a corollary we have that

The character l, i.e., the largest l such that sl �= 0, and(10)
the Cartan integer sl are invariant under prolongation
of an involutive tableau.
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Proof of (9). By definition

s
(1)
1 + · · ·+ s

(1)
k = dimA(1) − dim A

(1)
k .

On the other hand, by the surjectivity of the maps (6) all the tableaux Ak are
involutive. Hence

dimA
(1)
k = dimAk + · · ·+ dimAn−1

⇒ dimA(1) − dim A
(1)
k = dimA + · · ·+ dimAk−1

⇒s
(1)
1 + · · ·+ s

(1)
k = dimA + · · ·+ dim Ak−1

⇒s
(1)
k = dimAk−1

= sk + · · ·+ sn.

Example 1.4. Let A ⊂ W ⊗ V ∗ be a tableau, B = A⊥ ⊂ W ∗ ⊗ V be the symbol
relations, and

Bλ = Bλi
a w∗

a ⊗ vi

a basis for B. In the jet space J1(V, W ) with coordinates (xi, za, pa
i ) let M be

defined by the equations
Bλi

a pa
i = 0.

The restriction to M of the contact system{
dz1 − pa

i dxi = 0
dx1 ∧ · · · ∧ dxn �= 0

corresponds to the linear, homogeneous constant coefficient P.D.E. system

(11) Bλi
a

∂za(x)
∂xi

= 0.

We observe that

The total prolongation A is the space of formal power series

solutions, with zero constant term, to (11).

This is immediate from

∂q

∂xI
(Bλi

a

∂za(x)
∂xi

) = Bλi
a

∂q+1za(x)
∂xI∂xi

.

The involutivity of the tableau A is equivalent to the involutivity of the Pfaffian
differential system associated to (11)—cf. Proposition 3.8 in Chapter IV.

More generally, let A ⊂ W ⊗ Sp+1V ∗ be a tableau of order p. We may identify
W ∗ ⊗ SV with the constant coefficient differential operators on W ⊗ SV ; thus

(w∗
a ⊗ vI)(P b

Jwb ⊗ xJ) =
∂

∂xI
(P a

J xJ).
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Giving A is equivalent to giving its annihilator B = A⊥ ⊂W ∗ ⊗ Sp+1V , so that a
tableau of order p gives a linear, homogeneous constant coefficient P.D.E. system
of order p + 1 and vice versa.

Roughly speaking, a general linear Pfaffian differential system has the two as-
pects consisting of its tableau and torsion. To be involutive means that

i) for each x, the tableau is involutive (i.e., the constant coefficient system cor-
responding to x—like freezing the leading coefficients in a P.D.E.—is involutive);
and

ii) the torsion vanishes (i.e., the integralibility conditions are satisfied—cf. Theo-
rem 5.16 in Chapter IV). As we shall explain below, the tableau of (I, Ω) influences
both the tableau and torsion of (I(1), Ω).

§2. The Cartan–Poincaré Lemma, Spencer Cohomology.

One of the most useful facts in exterior algebra is the familiar

Cartan Lemma: Let V be a vector space and suppose there is
a quadratic relation∑

i

wi ∧ vi = 0, wi, vi ∈ V,

where the vi are linearly independent. Then{
wi =

∑
j aijvj where

aij = aji

.

We shall give a generalization of the result that plays a crucial role in our theory
of exterior differential systems.

Let U and V be vector spaces and suppose given a linear map

Ω : U → V

with adjoint
Ω∗ : V ∗ → U∗.

We set
Cp,q = SpV ∗ ⊗ ΛqU∗

and define a boundary operator

δΩ : Cp,q → Cp−1,q+1

by the rule

(12) δΩ(v∗1 ⊗ · · · ⊗ v∗p ⊗ ψ) =
∑
α

v∗1 ⊗ · · · ⊗ v̂∗α ⊗ · · · ⊗ v∗p ⊗ Ω∗(v∗α) ∧ ψ

where v∗1 , . . . , v
∗
p ∈ V ∗ and ψ ∈ ΛqU∗. It is clear that δ2

Ω = 0, and we denote the
resulting cohomology by

Hp,q(Ω) = ker{Cp,q δΩ−→ Cp−1,q+1}/δΩCp+1,q−1.
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Proposition 2.1 (The Cartan–Poincaré lemma). We have the isomorphism

Hp,q(Ω) ∼= Sp(ker Ω∗)⊗ Λq(cokerΩ∗).

We will give the proof in two steps.

Step One. Suppose that Ω is an isomorphism and use it to identify U with V . If
we choose linear coordinates x1, . . . , xn on U , the elements in Cp,q are

ϕ =
∑

i1<···<iq

ϕi1...iq(x)dxi1 ∧ · · · ∧ dxiq

where ϕi1...iq(x) ∈ SpV ∗ is a polynomial of degree p. Briefly, Cp,q consists of
polynomial differential forms having polynomial degree p and exterior degree q.
Thinking of Ω as the identity map, we have by (12)

δΩ(xji · · ·xjpdxi1 ∧ · · · ∧ dxiq) =
∑
α

xj1 · · · x̂jα · · ·xjpdxjα ∧ dxi1 ∧ · · · ∧ dxiq.

This implies that
δΩ(ϕ) = dϕ

is the usual exterior derivative. We must show that

(13) Hp,q(Ω) =
{

0 p + q > 0
R p = q = 0.

Let
e =

∑
i

xi∂/∂xi

be the Euler vector field. For ϕ ∈ Cp,q, Euler’s theorem on homogeneous forms
implies that

(14) Le(ϕ) = (p + q)ϕ,

where Le denotes the Lie derivative along e. Combining (14) with the Cartan family
formula gives the homotopy relation

(p + q)ϕ = i(e)dϕ + di(e)ϕ,

and this implies (13).

Step Two. In the general case, we may choose bases for U, V so that Ω has the
matrix ⎛

⎜⎜⎝
1 0

. . .
0 1

∣∣∣∣∣∣∣
0

0

0

⎞
⎟⎟⎠

Thus, in terms of suitable linear coordinates{
xi, yα on V

uα, wλ on U
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we will have {
Ω∗(dxi) = 0
Ω∗(dyα) = duα.

Using multi-index notations, such as I = {i1, . . . , iq} where i1 < · · · < iq, we may
write a typical element in Cp,q as

(15) ϕ̃ =
∑
I,A

ϕIA(x, y)duI ∧ dwA

where ϕIA(x, y) is a polynomial in x, y and

{
deg ϕIA(x, y) = p

|I|+ |A| = q.

We shall identify ϕ̃ in (15) with the expression

(16) ϕ =
∑
I,A

ϕIA(x, y)dyI ∧ dwA.

When this is done,

δΩ(ϕ) =
∑
I,A

∂ϕIA(x, y)
∂yα

dyα ∧ dyI ∧ dwA.

In other words, δΩ is the exterior derivative with respect to the y variables, treating
the x and w variables as parameters. This suggest that we set

Cr,s,ρ,σ =

⎧⎪⎨
⎪⎩

set of ϕ given by (16) where
ϕIA(x, y) has degree r in x and degree s in y,
and where |I| = ρ, |A| = σ.

Then
δΩ : Cr,s,ρ,σ → Cr,s−1,ρ+1,σ

and with the obvious notation

(17) Hp,q(Ω) ∼=
⊕

r+s=p
ρ+σ=q

Hr,s,ρ,σ.

On the other hand, the proof of Step 1 gives

(18) Hr,s,ρ,σ =
{

0 unless s = ρ = 0
Cr,s,ρ,σ when s = ρ = 0.

Combining (17) and (18) gives the result.
We will use the Cartan–Poincaré lemma in the following form:
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Corollary 2.2. Suppose that ω1, . . . , ωn ∈ U∗ are linearly independent 1-forms
on a vector space U and that ϕi1...iq ∈ ΛrU∗ are r-forms (r > 0) that satisfy the
conditions

(19)
{

ϕi1...iq is symmetric in i1, . . . , iq∑
i ϕi1...iq−1i ∧ ωi = 0.

Then there exist ψj1...jq+1 ∈ Λr−1U∗ that satisfy

(20)
{

ψj1...jq+1 is symmetric in j1, . . . , jq+1∑
i ψj1...jqj ∧ ωj = ϕj1...jq .

Proof. In this case V = Rn and

Ω = U → V

given by
Ω(u) = (ω1(u), . . . , ωn(u)), u ∈ U,

is surjective. In particular

(21) Hq,r(Ω) = 0 when r > 0.

The conditions (19) are {
ϕ ∈ SqV ∗ ⊗ ΛrU∗

δΩ(ϕ) = 0,

and the conditions (20) are {
ψ ∈ Sq+1V ∗ ⊗ Λr−1U∗

δΩ(ψ) = ϕ.

Thus the corollary is equivalent to (21). �
When r = q = 1, this corollary is the usual Cartan lemma.
When Ω is an isomorphism, the Cartan–Poincaré lemma is the Poincaré lemma

for polynomial differential forms.

We shall give a variant of this discussion of the Cartan–Poincaré lemma. Let
V, W be vector spaces and set

Ck,q = W ⊗ SkV ∗ ⊗ ΛqV ∗.

Choosing bases {wa} for W and {xi} for V ∗ we may think of ϕ ∈ Ck,q as a W -valued
polynomial differential form

ϕ =
∑

|I|=k, |J|=q

wa ⊗ ϕa
IJxIdxJ .

We define
δ : Ck,q → Ck−1,q+1
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to be the usual exterior differentiation treating the wa as constants. Denoting the
resulting cohomology by Hk,q we have from (13)

(22) Hk,q =
{

W k = q = 0
0 otherwise.

Now let A ⊂W ⊗ V ∗ be a tableau with prolongations A(p) ⊂W ⊗ Sp+1V ∗, and
define Ck,q(A) ⊂ Ck,q by

(23) Ck,q(A) =
{

A(k−1) ⊗ ΛqV ∗ k ≥ 1
W ⊗ ΛqV ∗ k = 0.

The defining property of prolongations given by equation (2) in §1 above implies
that

δ : Ck,q(A)→ Ck−1,q+1(A),

and we denote by Hk,q(A) the resulting cohomology:

(24) Hk,q(A) = ker{δ : Ck,q(A)→ Ck−1,q+1(A)}/δCk+1,q−1(A).

Definition 2.3. The Hk,q(A) are the Spencer cohomology groups associated to the
tableau A.

With the correspondence in notation A(p) ↔ gk+p, this definition coincides with
that in Chapter IX.

For us their importance resides in the following result, the first half of which will
be proved in a moment and the remainder in §3.

Theorem 2.4. If A is involutive, then

Hk,q(A) = 0 k ≥ 1, q ≥ 0.

The converse is also true.

In general, if
A ⊂W ⊗ Sp+1V ∗

is a tableau of order p we define Ck,q(A) ⊂ Ck+p,q by

(25) Ck,q(A) =
{

A(k−1) ⊗ ΛqV ∗ k ≥ 1
W ⊗ SpV ∗ ⊗ ΛqV ∗ k = 0.

This agrees with (23) when p = 0, which is the case of an ordinary tableau. Again
by the defining property of prolongations we may define the Spencer cohomology
groups by the same formula (24).

We will now prove the following proposition, the first statement of which gives
one half of Theorem 2.4, and the second statement of which gives a result pertaining
to Chapter VI. The complete proof of Theorem 2.4 will be given later.
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Proposition 2.5. Let A be a tableau of order p.
(i) If A is involutive, then

Hk,q(A) = 0 for k ≥ 1, q ≥ 0.

(ii) If A is involutive, then the prolongations A(q) are involutive for q ≥ 1.

We note that (ii) follows from (26) below and Theorem 2.4; however, the proof
of Theorem 2.4 is somewhat lengthy and so we will first give a direct proof of (ii).

As an application of Proposition 2.5, we let A ⊂W ⊗V ∗ be an ordinary tableau
and picture its cohomology as coming from the diagram

A(2) A(2) ⊗ V ∗ A(2) ⊗ Λ2V ∗

↘ ↘
A(1) A(1) ⊗ V ∗ A(1) ⊗ Λ2V ∗

↘ ↘
A A ⊗ V ∗ A⊗ Λ2V ∗

↘ ↘
W W ⊗ V ∗ W ⊗ Λ2V ∗.

For the 1st prolongation its Spencer cohomology comes from the diagram

A(3) A(3) ⊗ V ∗ A(3) ⊗ Λ2V ∗

↘ ↘
A(2) A(2) ⊗ V ∗ A(2) ⊗ Λ2V ∗

↘ ↘
A(1) A(1) ⊗ V ∗ A(1) ⊗ Λ2V ∗

↘ ↘
W ⊗ V ∗ W ⊗ V ∗ ⊗ V ∗ W ⊗ V ∗ ⊗ Λ2V ∗.

Comparing these two it is clear that

(26) Hk,q(A(1)) ∼= Hk+1,q(A), k ≥ 1.

In particular, we have from Proposition 2.5 above:

If A is involutive, then(27)

Hk,q(A(1)) = (0), k ≥ 1.

Returning to our general discussion, the proof of Proposition 2.5 will follow from
the two assertions

A involutive ⇒ Hp,q(A) = 0 for p ≥ 1, q ≥ 0.(28)

Hp,q(A) = 0 for p ≥ 1 and statement (ii) in(29)
Proposition 2.5 when dim V ≤ n− 1 together imply

(ii) in Proposition 2.5 when dimV = n.

Our proof of (28) is due to Sternberg, and the idea is this: Using the surjectivity
of the maps (6) in §1 above, a standard proof of the Poincaré lemma carries over
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verbatim to give Hp,q(A) = 0 for p ≥ 1, q ≥ 1 (the case p ≥ 1, q = 0 must be
treated separately and will be left to the reader).

In fact, the exposition will be clearer if we just give this standard inductive proof
of the usual Poincaré lemma and leave it for the reader to simply observe that the
argument also establishes (29).

Let U be the closed cube {x ∈ Rn : |xi| ≤ 1} and let ϕ ∈ Ωq(U) be a closed C∞

q-form (the coefficients of ϕ are assumed smooth in a neighborhood of U). If q ≥ 1
we want to find η ∈ Ωq−1(U) satisfying

dη = ϕ.

Suppose that ϕ involves only the differentials dx1, . . . , dxk. The construction of η
will be by descending induction on k. Namely, we will inductively find ηk such that

ϕ− dηk involves only dx1, . . . , dxk−1.

Then η = η1 will be our required form. To find ηk we write

ϕ = ϕ′ + ϕ′′ ∧ dxk

where ϕ′, ϕ′′ involve only dx1, . . . , dxk−1. From

0 = dϕ = dϕ′ + dϕ′′ ∧ dxk,

by looking at the coefficients of dxk ∧ dxl where l > k we see that

∂ϕ′′

∂xl
= 0, l > k.

Here, the derivatives of a form mean the derivatives of its coefficients. By elemen-
tary calculus, we may find a (q − 1)-form ηk involving only dx1, . . . , dxk−1 and
satisfying

(30)

{
∂ηk

∂xk = ϕ′′

∂ηk

∂xl = 0 for l > k.

In other words, if C∞
k (U) are the C∞ functions in U that only depend on x1, . . . , xk,

then the mappings

(31) ∂/∂xk : C∞
k (U)→ C∞

k (U)

are surjective. In fact, given f ∈ C∞
k (U) the function

g(x1, . . . , xk) =
∫ xk

−1

f(x1, . . . , xk−1, t)dt

satisfies g ∈ C∞
k (U) and ∂g/∂xk = f . We note the similarity between (31) and (6).

Now consider

ψ = ϕ− dηk

= ϕ− ϕ′′ ∧ dxk + terms involving only dx1, . . . , dxk−1.

By (30) the form ψ involves only dx1, . . . , dxk−1, and finding it completes the
induction step in our proof of the usual Poincaré lemma. �
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As suggested above, the proof of (28) is the same with (6) in §1 replacing (31).

We now turn to the proof of (ii) in Proposition 2.5. The result is due to Cartan; a
direct proof is given in Singer and Sternberg [1965] and, as we have noted, the result
follows in a general way from (26) and Theorem 2.4. We shall give the argument for
an ordinary tableau A ⊂W ⊗ V ∗, the proof for a general tableau being essentially
the same. Thus we must show that:

(32) A involutive ⇒ A(1) involutive.

By our inductive strategy (29) we may assume
(i) that (32) is true when dimV ≤ n− 1;
(ii) that (i) in Proposition 2.5 is true when dimV ≤ n.

We must then prove (32) when dimV = n.
By definition and Proposition 1.2 above we must show that there exists a basis

x1, . . . , xn for V ∗ such that the maps

(33i) ∂/∂xi : A
(2)
i−1 → A

(1)
i−1

are surjective for i = 1, . . . , n. By the involutivity of A there exists a basis such
that the maps

(34) ∂/∂xi : A
(1)
i−1 → Ai−1, i = 1, . . . , n,

are all surjective, and this is the basis for V ∗ we shall use.
Next we note that A1 is itself an involutive tableau in n − 1 variables. By our

induction assumption we may then assume that the maps (33i) are surjective for
i = 2, . . . , n. It remains to prove that

∂/∂x1 : A(2) → A(1)

is surjective.
Let Q ∈ A(1) ⊂W ⊗ S2V ∗. We want to find P ∈ A(2) ⊂W ⊗ S3V ∗ satisfying

(35)
∂P

∂x1
= Q.

The idea is to use the surjectivity of (34) to solve for the derivatives of this equation.
Then the vanishing of cohomology will allow us to “integrate” this solution.

Thus consider
∂Q

∂xj
∈ A ⊂W ⊗ V ∗.

By (34) when i = 1 we may find Tj ∈ A(1) with

(36)
∂Tj

∂x1
=

∂Q

∂xj
.

Consider the 1-form
T = Tjdxj ∈ A(1) ⊗ Λ1V ∗.
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Its exterior derivative satisfies

dT ∈ A ⊗ Λ2V ∗

∂

∂x1
(dT ) = d

(
∂T

∂x1

)
= d2Q = 0,

where the derivatives of a form mean the derivatives of its coefficients. Denote
by ϕ the restriction of a form whose coefficients are functions of x2, . . . , xn to the
subspace x1 = 0 (thus ϕ→ ϕ means to set dx1 = 0). Then, since dϕ = dϕ,

d(dT) = 0.

We may thus consider dT as a class in

H1,2(A1) = 0

by our induction assumption (ii). Consequently, we may find

S =
n∑

α=2

Sα(x2, . . . , xn)dxα = S

with Sα ∈ A
(1)
1 and

dT = dS.

It follows that

(37) d(T − S) = dx1 ∧ U

where

U =
n∑

α=2

Uα(x2, . . . , xn)dxα = U, Uα ∈ A1.

Taking exterior derivatives of both sides of (37) gives

0 = dx1 ∧ dU.

It follows that
U ∈ H1,1(A1) = 0,

again by our induction assumption. Thus

U = −dW, where W ∈ A
(1)
1

⇒d(T − S) = d(Wdx1).

Setting

R = S + Wdx1 =
n∑

i=1

Rj(x2, . . . , xn)dxj,

where Rj ∈ A
(1)
1 , we see that

d(T − R) = 0.



282 VIII. Applications of Commutative Algebra

Then, by the usual Poincaré lemma for homogeneous polynomials differential forms
there exists P such that {

(i) T − R = dP
(ii) P ∈W ⊗ S3V ∗.

The first equation implies that
P ∈ A(2),

and we claim that (35) is satisfied. In fact

∂

∂xj

(
∂P

∂x1
−Q

)
=

∂

∂x1
(Tj − Rj)−

∂Q

∂xj

=
∂Tj

∂xi
− ∂Q

∂xj

= 0

by (36). �
We have now proved that the prolongations of an involutive tableau are involu-

tive. One point of putting the argument here is that, whether one uses the language
or not, the proof unavoidedly uses Spencer cohomology.

Discussion. In Chapter VI, Theorem 2.1 we have proved that the prolongation of
an involutive differential system (I, Ω) is again involutive. In case (I, Ω) is a linear
Pfaffian system we may give an alternate proof based on Proposition 2.5 above as
follows:

To show that (I(1), Ω) is involutive on the manifold M (1) of integral elements of
(I, Ω), we must show that

i) for each point y ∈M
(1)
1 , the tableau A

(1)
y is involutive.

ii) the integrability conditions for (I(1), Ω) are satisfied.
Now (i) follows from (ii) in Proposition 2.5, and so we must establish (ii). We
have seen in Chapter IV and will recall below that the integrability conditions of a
linear Pfaffian differential system live in a family of quotient vector spaces. These
equivalence classes were called the torsion of the linear Pfaffian system, and what
we shall prove is that

The torsion of (I, Ω) lives naturally in the family(38)

of vector spaces H0,2(Ax), and

The torsion of (I(1), Ω) lives naturally in the family(39)

of vector spaces H0,2(A(1)
x ) ∼= H1,2(Ax) (cf. (26)).

Since (I, Ω) is assumed to be involutive, its torsion vanishes. Then the torsion of
(I(1), Ω) vanishes by the vanishing of cohomology assertion (i) in Proposition 2.5.
This, at least in outline form, is the proof for linear Pfaffian systems of the fact
that (I(1), Ω) is involutive if (I, Ω) is.

We will now discuss how (38) and (39) are established, and for this we begin
with a standard homological construction. Let A ⊂W ⊗ V ∗ be a tableau and set

B = A⊥ ⊂W ∗ ⊗ V
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so that we have an exact sequence of vector spaces

0→ A→W ⊗ V ∗ → B∗ → 0.

We define vector spaces B∗(k) by

0→ A(k) →W ⊗ Sk+1V ∗ → B∗(k) → 0

and set

Ck,q(B) =
{

B∗(k−1) ⊗ ΛqV ∗ k ≥ 1
0 k = 0.

Then we have an exact sequence of complexes

0 → C ·,·(A)→ C ·,· → C ·,·(B)→ 0

where C ·,·(A) =
⊕

k,q Ck,q(A), C ·,· =
⊕

k≥0(W⊗Sk+1V ∗), and C ·,·(B) =
⊕

k,q Ck,q(B).
Associated to this is a long exact cohomology sequence, and using (13) above this
gives

Hp,q(B) ∼−→ Hp−1,q+1(A), p ≥ 1 and q ≥ 1.

In particular, we have

(40)
{

(i) H0,2(A) ∼= H1,1(B)

(ii) H0,2(A(1)) ∼= H1,2(A) ∼= H2,1(B).

To establish (38) we use equation (51) of Chapter IV to write the structure
equations of (I, Ω) as

dθa ≡ Aa
εiπ

ε ∧ ωi +
1
2

ca
ijω

i ∧ ωj mod {I}

where {I} is the algebraic ideal in Ω∗M generated by the sections of I ⊂ T ∗M .
Under a change

πε → πε + pε
jω

j

we have

(41) ca
ij → ca

ij +
1
2

(Aa
εip

ε
j − Aa

εjp
ε
i ).

Recalling that

C0,2(A) = W ⊗ Λ2V ∗

C1,1(A) = A ⊗ V ∗

H0,2(A) = W ⊗ Λ2V ∗/δ(A⊗ V ∗)

and that Ax is spanned by the

Ax,ε = Aa
εi(x)wa ⊗ v∗i ,
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may easily compute from (41) that the cocycle

1
2

ca
ij(x)wa ⊗ v∗i ∧ v∗j ∈ C0,2(Ax)

gives a class [c](x) in H0,2(Ax) whose vanishing is necessary and sufficient for the
existence of integral elements lying over x ∈M (cf. Proposition 5.14 in Chapter IV
for the complete argument here).

If we write the structure equations in dual form as (cf. equation (83) of Chap-
ter IV) {

dθa ≡ πa
i ∧ ωi mod {I}

Bλi
a πa

i ≡ Cλ
j ωj mod {I}

where the
Bλ = Bλi

a w∗
a ⊗ vi

give a basis for the symbol relations in the annihilator

Bx = A⊥
x ,

then the πa
i are determined modulo I up to a substitution

πa
i → πa

i + pa
ijω

j , pa
ij = pa

ji.

Under such a substitution
Cλ

j → Cλ
j + Bλi

a pa
ij,

so that the equivalence class

[Cλ
j ] ∈ B∗

x ⊗ V ∗/δ(W ⊗ S2V ∗) = H1,1(Bx)

is well-defined. If we denote this equivalence class by [C](x), then it is easy to verify
that:

[c](x) = [C](x) under the isomorphism (i) in (40).

We will now recall from equation (124) of Chapter IV the structure equations of
the first prolongation (I(1), Ω)

(42)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) dθa ≡ 0 mod {I(1)}
(ii) dθa

i ≡ πa
ij ∧ ωj mod {I(1)} where

(iii) πa
ij = πa

ji

(iv) Bλi
a πa

ij ≡ Cλ
jkω

k mod {I(1)}.

We will see that the equivalence class

[Cλ
jk] ∈ B∗(1)

x ⊗ V ∗/δB∗(2)
x

is well-defined, that the coboundary δ(Cλ
jk) = 0, and that the vanishing of the

resulting cohomology class [C(1)](x) ∈ H2,1(Bx) is the necessary and sufficient
condition for the existence of integral elements for (I(1), Ω) lying over x. Referring
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to (28) and (ii) in (39), we will then see that, in the involutive case, this vanishing
is automatically satisfied.

In summary, the involutivity of the tableau of (I, Ω) gives both the involutivity of
the tableau and vanishing of the torsion of the prolonged system (I(1), Ω).

From equation (126) of Chapter IV we have

Cλ
jkωj ∧ ωk ≡ 0 mod {I(1)},

which is just δ(Cλ
jk) = 0. Using (iv) in (31) it is now straightforward to show that

writing C(1) as a coboundary is equivalent to being able to absorb the integrability
conditions into the πa

ij, so that (iv) becomes

Bλi
a πa

ij ≡ 0 mod {I(1)}.

In this way we have now established that (I(1), Ω) is involutive.

§3. The Graded Module Associated to a Tableau; Koszul Homology.

We want to finish laying the basis for the proof of Theorem 2.4 above and for the
Cartan–Kuranishi prolongation theorem in Chapter VI. The algebraic basis for both
of these comes by studying a certain graded SV -module MA associated to a tableau
A. A very interesting confluence occurs in that Cartan’s test for involution dualizes
into the condition that MA admit a quasi-regular sequence, and such modules are
standard fodder for the cannons of homological algebra. Before embarking on the
formal discussion, we remark on why this should be so: The dual of

∂/∂xi : SqV ∗ → Sq−1V ∗

is the multiplication
vi : Sq−1V → SqV.

Thus, Cartan’s test in form of the surjectivity of the differentiation maps given by
(6) above dualizes to the injectivity of suitable multiplication maps.

Let A ⊂W ⊗ V ∗ be a tableau and

A =
⊕

q≥0A
(q) ⊂W ⊗ S+V ∗

the total prolongation of A. Dually, we set⎧⎪⎨
⎪⎩

B = A⊥ ⊂W ∗ ⊗ V

Bq = A(q)⊥ ⊂W ∗ ⊗ Sq+1V

B = ⊕q≥0Bq ⊂W ∗ ⊗ S+V.

For P ∈ W ⊗ Sp+1V ∗ and m ∈ W ∗ ⊕ SpV ∼= (W ⊗ SpV ∗)∗ we have

(43)
〈

m,
∂P

∂xi

〉
= 〈vim, P 〉
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where vi ∈ V is a basis with dual basis xi ∈ V ∗ and 〈 , 〉 is the pairing between
dual vector spaces. It then follows from (2) above that:

B ⊂W ∗ ⊗ S+V is the graded SV -submodule of(44)

W ∗ ⊗ S+V generated by B ⊂W ∗ ⊗ V .

Here, W ∗ ⊗ SV is the obvious free SV -module and W ⊗ S+V the submodule
corresponding to the maximal ideal in SV . We remark that since B = B0, the
grading on B is shifted by one from that induced by the natural grading on W ∗⊗SV .
To rectify this we shall introduce the standard shift notation: if M =

⊕
q Mq is a

graded SV -module, then we define the new graded SV -module M [p] by

(M [p])l = Mp+l .

With this notation the inclusion

B[−1] →W ∗ ⊗ SV

is a homogeneous SV -module mapping of degree zero. We define the graded SV -
module MA to be the quotient, so that we have

(45) 0→ B[−1] →W ∗ ⊗ SV →MA → 0.

We note that

(46) MA,q =
{

W ∗ q = 0
A(q−1)∗ q ≥ 1.

Definition 3.1. i) B is the symbol module associated to the tableau A, and ii) MA

is the graded SV -module associated to the tableau A.
To explain how Cartan’s test dualizes, we need to recall some essentially standard

commutative algebra definitions. Let M =
⊕

q≥0 Mq be a non-negatively graded
SV -module.

Definition 3.2. i) The element v ∈ V is quasi-regular if the kernel K in

0→ K →M
v−→M → 0

of multiplication by v has no elements in positive degree; i.e., K+ = (0).
ii) The sequence v1, . . . , vk of elements of V is quasi-regular for M if vj is quasi-

regular for M/(v1 , . . . , vj−1)M for j = 1, . . . , k.
iii) The module M is quasi-regular if there is a basis v1, . . . , vn for V that is

quasi-regular for M .
The usual definitions of regular element, regular sequence, and regular module are
the same as above but where multiplication has no kernel.

The grading on the quotient module is the obvious one:

(M/(v1 , . . . , vj−1)M)q = Mq/(v1Mq−1 + · · ·+ vj−1Mq−1).

The point of all this is the following:
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Proposition 3.3. The tableau A ⊂ W ⊗ V ∗ is involutive if, and only if, the
associated graded module MA is quasi-regular.

Proof. By Proposition 1.2 and Definition 1.3 above, the involutivity of A is equiv-
alent to the existence of a basis x1, . . . , xn ∈ V ∗ such that each mapping

(47) ∂/∂xi : A
(q+1)
i−1 → A

(q)
i−1

is surjective for all q ≥ 0. Recalling that by definition

Ai−1 = {P ∈ A :
∂P

∂x1
= · · · = ∂P

∂xi−1
= 0}

it follows from (43) and (44) that

A
(q)⊥
i−1 = (v1, . . . , vi−1) ·MA,q

∩ ∩
A(q)∗ ∼= MA,q+1,

and therefore

(A(q)
i−1)

∗ ∼= A(q)∗/A
(q)⊥
i−1

∼= MA,q+1/(v1, . . . , vi−1) ·MA,q.

The surjectivity of (47) for q ≥ 0 is equivalent to the injectivity of the dual mapping

(47∗) vi : MA,q+1/(v1, . . . , vi−1) ·MA,q →MA,q+2/(v1, . . . , vi−1) ·MA,q+1

for q ≥ 0. This implies the proposition. �
It is an remarkable coincidence of previously unrelated historical terminology

that the condition that the constant coefficient Pfaffian differential system associated
to the tableau A have a regular integral flag is equivalent to MA being quasi-regular
in the sense of commutative algebra.

We shall now quickly extend this discussion to a higher order tableau. Let

A ⊂W ⊗ Sp+1V ∗

be a tableau of order p with prolongations

A(q) ⊂W ⊗ Sp+q+1V ∗.

We set

B = A⊥ ⊂W ∗ ⊗ Sp+1V

Bq = A(q)⊥ ⊂W ∗ ⊗ Sp+q+1V

B =
⊕

q≥0Bq , B0 = B.

Using the shift notation we define the graded SV -module MA associated to A by
the exact SV -module sequence

(48) 0→ B[−1] → (W ∗ ⊗ SV )[p] →MA → 0.
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Then

MA,q =
{

W ∗ ⊗ SpV q = 0
A(q)∗ q ≥ 1.

The reason for the choice of MA,0 will be discussed below. Remark on the obvious
but interesting point that

(W ∗ ⊗ SV )[p] = (W ∗ ⊗ SpV ) ⊕ (W ∗ ⊗ Sp+1V )⊕ . . .

is not a free SV -module when p ≥ 1. This will be further discussed below.
For now the important observation is that the statement and proof of Proposi-

tion 3.3 carry over verbatim to a higher order tableau.
It is a well-known result in commutative algebra that the condition for a graded

SV -module to admit a regular sequence is expressed by the vanishing of suitable
Koszul homology groups. Moreover, the same proof works for quasi-regular se-
quences. We shall now explain this.

Let M =
⊕

q Mq be a graded SV -module with module mappings

SpV ⊗Mq →Mp+q .

Set
Cp,q = Mp ⊗C ΛqV

and define a boundary operator

(49) ∂ : Cp,q → Cp+1,q−1

by the formula

(50) ∂(m⊗ vi1 ∧ · · · ∧ viq) =
∑
α

(−1)α+1viα ·m⊗ vi1 ∧ · · · ∧ v̂iα ∧ · · · ∧ viq .

It is clear that ∂2 = 0, and we set

(51) Hp,q(M) = ker{∂ : Cp,q → Cp+1,q−1}/∂Cp−1,q+1.

Definition 3.4. Hp,q(M) are the Koszul homology groups of the graded SV -module
M .

The Koszul homology groups will be used in this and some of the following
sections. For the moment the following is the relevant property:

Proposition 3.5. The following are equivalent:
i) H+,n(M) = · · · = H+,n−q(M) = 0;
ii) there is a quasi-regular sequence of length q, say v1, . . . , vq, for M ;
iii) every generic sequence of length q is quasi-regular for M .

We denote by S+V the maximal ideal in SV and shall begin by establishing the
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Lemma 3.6. The following are equivalent:
i) H+,n(M) = 0
ii) for m ∈M , S+V ·m = 0 ⇒ m ∈M0

iii) there exists a v ∈ V such that v ·m = 0⇒ m ∈M0

iv) for generic v ∈ V , v ·m = 0⇒ m ∈ M0.

Proof. We begin by showing the equivalence of i) and ii). The top end of the
complex that computes Koszul homology is

0→ H·,n(M)→M ⊗ ΛnV
∂−→M ⊗ Λn−1V,

where by the boundary formula (50)

∂(m⊗ v1 ∧ · · · ∧ vn) =
n∑

α=1

(−1)α+1vα ·m⊗ v1 ∧ · · · ∧ v̂α ∧ · · · ∧ vn.

From this the equivalence of i) and ii) is clear.
The equivalence of ii)–iv) is also pretty clear. What is obvious is that iv) ⇒

iii) ⇒ ii), and so we must prove that ii) ⇒ iv). Let J0 ⊂ M0 be a vector space
complement to {M ∈ M0 : v ·m = 0 for all v ∈ V } and set M ′ = J0 ⊕M+. Then
M ′ is a graded SV -module with the property:

(52) v ·m = 0 for all v ∈ V ⇔ m = 0.

Referring to §1, n0 1 of Bourbaki [1961], with the terminology employed there we
have that

SV /∈ Ass(M ′).

Moreover, by Corollary 2 in §1, n0 1 of Bourbaki [1961], the condition that the
multiplication

P : M ′ →M ′

by P ∈ SV be injective is that P /∈ I for any prime ideal I ∈ Ass(M ′). By the
corollary to Theorem 2 in §1, n0 4 of Bourbaki [1961], the set Ass(M ′) is a finite set
I1, . . . , Ik of proper prime ideals. Then SV \(I1∪· · ·∪Ik) consists of the elements P
such that multiplication by P is injective. Each Ij ∩ V is a proper linear subspace,
and V \((I1 ∩ V )∪ · · · ∪ (Ik ∩ V )) is the open dense set of elements that are generic
in the sense of (iv). �

We next need the following trivial but basic

Lemma 3.7. Multiplication by v ∈ V induces the zero map

Hp,q(M) v−→ Hp+1,q(M).

Proof. If ϕ ∈Mp ⊗ ΛqV is a cycle, then ϕ ∧ v ∈Mp ⊗ Λq+1V and by (50)

(53) ∂(ϕ ∧ v) = (∂ϕ) ∧ v + (−1)qv · ϕ.

This implies the lemma. �
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Proof of Proposition 3.5. If v is quasi-regular then we have exact sequences of
SV -modules {

0→ J0 →M
v−→ vM → 0, J0 ⊂M0,

0→ vM →M →M/vM → 0,

where in the first sequence v is a module map homogeneous of degree one, while
all other maps are homogeneous of degree zero. By standard reasoning these give
long exact homology sequences{

→ Hp,q(J0)→ Hp,q(M) v−→ Hp+1,q(vM) ∂−→ Hp+1,q−1(J0)→
→ Hp+1,q(vM)→ Hp+1,q(M)→ Hp+1,q(M/vM)→ Hp+2,q−1(vM)→ .

Using Lemma 3.7 and the fact that Hp+1,q−1(J0) = 0 for p ≥ 0, this pair of
sequences combines to give

0 → Hp+1,q(M)→ Hp+1,q(M/vM)→ Hp+1,q−1(M)→ 0

for p ≥ 0. Now take q = n and use Lemma 3.6 to obtain

(54) Hp+1,n(M/vM) ∼= Hp+1,n−1(M), p ≥ 0.

If there is a ṽ ∈ V that is quasi-regular for M/vM , then we conclude from
Lemma 3.6 that

(55) Hp+1,n−1(M) = 0, p ≥ 0.

Conversely, if (55) holds then by (54) and the lemma we may find ṽ ∈ V that
is quasi-regular for M/vM . Continuing in this way with an obvious descending
induction gives the proposition. �
Corollary 3.8. The tableau A (of any order) p is involutive if, and only if,

Hp,q(MA) = 0, for p ≥ 1, q ≥ 0.

Completion of the Proof of Theorem 2.4. We must show that the vanishing of
suitable cohomology implies that the tableau A is involutive. By (43) and the
definition of MA, the complexes of vector spaces

· · · → A(p) ⊗ ΛqV ∗ δ−→ A(p−1) ⊗ Λq+1V ∗ → . . .

· · · ←MA,p ⊗ ΛqV ←MA,p−1 ⊗ Λq+1V ← . . .

and mutually dual. It follows that Spencer cohomology is dual to Koszul homology,
i.e.,,

(56) Hp,q(A) � Hp,q(MA)∗.

Under this duality, the above corollary translates into the implication

Hp,q(A) = 0 for p ≥ 1, q ≥ 0 ⇒ Ainvolutive.

There is something missing here in the file that is in the book!
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In order to establish the prolongation theorem in Chapter VI we need to prove
the

Proposition 3.9. Let A be a tableau. Then there is a k0 such that the prolonga-
tions A(k) are involutive for k ≥ k0.

We will actually prove a stronger result. To state it, we recall that there is a
function, the Hilbert function PA(q) of the graded module MA, such that

dimA(q) = PA(q)

for all q. The result we shall actually need is given by the

Proposition 3.10. Let A ⊂ W ⊗ V ∗ be a tableau and PA(q) the Hilbert function
of the graded module MA. Then there is a k0 depending on dimW and PA(q) such
that A(k) is involutive for k ≥ k0.

We will now prove Proposition 3.9. Then we shall prove Proposition 3.10 at the
end of §5 after we have discussed localization.

By Theorem 2.4, it will suffice to show that there is a k0 such that all

(57) Hp,q(A(k)) = 0, p ≥ 1, q ≥ 0 and k ≥ k0.

By the definition of Spencer cohomology we have (cf. (26) above)

(58) Hp,q(A(k)) ∼= Hp+k,q(A), p ≥ 1 and q ≥ 0.

Combining (56)–(58) we see that Proposition 3.9 follows from (and in fact is equiv-
alent to) the

Proposition 3.9′. Let MA be the graded module associated to a tableau. Then
there exists a p0 such that

Hp,q(MA) = 0 for p ≥ p0, q ≥ 0.

In fact, this proposition is valid for any finitely generated graded SV -module M ,
and it is this more general result that we shall prove. For this we set

Cp,q = Mp ⊗ ΛqV

Cq =
⊕

pCp,q,

and define a graded SV -module structure on Cq by

v · (m⊗ vi1 ∧ · · · ∧ viq) = (v ·m)⊗ vi1 ∧ · · · ∧ viq

where v, vi ∈ V and m ∈M . The boundary mappings (49) induce

(59) ∂ : Cq → Cq−1,

and it is immediate from (50) that (59) is a mapping of graded SV -modules, ho-
mogeneous of degree one. As a consequence, assuming that M· is finitely generated
the following are all finitely generated SV -modules

ker ∂, image∂, Hq(M) =
⊕

pHp,q(M).

Moreover, and this is the crucial point, by Lemma 3.7 above the maximal ideal S+V
acts trivially on the SV -module Hq(M). From this we infer that Hq(M) is a finitely
generated SV/S+V = C module, i.e., it is a finite dimensional vector space. �
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In the next section we shall discuss the interpretation of Koszul homology Hp,q(M)
as it pertains to resolutions of M by free modules. It will turn out that Proposi-
tion 3.9 is really just the statement that a sub-module of a finitely generated SV ∗

module is itself finitely generated as this latter statement pertains to the relations
among the generators of M , and then the relations among the relations, and so
forth, i.e., it is equivalent to the statement that M has a finite resolution by finitely
generated free modules.

§4. The Canonical Resolution of an Involutive Module.

In the preceeding section we defined the graded module MA associated to a
tableau, and then we used more or less standard commutative algebra to relate the
existence of quasi-regular sequences for MA to the vanishing of Koszul homology.
There the motivation was to complete the proof of Theorem 2.4, among other things
providing the conceptual basis for the result that the prolongations of an involutive
tableau are involutive.

Another use of Koszul homology is in the construction of resolutions of graded
modules, and we would now like to pursue the implications of this for the theory of
differential systems. Before doing this we will try to give some motivation by the
following

Example 4.1. We identify W ∗ ⊗ SV with constant coefficient linear differential
operators on W ∗ ⊗ SV ∗, so that by definition

(w∗
a ⊗ vI)(P b

Jwb ⊗ xJ) =
∂

∂xI
(P a

J xJ).

As discussed in Chapter IV, giving a tableau A ⊂ W ⊗ V ∗ is equivalent to giving
the linear homogeneous constant coefficient P.D.E. system

(60) Dλu(x) = 0

where

Dλ = Bλi
a w∗

a∂/∂xi

u = waua(x)

Dλu = Bλi
a

∂ua(x)
∂xi

,

and where the
Bλ = Bλi

a w∗
a ⊗ vi

give a basis for B = A⊥ ⊂ W ∗ ⊗ V . The symbol module B corresponds to the
algebra of constant coefficient differential operators on W ⊗ SV ∗ generated by the
operators Dλ. In particular, the solutions to (60) satisfy

Du = 0

for all D ∈ B.
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More generally we consider the inhomogeneous linear P.D.E. system

(61) Dλu(x) = fλ(x).

Any relation
eλBλ = 0, eλ ∈ SV

on the generators of the symbol module gives an integrability condition

Eλfλ(x) = 0

on the fλ, where Eλ ∈ C[∂/∂x1, . . . , ∂/∂xn] corresponds to eλ ∈ C[v1, . . . , vn] when
we set vi = ∂/∂xi. In this way, not only the generators but also the relations of
the symbol module enter into the theory. Once we agree to study the relations of
B, we may as well go ahead and study entire resolutions.

In fact, returning to the general discussion, it is well-known that in some ways
the most important properties of a finitely generated SV -module M are given by
its generators and relations, and then the generators and relations of its relations,
etc. In brief, one wants to find resolutions of M by free SV -modules E = E ⊗ SV ,
where E is a finite-dimensional vector space. It is also well-known that any M
has an essentially canonical minimal such resolution where the vector spaces E are
appropriate Koszul homology groups of M . It has been proved above that the
involutivity of A is equivalent to the vanishing of certain of the Koszul homology
groups of MA, which then turns out to be equivalent to the property that the
canonical resolution be especially simple (this was conjectured by Guillemin and
Sternberg and proved by Serre; see Guillemin and Sternberg [1964]). Here we shall
recall some of the definitions and elementary facts, together with a derivation of
the canonical resolution of an involutive module.

We set S = SV and consider an arbitrary finitely generated, graded S-module
M =

⊕
k∈Z

Mk. For simplicity of exposition we shall assume that M is non-
negatively graded in the sense that Mk = 0 for k < 0. The action of S on M
is given by vector space mappings Sj ⊗ Mk → Mj+k satisfying the customary
conditions. We let S+ =

⊕
k≥1 SkV be the maximal ideal of S; then M/S+M is

a finite dimensional vector space whose dimension equals the minimal number of
generators of M as an S-module.

Associated to M are its Koszul homology groups Hk,q(M), whose definition was
given in the preceeding section. Here we shall give a number of remarks concerning
these groups (cf. Green [1989a] for a general discussion of Koszul homology and its
relationship to algebraic geometry):

Hk,0(M) ∼= Mk/V ·Mk−1(62)

∼= {new generators of M in degree k}.

In particular

(63)
{

M is generated
in degree zero

}
⇔ Hk,0(M) = 0 for all k > 0.

(64) Hk,n(M) ∼= AnnV (Mk) = {v ∈ V | v ·Mk = 0}.
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Of importance is the shift mapping, which we recall associates to a graded module
M a new graded module M [p] defined by

(65) (M [p])q = Mp+q .

It is then clear from the definitions that

(66) Hk,q(M [p]) ∼= Hk+p,q(M) for q ≥ 0.

An exact sequence of graded S-modules

(67) 0→M ′ →M →M ′′ → 0

where all maps are homogeneous of degree zero, gives a long exact homology se-
quence

→ Hk−1,q+1(M ′′) ∂−→ Hk,q(M ′)→ Hk,q(M)→ Hk,q(M ′′)(68)

∂−→ Hk+1,q−1(M ′)→ . . . .

In case the module maps in (67) are homogeneous of degrees other than zero, then
we still have an exact sequence (68) with a shift in indices given by using the shift
mapping to make the maps homogeneous of degree zero.

An example when this shift occurs is given by the exact S-module sequence

0→ B→W ∗ ⊗ SV →MA → 0

where the first map is homogeneous of degree +1. Here, A is an ordinary tableau, B
is its symbol module, and MA is the associated graded SV -module. The sequence
(45) above

0→ B[−1] →W ∗ ⊗ S →MA → 0

has all maps homogeneous of degree zero, and (68) together with (66) gives
(70)
· · · → Hk,q(W ∗ ⊗ SV )→ Hk,q(MA) ∂−→ Hk,q−1(B)→ Hk+1,q−1(W ∗ ⊗ SV )→ . . .

M is a free module generated in degree zero (i.e.,(71)

M ∼= M0 ⊗ SV ) if, and only if,

(72) Hk,q(M) = 0 for (k, q) �= (0, 0).

This property will be proved when we establish Proposition 4.3 below.
We recall our assumption that all modules are non-negatively graded; thus M =⊕
q≥0 Mq.

Definition 4.2. i) A graded S-module M is involutive if

(73) Hk,q(M) = 0 for k ≥ 1 and all q ≥ 0
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ii) A graded S-module M =
⊕

k≥k0
Mk is k0-involutive if

Hk,q(M) = 0 for k �= k0 and all q ≥ 1.

In the latter case it follows that

M̃ = M [k0]

is involutive in the usual sense.
We may reformulate the discussion in the preceeding section by the statement:

The tableau A is involutive if, and only if, the associated(74)
graded module MA is involutive.

From (70) and (72) we have the following:

The tableau A is involutive if, and only if, the symbol(75)
module B, is involutive.

By applying the standard construction of a minimal free resolution of a graded
S-module in terms of its Koszul homology groups, we shall derive the following
result due to Serre (see Guillemin and Sternberg [1964]):

Proposition 4.3. Let M be an involutive SV -module. Then there is a free reso-
lution

(76) 0→ En
ϕn−−→ En−1 → · · · → E1

ϕ1−→ E0
ϕ0−→M → 0

where deg ϕ0 = 0, deg ϕi = 1, for i ≥ 1 and Ei = H0,i(M)⊗ SV . The converse is
also true.

We shall call (76) the canonical resolution of an involutive module (it is canonical
in the sense that it is minimal in the sense explained below). Before deriving it we
shall make a few remarks.

An involutive module is generated in degree zero, i.e.,(77)
M = S ·M0.

This follows from the definition together with (63).
Next we consider an exact sequence

0→M ′ →M →M ′′ → 0

of graded SV -modules and degree zero maps.

If M, M ′′ are involutive and M0 →M ′′
0 is an(78)

isomorphism, then M ′ is 1-involutive. Moreover,
there are canonical short exact
sequences
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(79) 0→ H0,q(M)→ H0,q(M ′′) ∂−→ H1,q−1(M ′)→ 0.

This is clear from our definitions and (68).
For 1-involutive modules M ′ we shall use the notation

M̃ ′ = M
′[1].

Then under the hypotheses of (19), M̃ ′ is involutive and (79) is

(80) 0 → H0,q(M)→ H0,q(M ′′)→ H0,q−1(M̃ ′)→ 0.

We may now easily give the construction of the canonical resolution of an invo-
lutive module. By (62) and (63){

H0,0(M) ∼= M0, and
M is generated in degree zero.

Setting E0 = H0,0(M)⊗ SV , this gives a short exact sequence

0 → N → E0 →M → 0

to which (78) and (79) apply. Thus Ñ is involutive, and by (71) and (80)

H0,q(M) ∼= H0,q−1(Ñ), q ≥ 1.

We now repeat the construction replacing M by Ñ , and continue.
Note that if M is free and H0,1(M ′′) = 0 in (77), then M ′ = 0 and so M ∼= M ′

is free. In other words, if N is involutive and H0,1(N) = 0, then N is free. This
implies that the resolution process terminates after at most n steps.

We have now established the constructive half of Proposition 4.3; since we will
not use the converse the proof of this will not be given (in any case it is standard).

�
Discussion. We shall, without proofs, put Proposition 4.3 in a general context. For
this we let

(i) 0 → Em
ϕm−−→ En−1 → · · · → E1

ϕ1−→ E0
ϕ0−→M, deg ϕi = 0,

be a resolution of a finitely generated graded S-module M by free modules

Ep =
⊕

q(Bp,q ⊗ S[−q]),

where the Bp,q are finite dimensional vector spaces whose dimensions bp,q give the
number of S[−q] ’s occurring in Ep. The maps ϕi : Ei → Ei−1 are normalized
to be of degree zero and are given by a matrix whose entries break into blocks
corresponding to maps

(ii) ϕi,k,l : Bi,k ⊗ S[−k] → Bi−1,l ⊗ S[−l] .

Each such block is clearly given by a bi,k × bi−1,l matrix whose individual entries
are homogeneous polynomials of degree k − l. We shall say that the resolution (i)
is minimal in case the entries in each ϕi,k,l have strictly positive degree.
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To explain this, it is clear that a non-zero block (ii) where k = l gives a redun-
dancy in (i) in the sense that in terms of suitable bases for Bi,k and Bi−1,k the
matrix of ϕi,k,l will have the form (

Iα 0
0 0

)
,

where Iα is the α×α identity matrix and where the Iα piece induces isomorphism
between free sub-modules of Ei and Ei−1 which may then be deleted from (i). It
follows that every M has a minimal free resolution (i), and this resolution may be
seen to be essentially unique. In fact, a general result given for example in Green
[1989a] is that

(iii) Hp,q(M) ∼= Bq,q+p .

We will briefly discuss this result.
We recall that M =

⊕
q≥0 Mq is assumed to be non-negatively graded. Then

(iii) implies that

(iv) Bp,q = 0 for q < p.

In other words, the generators of M (which correspond to the B0,q) are in non-
negative degrees, the relations among the generators (which correspond to the B1,q)
are themselves generated in degrees at least one, and so forth. Using (iv) we may
write

(v) Eq =
⊕

p≥0(Cp,q ⊗ S[−q−p])

where by (iii)

(vi) Cp,q
∼= Hp,q(M).

Now the simplest modules, the free modules, are those for which

Cp,q = 0, q �= 0.

By (vi) these are characterized by

Hp,q(M) = 0, q �= 0.

The next simplest modules, at least from our point of view, are those for which

(vii) Cp,q = 0, p �= 0.

By (vi) and the Definition 4.2 these are just the involutive modules, and clearly (v)
above is equivalent to Proposition 4.3.

Generalizing slightly the above, we may see from (vi) and the definition that a
finitely generated module M is k0-involutive if, and only if, its minimal resolution
(i) has

(viii)
{

Ep = Bp ⊗ S[−k0−p] where
Bp = Hk0,p(M)
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Example 4.4. The truncation Sk0 of S is defined by

(Sk0)q =
{

SqV q ≥ k0

0 q < k0.

It is easy to verify that
Hp,q(Sk0) = 0 for p �= k0.

The minimal resolution of M may be constructed using Young symmetrizers (cf.
Green [1989a]). When k0 = 1 the truncation is the maximal ideal S+V . Resolving
S+V is equivalent to resolving SV/S+V = C, and this is provided by the standard
Koszul resolution

. . .
∂−→ S ⊗ Λ2V

∂−→ S ⊗ V
∂−→ S → C → 0, deg ∂ = 1,

obtained by dualizing the polynomial de Rham complex

0→ C → SV ∗ d−→ SV ∗ ⊗ V ∗ d−→ SV ∗ ⊗ Λ2V ∗ d−→ . . .

and applying Proposition 2.1 above.
The inhomogeneous P.D.E. system whose symbol module is Sk0 is

∂k0u(x)
∂xI

= fI (x), |I| = k0.

The involutivity of this system implies in particular that the compatibility condi-
tions for this system are all of 1st order (see the discussion below). When k0 = 1
the system is

∂u(x)
∂xi

= fi(x),

and the compatibility conditions are obviously

∂fi(x)
∂xj

=
∂fj(x)

∂xi
.

The remainder of this section will be a series of remarks, some of which are of
interest in themselves and some of which are for later use.

A piece of the canonical resolution is (where we set(81)

SmV = 0 for m < 0)

(82)
0→ H0,n(M)⊗ SmV → H0,n−1(M)⊗ Sm+1V → . . .

→ H0,1(M)⊗ Sm+n−1V → H0,0(M)⊗ Sm+nV →Mm+n → 0.

Of importance below will be the explicit description of the maps

ϕi : H0,i(M)→ H0,i−1(M)⊗ V

occurring in the resolution (76). For this we now denote the Koszul boundary by

∂V : ΛqV → Λq−1V ⊗ V

where ∂V (vi1 ∧ · · ·∧ viq) =
∑

α(−1)α+1vi1 ∧ · · ·∧ v̂iα ∧ · · ·∧ viq⊗viα . Recalling that
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H0,i(M) = ker{∂ : M0 ⊗ ΛiV →M1 ⊗ Λi−1V }1
∩

M0 ⊗ ΛiV

we infer the commutative diagram

H0,i(M)
ϕi−→ H0,i−1(M)⊗ V

∩ ∩
M0 ⊗ ΛiV

1⊗∂V−−−→ M0 ⊗ Λi−1V ⊗ V.

For ξ ∈M0 ⊗ ΛiV , the cycle condition ∂ξ = 0 is that the composite map

M0 ⊗ ΛiV
1⊗∂V−−−→M0 ⊗ Λi−1V ⊗ V →M1 ⊗ Λi−1V

applied to ξ be zero, i.e., identifying Λi−1V ⊗ V with V ⊗ Λi−1V ,

(83)
(1 ⊗ ∂V )(ξ) ∈ (degree one relations for M) ⊗ Λi−1V

∩
(M0 ⊗ V ) ⊗ Λi−1V.

This implies that (1⊗∂V )(ξ) lies in the subspace H0,i−1(M)⊗V of M0⊗Λi−1V ⊗V
and that ϕi is induced by 1⊗ ∂V .

In case M = MA for involutive tableau A ⊂W ⊗ V ∗(84)

with symbol relations B ⊂W ∗ ⊗ V , the first few pieces

of the canonical resolution (82) are (using (83))

0 → H0,0(MA) ∼= (MA)0 → 0;
‖ ‖

W ∗ W ∗

0 → H0,1(MA) → H0,0(MA) ⊗ V → (MA)1 → 0
‖ ‖ ‖

0 → B → W ∗ ⊗ V → A∗ → 0,

and (more interestingly)

(85)
0→H0,2(MA)→H0,1(MA)⊗V→H0,0(MA)⊗S2V→(MA)2→0

∩ ‖ ‖ ‖
W∗⊗Λ2V→ B⊗V → W∗⊗S2V → A(1)∗ →0.

Referring to Example 4.1 above, we let

Dλ = Bλi
a w∗

a ⊗ vi ∈ W ∗ ⊗ V

1For i = 1 this just gives that

H0,1(M ) ∼= ker(M0 ⊗ V → M1)

∼= degree one relations for M .
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be a basis for B. Then by (85), elements of H0,2(MA) are of the form

q =
1
2

qij
a w∗

a ⊗ ∂/∂xi ∧ ∂/∂xj ∈W ∗ ⊗ Λ2V

where
qij
a + qji

a = 0

and
qij
a = mj

λBλi
a .

Since

H0,2(MA) ∼= H0,1(B) ∼=
{

relations among the
generators Dλ of B

}
,

it follows that:

All relations among the Dλ = Bλi
a w∗

a ⊗ ∂/∂xi(86)
are generated by linear relations of the form

mj
λ∂/∂xjDλ = 0.

(Remarkably, this fact is found in Cartan [1953].)2

Referring now to the inhomogeneous, constant coefficient linear P.D.E. system
(cf. (61) above)

Dλu(x) = fλ(x),

we see that the compatibility conditions on the fλ(x) are generated by the 1st order
equations

mj
λ

∂fλ(x)
∂xi

= 0.

The dual of the graded piece (82) of the canonical(87)
resolution of the involutive module MA associated

to an involutive tableau A is (setting

q = m + n)

(88)
0→ A(q) → H0,0(A) ⊗ Sq+1V ∗ →

H0,1(A) ⊗ SqV ∗ → H0,2(A)⊗ Sq−1V ∗ → . . .

Although we do not need it for our work here we remark that (88) is essentially the
symbol sequence of the Spencer complex associated to an involutive linear P.D.E.
system (cf. Chapter X).

2Referring to (85), the kernel H0,1(B) of B ⊗ V → W∗ ⊗ Λ2V is identified with all mj
λDλ ⊗

∂/∂xj ∈ B⊗V ⊂ W∗⊗V ⊗V that lie in W∗⊗Λ2V ; this is just the condition mj
λBλi

a +mi
λBλi

a = 0,

which is clearly equivalent to m
j
λ∂/∂xjDλ = 0. The reference to Cartan is page 1045 in the 1984

edition of his collected works.
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For later purposes it is useful to make explicit the maps in (88). First note that,
by the definitions,

(89) H0,i(A) = W ⊗ ΛiV ∗/δ(A⊗ Λi−1V ∗).

We claim that δ induces

(90)
(

W ⊗ ΛiV ∗

δ(A ⊗ Λi−1V ∗)

)
⊗ SkV ∗ δ−→

(
W ⊗ Λi+1V ∗

δ(A⊗ ΛiV ∗)

)
⊗ Sk−1V ∗,

which is the map induced by exterior differentiation δ : W ⊗ SkV ∗ ⊗ ΛiV ∗ →
W ⊗ Sk−1V ∗ ⊗ Λi+1V ∗ (thinking of the SkV ∗ as polynomial functions).

Proof. Let ψ ∈ A ⊗ Λi−1V ∗ and P ∈ SkV ∗. Then, from the definition of δ, since
δψ ∈W ⊗ ΛiV ∗ are constant coefficient differential forms

δ(δψ ⊗ P ) =
∑

i

(−1)iδψ ∧ dxj ⊗ ∂P

∂xj

=
∑

j

(−1)iδ(ψ ∧ dxj)⊗ ∂P

∂xj
∈ (δ(A ⊗ ΛiV ∗))⊗ Sk−1V ∗.

�
From this and (83) it follows that:

(91) The maps in the long exact sequence (88) are induced by δ in (90).

Finally, we want to discuss the “1st derived part” of an(92)

involutive module M . Recall from (64) that

Hk,n(M) = 0 k ≥ 1

H0,n(M) = {m ∈M0 : v ·m = 0 for all v ∈ V }

= W ∗
0

where the last equation is a definition of W ∗
0 . Setting N = M/W ∗

0 we have an exact
sequence of graded SV -modules and degree zero maps

(93) 0→W ∗
0 →M → N → 0

where N has the following properties (both of which come from the exact Koszul
homology sequence of (93)): {

(i) N is involutive
(ii) H0,n(N) = 0.

Moreover, the sequence (93) gives

(94)
{

(i) 0 →W ∗
0 →W ∗ → N0 → 0 (degree zero)

(ii) Mk
∼−→ Nk (k ≥ 1).
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From (i) we have an intrinsic subspace

W1 = W ∗⊥
0 ⊂W.

Now suppose that M = MA for an involutive tableau A. From (ii) in (94) in
the case k = 1 we have

(95) A ⊂W1 ⊗ V ∗ ⊂W ⊗ V ∗.

Definition 4.5. i) We shall say that two tableau Ai ⊂Wi⊗V ∗, i = 1, 2 are equivalent
if there is a vector space W and inclusions Wi ⊂W such that A1 = A2 as subspaces
of W ⊗ V ∗.

ii) We shall say that two symbol mappings σi : Wi ⊗ V ∗ → Ui are equivalent in
case the tableau Ai = ker σi are equivalent.

To see what this means, suppose that W2 = W and we have the situation (95).
Choose a direct sum decomposition

W = W0 ⊕W1

and basis for W compatible with this composition. Then the tableau matrix ‖πa
i ‖

for A has the form ∥∥∥∥ 0
πρ

i

∥∥∥∥
where ‖πρ

i ‖ is the tableau matrix for A ⊂ W1 ⊗ V ∗. In the language of linear
Pfaffian differential systems, assuming involutivity we easily see that the 0-block
(corresponding to W ∗

0 ⊂ W ∗) gives the 1st derived subsystem of our Pfaffian dif-
ferential system. Thus:

For an involutive, linear Pfaffian differential system

the 1st derived system corresponds to the subspaces

H0,n(MA) ⊆W .

Below we shall introduce a refinement of the characteristic variety called the
characteristic sheaf, and in the next section shall prove that

the characteristic sheaf of an involutive linear Pfaffian(96)
differential system uniquely determines the symbol
mapping up to equivalence.

There are examples to show that the corresponding statement for the characteristic
variety is false.
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§5. Localization; the Proofs of Theorem 3.2 and Proposition 3.8.

We continue with our purely algebraic discussion centered around the algebraic
properties of an involutive tableau A ⊂W ⊗ V ∗.

It is well-known that a major advance in commutative algebra occurred by lo-
calizing, or by what is essentially equivalent, by the use of sheaf theory. It is also
well-known that a major advance in linear P.D.E. theory occurred by microlocaliz-
ing in the cotangent bundle.

It is therefore reasonable to adapt these two techniques to the theory of linear
Pfaffian differential systems in the expectation that they may prove useful in the
study of geometric problems. That is what we shall do in this section, which will
be broken into a number of discussions.

In order to simplify notation, we make the convention for this section: Unless
mentioned otherwise, all vector spaces will be assumed to be complex.

Preliminaries. For a complex vector space V we set P = PV ∗ with homogeneous
coordinate ring S = SV =

⊕
k≥0 SkV and with O denoting the structure sheaf on

P . We will use the well known F.A.C. “dictionary”, cf. Serre [1955] and Hartshorne
[1977].

(97)

⎧⎨
⎩

coherent sheaves of
O-modules and sheaf

maps over P

⎫⎬
⎭↔

⎧⎨
⎩

graded S-modules
and S-module

maps

⎫⎬
⎭ .

We remark that all modules are assumed to be of finite type. The italics around
the word dictionary signify that the correspondence (97) is not a bijection. In the
study of involutive, linear Pfaffian differential systems what will be lost are the
graded modules associated to the 1st derived system part of the tableau; this will
exactly correspond to the equivalence relation introduced in Definition 4.5 above.

We will denote by O(q) the usual sheaf of “locally holomorphic homogeneous
functions of degree q” on P . It is standard that

H0(P,O(q)) = SqV

(this holds for all q if we agree to set SqV = 0 for q < 0). Given a coherent sheaf
F on P the corresponding graded S-module is

{
F =

⊕
qFq

Fq = H0(P,F(q))

where F(q) = F ⊗O O(q). The module structure

SpV ⊗ Fq → Fp+q

is obtained from the sheaf pairing

O(p) ⊗O F(q)→ F(p + q)

by passing to global sections.
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The inverse map

graded S-module F → coherent sheaf F

is obtained by localization. The following are some of its basic properties:
i) If E = E ⊗C S is a free S-module, then the localization E is the trivial vector

bundle with fibre E (in general we shall identify holomorphic vector bundles and
locally free sheaves);

ii) If the graded module F localizes to F , then the shift F [q] localizes to F(q);
iii) exact module sequences go to exact sheaf sequences (but not quite con-

versely); and
iv) Fq = H0(P,F(q)) for q ≥ q0(F ).

To construct the localization, we may use the fact that F has finite free resolution
and use i). Remark that a module map

ϕ : E→ F

between free modules E = E⊗S and F = F ⊗S will by definition be homogeneous
of some degree q ≥ 0; it is given by an element ϕ ∈ Hom(E, F ) ⊗ SqV , which we
may think of as a global section of Hom(E(−q),F). Thus ϕ localizes to

ϕ : E(−q)→ F ,

and in this way we know what is meant by the maps appearing in a free resolution.
A basic general fact is that the dictionary (97) is exact modulo finite dimensional

vector spaces. This is illustrated by the following

Example 5.1. Let P1, . . . , Pm ∈ SqV be homogeneous forms of degree q on P . There
is then an exact sequence of graded S-modules

(98)
⊕m

S
ϕ−→ S[q] → Q → 0

where the maps have degree zero and{
ϕ(Q1, . . . , Qm) =

∑
i QiPi,

Q = coker ϕ
.

The image I = ϕ(
⊕m

S) is (a shift of) the homogeneous ideal {P1, . . . , Pm} gener-
ated by the Pr’s. The sheaf sequence corresponding to (98) is

(99)
⊕mO ϕ−→ O(q)→ Q→ 0

where Q is a coherent sheaf supported on the algebraic variety Z ⊂ P defined by
the ideal I.

In particular, if Z = ∅ then Q = (0) and (99) is⊕mO ϕ−→ O(q)→ 0.

By the general theory (Theorem A in Serre [1955] to be specific), the induced
mapping ⊕m

H0(P,O(p))→ H0(P,O(p + q))
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is surjective for p ≥ p0; this is a special case of Hilbert’s nullstellensatz. In this case
Q = S/I is a finite dimensional vector space that is “lost” in the dictionary (97).
The simplest special case is when

Pi = ξi

so that
Q = C[ξ1, . . . , ξn]/{ξ1, . . . , ξn} ∼= C.

This example also explains why the finiteness Theorem 3.12 in Chapter V should
be true. Namely, consider the linear homogeneous P.D.E. system for one unknown
function

(100) Pr(D)u(x) = 0, r = 1, . . . , m

where Pr(D) ∈ C[∂/∂x1, . . . , ∂/∂xn] is the constant coefficient operator correspond-
ing to Pr ∈ SqV . If the complex characteristic variety {[ξ] ∈ P : all Pr(ξ) = 0} of
(100) is empty, then by the nullstellensatz we have that ξα ∈ {P1(ξ), . . . , Pm(ξ)}
for |α| ≥ p0 + q; this gives

Dαu(x) = 0 for |α| ≥ p0 + q.

Thus u(x) is a polynomial of degree at most p0 +q, and therefore the solution space
to (100) is finite dimensional. In fact, the solution space is naturally isomorphic to
Q∗(= dual vector space to Q). In the special case when P1 = ξ1, . . . , Pn = ξn we
obtain only the constant functions. It will come out of our discussion that this is
the only involutive system (100) with empty characteristic variety. This is a special
case of Corollary 3.11 to Theorem 3.6 in Chapter V.

The Characteristic Sheaf. We consider a graded S-module M that has a presenta-
tion

(101) U∗ ⊗ S
ϕ1−→W ∗ ⊗ S

ϕ0−→M → 0

where U, W are finite dimensional vector spaces and ϕi has degree i for i = 0, 1 (we
may think of ϕ1 as a matrix whose entries are linear functions). The localization
of (101) will be denoted by

(102) U∗(−1)
ϕ1−→W∗ ϕ0−→M→ 0

where U∗,W∗ are the trivial bundles with respective fibres U∗, W ∗.

Definition 5.2. We call M the characteristic sheaf of M and support(M) = Ξ the
characteristic variety of M .

It may be proved that both these definitions are independent of the particular
presentation (101).

To explain our motivation for this terminology, we let A ⊂W ⊗V ∗ be a tableau
and set

U = W ⊗ V ∗/A ∼= B∗
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so that we have the symbol mapping

σ : W ⊗ V ∗ → U.

Let MA be the graded S-module associated to A as given by Definition 3.1 above.

Definition 5.3. We call MA the characteristic sheaf of the tableau and ΞA =
support(MA) the characteristic variety of the tableau.

In this special case (101) is

B ⊗ S
σ∗
−→W ∗ ⊗ S →MA → 0,

which is just the definition of MA, and the localization (102) is

B∗(−1) σ∗
−→W∗ →MA → 0.

For each [ξ] ∈ P we define
σξ : W → U

by
σξ(w) = σ(w ⊗ ξ).

Clearly, σξ is defined only up to non-zero multiples. In intrinsic terms, if Lξ ⊂ V ∗

is the line corresponding to [ξ] ∈ P , then

σξ = σ |W ⊗ Lξ.

This induces the mapping
W → U ⊗ L∗

ξ

which dualizes to
B ⊗ Lξ →W ∗.

Now Lξ is the fibre of O(−1) at [ξ] so that the last mapping is

B(−1)[ξ]
σ∗

ξ−→W ∗
[ξ],

where the subscript denotes the fibres of the various bundles at [ξ] ∈ P . Our
conclusion is that

σ∗
ξ is the mapping σ∗ localized at [ξ].

Consequently, if we denote by F[ξ] = F/m[ξ] · F the fibre of a coherent sheaf F at
[ξ] where m[ξ] ⊂ O[ξ] is the maximal ideal, then

(MA)[ξ] = (ker σξ)∗.

Moreover,
supportMA = ΞA

is the characteristic variety of the tableau, defined set-theoretically as

ΞA = {[ξ] ∈ P : kerσξ �= 0}.
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We may summarize by saying that

the characteristic sheaf of a tableau contains not only the information
of where the symbol fails to be injective, but by how much it fails
to be injective.

Involutive Sheaves. Returning to the general discussion we give the following

Definition 5.4. An involutive sheaf is a coherent sheaf F that has a presentation

(103) 0 → Fk(−k)
ψk−→ Fk(−(k − 1))

ψk−1−−−→ · · · →
F1(−1) ψ1−→ F0

ψ0−→ F → 0

for some k ≤ n and where Fi = Fi ⊗C O is a trivial vector bundle.
We shall give two remarks concerning this definition.
The first is that an involutive module has been defined (cf. Definition 4.2 above)

to be one whose Koszul homology groups have a certain vanishing property. Now as-
sociated to a coherent sheaf are both its cohomology groups Hi(F(q)) = Hi(P,F(q))
and Koszul groups Ki

p,q(F), the latter defined to be the middle homology of the
3-term complex

Hi(F(p− 1))⊗ Λq+1V → Hi(F(p)) ⊗ ΛqV → Hi(F(p + 1)) ⊗ Λq−1V

(these are the usual Koszul groups for the graded S-module
⊕

q Hi(F(q))). We
may then equivalently define an involutive sheaf by the vanishing conditions{

Hi(F(q)) = 0 for i �= 0, q ≥ 0
K0

p,q(F) = 0 for p ≥ 1, q ≥ 0.

For our purposes, however, it is more convenient to take the existence of a presen-
tation (103) as our definition.

Our second remark is that the presentation (103) is not unique. For example we
consider the localized Koszul complex

(104) 0→ ΛnV ⊗O(−n) ∂−→ . . .
∂−→ Λ2V ⊗O(−2) ∂−→ V ⊗O(−1) ∂−→ O → 0

obtained by choosing a basis v1, . . . , vn for V = H0(P,O(1)) and defining, as always,

∂(vi1 ∧ · · · ∧ viq ⊗ f) =
q∑

α=1

(−1)α+1vi1 ∧ · · · ∧ v̂iα ∧ · · · ∧ viq ⊗ viα · f,

for 1 ≤ i1, . . . , iq ≤ n and f ∈ O(−q). Although not strictly necessary for our
purposes, it may be shown that:

For F involutive, any two resolutions (103)(105)

differ by a direct sum of resolutions (104).

If we define (103) to be minimal in case(106)

H0(P,F0)
∼−→ H0(P,F)

is an isomorphism, then any involutive F has a

unique minimal resolution (103) with k ≤ n− 1.
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We next observe that

The characteristic sheaf of an involutive(107)
module M is an involutive sheaf.

In fact, the localization of the canonical resolution (cf. Proposition 4.3 above)

0→ En
ϕn−−→ En−1

ϕn−1−−−→ · · · → E1
ϕ1−→ E0

ϕ0−→M → 0

of M gives a presentation

0→ En(−n)
ϕn−−→ En−1(−(n− 1))

ϕn−1−−−→ · · · → E1(−1)
ϕ1−→ E0

ϕ0−→M→ 0

of the type (103).

We now shall prove the converse:

Proposition 5.5. An involutive sheaf is the characteristic sheaf of an involutive
module.

Proof. What we want to do is take global sections of (103) tensored with O(r) for
each r ≥ 0. In order for this to work, we need (as always) a vanishing theorem.

Lemma 5.6. Let F be an involutive sheaf. Then
i) Hi(P,F(q)) = 0 for i ≥ 1, q ≥ 0;
ii) F is generated by its global sections; and
iii) F ∗

n
∼= ker{H0(P,F0) → H0(P,F)} (this is understood to be zero if k < n in

(103)).

Proof. Although one may prove this result directly by induction on k, the argument
is clearer if we use spectral sequences. For each r we obtain from (103) the long
exact sheaf sequence

(108)
0→ Fk(−k + r)→ Fk−1(−(k − 1) + r)→ · · · →

F1(−1 + r)→ F0(r)→ F(r)→ 0

We may view (108) as a complex of sheaves whose cohomology sheaves are zero. As-
sociated to any complex of sheaves are two spectal sequences both having the same
abutment. Since the cohomology sheaves of (108) are trivial, one spectral sequence
has its E1 terms equal to zero and therefore the abutment is trivial. If we label the
terms in the complex (108) with
Fk(−k + r) corresponding to the index 0 and F(r) to the index k + 1, then the
other spectral sequence has{

Ep,q
1 = Hq(P,Fk−p(−(k − p) + r)) 0 ≤ p ≤ k

Ek+1,q
1 = Hq(P,F(r))

.

We shall use the well-known fact that

(109) Hq(P,O(s)) =

⎧⎪⎨
⎪⎩

0 1 ≤ s ≤ n − 2 and all q

0 q = n− 1 and s ≥ −(n− 1)
C q = n− 1 and s = −n

.
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For r ≥ 0 the only possible non-zero terms in the spectral sequence are therefore

Ep,0
1 = H0(P,Fk−p(−(k − p) + r)) ∼= Fk−p ⊗ S−k+p+rV

Ek+1,0
1 = H0(P,F(r))

E0,n−1
1 = Hn−1(P,Fn(−n)) ∼= F ∗

n in case k = n, r = 0

(here we recall our convention that StV = (0) for t < 0). It follows that
i) Hq(P,F(r)) = 0 for q ≥ 1, r ≥ 0;
ii) all differentials dt = 0 for t ≥ 2, except that when k = n, r = 0 we have a

short exact sequence

0→ F ∗
n

dn−→ F0
d1−→ H0(P,F)→ 0;

iii) we have an exact sequence induced by the maps d1

0→ Fk ⊗ S−k+rV → Fk−1 ⊗ S−k+1+rV → . . .

→ F1 ⊗ S−1+rV → F r
0 ⊗ SrV → H0(P,F(r))→ 0

where F r
0 = F0 for r ≥ 1 and F 0

0 = F0/dnF ∗
n in case k = n, r = 0. The lemma is

now clear.
To prove the proposition we define the graded S-module

F =
⊕

qFq where

Fq = H0(P,F(q)) q �= 0 and

F0 = H0(P,F)⊕ Fn.

Then from the long exact sequence in iii) just above we infer that F has a resolution

0→ Fn
ψn−−→ Fn−1

ψn−1−−−→ . . .F1
ψ1−→ F0

ψ0−→ F → 0

where deg ψ0 = 0 and deg ψi = 1 for i ≥ 1. In this way every involutive sheaf is the
characteristic sheaf of an involutive module. �

As discussed at the end of §4 above, any involutive module M has a unique
decomposition

M = N ⊕H0,n(M) where

Mq = Nq q ≥ 1 and

H0,n(N) = 0.

The composite map(
involutive
modules

)
→

(
involutive
sheaves

)
→

(
involutive
modules

)

is given by
M → N.
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This is a consequence of statement iii) in the lemma above.
The above proof and discussion have the following corollary:

i) If F is an involutive sheaf, then the sheaf Euler(110)
characteristic satisfies

χ(P,F(q)) = H0(P,F(q)), q ≥ 0.(111)

ii) If M is an involutive module with characteristic
sheaf M, then

M =
⊕

q≥0H
0(P,M(q))⊕H0,n(M)(112)

iii) If M is an involutive sheaf, then the maps

H0(P,M)⊗ SqV → H0(P,M(q))

are surjective for q ≥ 0.

We are now ready to prove a number of results that have been previously stated
above. We begin with

Proof of (96) above. Let M be an involutive sheaf and set

W ∗ = H0(P,M)

V = H0(P,O(1))

A∗ = H0(P,M(1)).

Define
µ : W ∗ ⊗ V → A∗

to be the mapping on global sections induced by the sheaf mappingM⊗OO(1)→
M(1). By iii) above µ is surjective, and setting B = kerµ we have an exact vector
space sequence

0→ B →W ∗ ⊗ V
µ−→ A∗ → 0.

The dual of this is
0→ A→W ⊗ V ∗ σ−→ B∗ → 0,

where A is our desired tableau and σ is a symbol mapping. By our discussion,
if we start with the symbol σ1 of an involutive tableau, construct the associated
characteristic sheaf, and then construct from this characteristic sheaf the symbol
σ as above, σ1 differs from σ by a trivial symbol; i.e., σ1 is equivalent to σ in the
sense of Definition 4.5 above. �
Proof of Theorem 3.6 in Chapter V. Let A ⊂W ⊗V ∗ be an involutive tableau with
characters s1, . . . , sn and 1st prolongation A(1) ⊂ W ⊗ S2V ∗. Then, respectively
by definition and by Cartan’s test,

dimA = s1 + s2 + · · ·+ sn(1130)

dimA(1) = s1 + 2s2 + · · ·+ nsn.(1131)
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The characters s
(1)
1 , . . . , s

(1)
n of A(1) are uniquely determined by the relations

(1141) s
(1)
1 + · · ·+ s

(1)
k = dimA(1) − dimA

(1)
k , k = 0, . . . , n.

It follows that

(1151) dimA(1) = s
(1)
1 + · · ·+ s(1)

n ,

and also, as noted in equation (9) above,

(1161)

s(1)
n = sn

s
(1)
n−1 = sn + sn−1

...

s
(1)
1 = sn + sn−1 + · · ·+ s1.

Note that if A has character l and Cartan integer σ = sl, then A(1) has the same
character and Cartan integer. This will remain true for all the prolongations.

Now, by Proposition 2.5 above, A(1) ⊂W ⊗ S2V ∗ is again an involutive tableau
(of order one) with 1st prolongation A(2) ⊂W ⊗ S3V ∗. By Cartan’s test

dimA(2) = s
(1)
1 + 2s

(1)
2 + · · ·+ ns(1)

n ,

which by (1161) gives

(1132) dimA(2) = s1 + 3s2 + · · ·+ (n(n − 1/2)sn−1 + (n(n + 1)/2)sn.

The characters s
(2)
1 , . . . , s

(2)
n are given by formula (1142), and then the relations

(1152) and (1162) are valid. In general we will use (113q)–(116q) to denote the
formulas (113)–(116) corresponding to A(q). In general the characters s

(q)
i of

A(q) ⊂ W ⊗ Sq+1V ∗ are given by (114q) and then (115q) and (116q) are satis-
fied. Recursively we therefore obtain our main formula

(113q) dimA(q) =
n∑

k=1

(
k + q − 1

q

)
sk.

Now let MA be the involutive module associated to A with characteristic sheafMA.
Then for q ≥ 1, by definition and by (112)

A(q)∗ ∼= (MA)q+1 = H0(P,M(q + 1)).

Combining this with (111) and (113q) gives the following expression for the sheaf
Euler characteristic

χ(P,M(q + 1)) =
n∑

k=1

(
k + q − 1

q

)
sk.
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To complete the proof we shall compare the two sides of this formula for large q.
If the tableau A has character l and Cartan integer σ, thus sl = σ and sl+1 =

· · · = sn = 0, then

(117)
n∑

k=1

(
k + q − 1

q

)
sk =

σql−1

(l− 1)!
+ (lower order terms in q).

On the other hand we may evaluate the sheaf Euler characteristic χ(P,
M(q + 1)) by the Riemann–Roch formula (Fulton and Lang [1985]). (Of course,
there are more elementary methods but this is perhaps the clearest conceptually.)
If suppM = Ξ then it follows from that formula that

χ(P,M(q + 1)) =
∫

Ξ

P (M, q)

where P (M, q) involves the Chern classes of M and ω = c1(O(1)) as they appear
in the Chern character of M(q) twisted by the Todd class of Ξ. Explicitly

(118) P (M, q) =
κqm−1ωm−1

(m− 1)!
+ (lower order terms in q)

where m− 1 = dimΞ and κ is the fibre dimension of M over a general point of Ξ.
From the preceeding four equations we infer first that m = l and secondly that

σ = κ

∫
Ξ

ωm−1 = κδ

where δ = deg Ξ. �
We now turn to the proof of Proposition 3.10. From Corollary 3.8 what must be

proved is this:3

Let M be a quotient of a free module(119)

W ∗ ⊗ SV . Then there exists a

p0, depending on dimW ∗ and the Hilbert

function PM(q) of M , such that the Koszul
homology groups

Hp,q(M) = 0 for p ≥ p0, 0 ≤ q ≤ n = dimV.

Referring to the discussion following the proof of Proposition 4.3 (cf. (i) and (iii)
in that discussion), the statement (119) is an assertion about the minimal free
resolution of M . More precisely, it is equivalent to

(120) Bp,q = 0 if q − p ≥ p0.

3We would like to thank Mark Green for help with this argument. His paper Green [1989a]
serves as a general reference on Koszul groups, and Green [1989b] has a discussion related to

finding an effectively computable bound for p0. A weaker version of this appears in Goldschmidt
[1968a] and in Goldschmidt [1974].
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If R is the module of relations defined by
0→ R →W ∗ ⊗ SV →M → 0,

‖
E0

then clearly (120) for M implies the same statement for R, so that (119) follows
from (and is in fact equivalent to) the assertion:

Let R ⊂W ∗ ⊗ SV be a sub-module(121)
of a free module. Then there is a p0,

depending only on dimW ∗ and the Hilbert

function PR(q) = dimW ∗. PSV (q)− PM(q),
such that

Hp,q(R) = 0 for p ≥ p0, 0 ≤ q ≤ n.

We will prove (121) by a localization argument. Given a graded module we
denote by R the corresponding sheaf and by R̄ = ⊕R̄q, R̄q = H0(R(q)) the module
associated to the sheaf R. R̄ is usually called the saturation of R. There is always a
module mapping R→ R̄, and when R is a submodule of a free module this mapping
is injective.

Proof. Suppose that R ⊂W ∗⊗ SV . Then R ⊂W∗ where W∗ is the trivial bundle
with fibre W ∗. It follows on the one hand that R̄ ⊂ W ∗ ⊗ SV , while on the other
hand we infer from (109) that W ∗ ⊗ SV = W ∗ ⊗ SV . From the commutative
diagram

0
↓

0 → R → W ∗ ⊗ SV

↓ ↓≈
0 → R̄ → W ∗ ⊗ SV

we infer that R→ R̄ is injective. �
The main step in our proof of (121) is to show that a weaker statement is true

when R = R̄ is saturated. More precisely, recall that by definition the Hilbert
polynomial χ

R
(q) of a graded module R is the unique polynomial such that

χR(q) = PR(q)

for large q. Then it is clear that

χ
R
(q) =

∑
i

(−1)i dimHi(R(q))

is the Euler characteristic of the twists of the localization of R. The weaker version
of (121) is this:

Let R ⊂W ∗ ⊗ SV be a saturated(122)
sub-module of a free module. Then there exists

a p0, depending only on dimW ∗ and on
the coefficients of the Hilbert polynomial

χ
R
(q), such that
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Hp,q(R) = 0 for p ≥ p0, 0 ≤ q ≤ n.

Assuming this result we will complete the proof of (121), and then we shall prove
(122).

We consider the exact sequence

(123) 0 → R→ R̄ → R̄/R → 0.

Since R̄/R is a finite dimensional vector space over C, it is clear that

χ
R
(q) = χ

R̄
(q).

Thus we may apply (122) to the saturated module R̄ to conclude that

(124) Hp,q(R̄) = 0 for p ≥ p1 = p1(dimW ∗, PR(q)), 0 ≤ q ≤ n

where p1 depends on dimW ∗ and χ
R̄
(q) = χR(q). On the other hand, let p2 be an

integer such that
PR(q) = PR̄(q) for q ≥ p2.

We will see below that there is a q0 depending only on χ
R̄
(q) = χ

R
(q), and therefore

only on PR(q), such that χ
R̄
(q) = PR̄(q) for q ≥ q0. Thus p2 may be chosen to

satisfy p2 ≥ q0 and PR(q) = χR(q) for q ≥ p2, and therefore p2 = p2(PR(q)) may
be assumed to also depend only on the Hilbert function of R. Then

(R̄/R)p = 0 for p ≥ p2(PR(q)).

But then clearly

(125) Hp,q(R̄/R) = 0 for p ≥ p2(PR(q)).

Combining (124) and (125) and using the long exact homology sequence of (123)
gives the desired result (121). It remains to give the

Proof of (122). We shall use the following.

Definition 5.7. A coherent sheaf R on P = PV ∗ is said to be m-regular in case

Hi(R(m− i)) = 0 for i > 0.

The smallest m such that R is m-regular is called the regularity m(R) of R.

Lemma 5.8. Let { 0→ En → En−1 → · · · → E0 → R → 0

Ep =
⊕

qBp,q ⊗ S[−q]

be the minimal resolution of a saturated module R. Then for the localization R the
regularity

m(R) = max{q − p : Bp,q �= 0}.

Proof. We will prove the result in the first non-trivial case when the minimal res-
olution has two terms; the general case is proved by an analogous argument with
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spectral sequences replacing the long exact cohomology sequence—cf. Theorem 2.3
in Green [1989a].

We first note that the sheaf O on Pn−1 is 0-regular but is not (−1)-regular; this
follows from (109) above. In general, by using shifts we may reduce to considering
the case of 0-regularity.

Suppose that

(125) 0→
⊕

p B1,p ⊗ S[−p] ϕ−→
⊕

q B0,q ⊗ S[−q] → R→ 0

is the minimal resolution of R. Writing ϕ =
⊕

p,qϕp,q where ϕp,q : B1,p ⊗ S[−p] →
B0,q ⊗ S[−q] is given by a matrix of homogeneous polynomials of degree p − q, it
follows trivially that ϕp,q = 0 for p < q and by minimality that ϕp,p = 0.

Suppose first that max{q − p : Bp,q �= 0} = 0. Then by localizing (125) we have

(126) 0 →
⊕

p B1,p ⊗O(−p − i)→
⊕

q B0,q ⊗O(−q − i)→R(−i) → 0

where B0,q = 0 for q > 0, B1,p = 0 for p > 1. Then only non-trivial piece of the
exact cohomology sequence is

(127)
0→ Hn−2(R(−i)) →

⊕
p Hn−1(B1,p ⊗O(−p − i))→⊕

q Hn−1(B0,q ⊗O(−q − i))→ Hn−1(R(i)) → 0

Taking i = n−2 we have Hn−1(B1,p⊗O(−p−n−2)) = 0 since B1,p = 0 for p > 1,
and taking i = n− 1 we have Hn−1(B0,q ⊗O(−q − (n− 1)) = 0 since B0,q = 0 for
q > 0. Thus R is 0-regular.

Conversely, suppose that R is 0-regular. From the lemma below we see that R
is m-regular for m ≥ 0. Let p0 be the largest integer such that B1,p0 �= 0. Taking
i = n− p0 in (127) and using that ϕp0,q = 0 for q ≥ p0 we obtain

0→ Hn−2(R(−n + p0))
∼−→ B1,p0 ⊗Hn−1(O(−n))→ 0.

For p0 ≥ 2 we have−n+p0 = −(n−2)+m where m ≥ 0 and so Hn−2(R(−n+p0)) =
0. Thus B1,p = 0 for p ≥ 2. Similarly, let q0 be the largest integer such that
B0,q �= 0. If q0 ≥ 1 then take i = n − q0 in (127) and use that ϕp,q0 = 0 for p ≥ 1
to obtain

0→ B0,q0 ⊗Hn−1(O(−n)) ∼−→ Hn−1(R(−n + q0))→ 0.

Writing −n + q0 = −(n − 1) + m where m ≥ 0, this last term is zero by the m-
regularity of R. Thus m(R) = 0 as desired. �

Referring to (iii) in the discussion following the proof of Proposition 4.2, we have

(128) m(R) = max{p : Hp,q(R) �= 0 for some q}.

Thus our desired result (122) follows from the following.
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Proposition 5.9. Let R ⊂ W∗ be a coherent subsheaf of the trivial sheaf W∗

on P . Then there exists a polynomial f(s, ai) that depends on s = dimW ∗ and

the coefficients ai of the Hilbert polynomial χ(R(q)) =
∑

ai

(
q
i

)
such that the

regularity
m(R) ≤ f(s, ai).

Proof (cf. Mumford [1966], Chapter XIV). We shall give the argument whenR ⊂ O;
the general case is the same. Then R is a sheaf of ideals on P ∼= Pr−1. The
proof will be by induction, and we choose a general hyperplane H ⊂ P defined by
h ∈ H0(OP (1)). Then we have the sequence

0→R(−1) h−→ R → R ⊗OP OH → 0
‖
RH

which is injective on the left. A local argument shows that the sequence is in fact
exact and that RH ⊂ OH is a subsheaf. Tensoring with OP (m + 1) we obtain

(129) 0 →R(m)→R(m + 1)→RH(m + 1)→ 0,

and therefore

χ(RH(m + 1)) = χ(R(m + 1)) − χ(R(m))

=
n−1∑
i=0

ai

[(
m + 1

i

)
−
(

m
i

)]

=
n−2∑
i=0

ai+1

(
m
i

)
.

The induction assumption applies to RH , so we may assume that it is g(ai)-regular
for a suitable polynomial g depending only on n; we set m1 = g(ai). Then the
exact cohomology sequences of (129) give

(130′)
0→ H0(R(m))→ H0(R(m + 1))

ρm+1−−−→ H0(RH(m + 1))→
H1(R(m)) → H1(R(m + 1))→ 0

for m ≥m1 − 2, and

(130′′) 0→ Hi(R(m)) → Hi(R(m + 1))→ 0

for i ≥ 2, m ≥ m1 − 2. Since Hi(R(m + 1)) = 0 for m sufficiently large and i ≥ 1
this last sequence gives

(131) Hi(R(m)) = 0 i ≥ 2, m ≥ m1 − 2.

Turning to H1, from (130′) we see that if m ≥ m1 − 2 then either ρm+1 is
surjective or else h1(R(m)) > h1(R(m + 1)). Since h1(R(m)) <∞ there is an m2
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such that m2 ≥ m1 and ρm2 is surjective. In a moment we will show that ρm2+1

is also surjective, from which it follows that, for m ≥ m1, h1(R(m)) is strictly
decreasing as a function of m until it reaches zero. Then clearly

R is [m1 + h1(R(m1))]-regular.

But

h1(R(m1)) = h0(R(m1)) − χ(R(m1))

≤ h0(OP (m1))− χ(R(m1))

= h(ai, m1)

= f(ai)

where h and f are suitable polynomials.
It remains to show that ρm2+1 is surjective. By the lemma below,

H0(OP (1))⊗H0(RH(m2))→ H0(RH(m2 + 1))

is surjective. Thus the horizontal composite map in the commutative diagram

H0(OP (1))⊗H0(R(m2))
1⊗ρm2−−−−→ H0(OP (1))⊗H0(RH(m2))→H0(RH(m2+1))

↓

H0(R(m2+1))
ρm2+1

is surjective, and it then follows that ρm2+1 is surjective. �
We will be done once we prove the

Lemma 5.10. If R is m-regular, then for k > m
(i) H0(OP (1))⊗H0(R(k))→ H0(R(k + 1)) is onto; and
(ii) R is k-regular.

Proof. From the exact sequence (129) for m− i− 1 we obtain

Hi(R(m− i))→ Hi(RH(m− i))→ Hi+1(R(m− i− 1)),

and so RH is m-regular. We may apply an induction hypothesis to conclude (i)
and (ii) for RH . From the exact sequence (129) for m− i

Hi+1(R(m− i− 1))→ Hi+1(R(m− i)) → Hi+1(RH(m− i)), i ≥ 0,

and from (ii) for RH we see that R is (m + 1)-regular. From the diagram

H0(R(k−1))⊗H0(OP (1))
α−→ H0(RH(k−1))⊗H0(ϕP (1))→H1(R(k−2))⊗H0(OP (1))

µ ↓β

H0(R(k−1))
h−→ H0(R(k)) −→ H0(RH(k))

we see that α is surjective for k > m, and by (i) for RH , β is also surjective
for k > m. But then H0(R(k)) is spanned by image µ + imageh, while clearly
imageh ⊆ imageµ. �
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§6. Proof of Theorem 3.15 in Chapter V; Guillemin’s Normal Form.

It is clear that Theorem 3.15 in Chapter V is a purely algebraic result dealing
with a tableau A ⊂ W ⊗ V ∗. Accordingly, we shall reformulate the result in a
purely algebraic manner and then prove the reformulated version.

Setting
U = W ⊗ V ∗/A

we consider the symbol mapping

σ : W ⊗ V ∗ → U

and define

(132)
Ξp = {Ω ∈ Gn−p(V ∗) : σ : W ⊗ Ω→ U fails to be injective}

= {Ω ∈ Gn−p(V ∗) : A ∩W ⊗Ω �= 0}.

It is clear that
Ξn−1 = ΞA ⊂ PV ∗

is the characteristic variety of the tableau. Using the projective duality isomorphism

Gn−p(V ∗) ≈−→Gp(V )
↓ ↓
Ω → Ω⊥

we define in the obvious way
Ξ⊥

p ⊂ Gp(V ).

On the other hand, in Definition 3.14 in Chapter V we have defined

Λp ⊂ Gp(V ),

and we shall show that:

If the tableau A has character l, then(133)

Ξ⊥
p = Λp for l ≤ p ≤ n − 1.

Proof. We let {wa}, {vi} and

zε = Aa
εiwa ⊗ v∗i

be bases for W , V , and A respectively. Setting

πa
i = Aa

εiz
∗
ε ∈ A∗

we consider the tableau matrix

π =

∥∥∥∥∥∥∥
π1

1 . . . π1
n

...
πs

1 . . . πs
n

∥∥∥∥∥∥∥ .
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Using the additional index ranges{
1 ≤ λ, µ ≤ l

l + 1 ≤ ρ, σ ≤ n,

the character l of the tableau A is the smallest integer with the following property:
If the basis {vi} is chosen generically, then

(134) πa
ρ ≡ 0 modulo{πb

λ}.

That is, the πa
ρ ∈ A∗ in the last n − l columns of π should be linear combinations

of the πb
λ in the first l columns. Clearly (134) is equivalent to

(135) all πb
λ(ψ) = 0 ⇒ all πa

ρ(ψ) = 0, for any ψ ∈ A.

Now let Ω ∈ Gn−l(V ∗) and choose a basis {vi} for V so that

Ω = span{v∗ρ},

or equivalently
Ω⊥ = span{vλ}.

Recalling that if s1, . . . , sn denote the characters of A and s(Ω) denotes the dimen-
sion of span{πb

λ} ⊂ A∗,

Ω ∈ Λl ⇔ s(Ω) < s1 + · · ·+ sl

⇔ (134) fails to be true

⇔
{

there exists 0 �= ψ ∈ A with
all πb

λ(ψ) = 0 but some πa
ρ(ψ) �= 0

}
.

But then

(136) 0 �= πa
i (ψ)wa ⊗ v∗i ∈ A ∩W ⊗ Ω.

Conversely, any element of A is of this form for a suitable ψ and the condition that
(136) lie in W ⊗ Ω is that all πb

λ(ψ) = 0. This proves (133) when p = l, and it is
clear that the same argument works for l ≤ p ≤ n− 1. �

We note that (133) does not depend on the involutivity of A.
Using (133), it is a small and straightforward exercise to reformulate Theorem

3.15 in Chapter V as follows:

Theorem 6.1. For an involutive tableau A ⊂W ⊗V ∗ of character l, the following
are equivalent conditions on Ω ∈ Gn−l(V ∗):

i) A ∩W ⊗Ω �= 0
ii) for some line Lξ ⊂ Ω

A ∩W ⊗ Lξ �= 0.

Here, Lξ is the line in V ∗ corresponding to [ξ] ∈ PV ∗, and A ∩ W ⊗ Lξ �= 0
is just our condition (132) that [ξ] ∈ ΞA. On the other hand, A ∩W ⊗ Ω �= 0 is
the condition (132) that Ω ∈ Ξl. It is clear that even without assuming that A is
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involutive, ii) ⇒ i), and what we have to do is to show that i) ⇒ ii). This requires
involutivity and amounts to showing that

If A ∩W ⊗ Ω �= 0, then A ∩W ⊗ Ω contains a non-zero decomposable vector
w ⊗ ξ. Equivalently, we must show that:

(137) PΩ ∩ ΞA = ∅ ⇒ σ : W ⊗ Ω→ U is injective.

We shall formulate a stronger result than (137), and shall then prove this stronger
result by a localization argument.

Let M be an involutive graded S-module with canonical resolution

0→ En → En−1 → · · · → E1 → E0 →M → 0

having localization

(138)
0→ En(−n) ψn−−→ En−1(−(n− 1))

ψn−1−−−→ · · · →

E1(−1) ψ1−→ E0
ψ0−→M→ 0.

Here M is the characteristic sheaf of M and Ei is the trivial vector bundle with
fibre Ei = H0,i(M) where Ei = Ei ⊗ SV . For any k-plane Ω ∈ Gk(V ∗) we may
restrict all sheaves to PΩ ∼= Pk−1, and then

H0(PΩ, Ei(q)) ∼= Ei ⊕ SqΩ∗.

Hence there are induced maps

Ei ⊗ SqΩ∗ ψi−→ Ei−1 ⊗ Sq+1Ω∗, q ≥ 0.

Proposition 6.2. If PΩ ∩ suppM = ∅, then for each l ≥ 1 the sequence

(139) El → El−1 ⊗Ω∗ → · · · → E1 ⊗ Sl−1Ω∗ → E0 ⊗ SlΩ∗ → 0

is exact.4

The case l = 1 is the exact sequence

E1 → E0 ⊗Ω∗ → 0.

In case M = MA is the graded module associated to be involutive tableau A, then
suppM = ΞA is the characteristic variety of the tableau and the above sequence is

B
σ∗
−→W ∗ ⊗ Ω∗ → 0,

which dualizes to
0→W ⊗ Ω σ−→ U.

Thus, Proposition 6.2 in the case l = 1 implies (137).

4The l used in this proof has nothing to do with the character of the tableau A.
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Proof of Proposition 6.2. We set

Ξ = suppM

and will prove the exactness of (139) first where PΩ is a point in V ∗ and then in
general.

dimΩ = 1. In this case PΩ is a point [ξ] ∈ PV ∗\Ξ. Denoting by Oξ the local ring of
OPV ∗ at [ξ], the exact stalk sequence of (138) at [ξ] is the following exact sequence
of Oξ-modules

(140) 0 → En(−n)ξ → En−1(−(n − 1))ξ → · · · → E1(−1)ξ → E0ξ → 0.

Here we are using that
Mξ = 0 if [ξ] /∈ suppM.

Now Ei(−q) is a vector bundle whose fibre over [ξ] ∈ PV ∗ is Ei ⊗ L−q
ξ . Thus

Ei(q)ξ = Ei ⊗C L−q
ξ ⊗C Oξ,

and from Nakayama’s lemma it follows that (140) gives the exact sequence of vector
spaces

0 → En ⊗ L−n
ξ → En−1 ⊗ L

−(n−1)
ξ → · · · → E1 ⊗ L−1

ξ → E0 → 0.

Tensoring this sequence with Ll
ξ gives the exactness of (139) for all l when dim Ω =

1.
This case is due to Quillen [1964]. According to the discussion centered around

(87) and (88) above it may be rephrased as follows: for non-characteristic covectors,
the symbol sequence of the Spencer sequence associated to an involutive linear P.D.E.
system is exact.

Remark. If we set
hi = dimEi = dimH0,i(M),

then from
E2 ⊗ L−2

ξ → E1 ⊗ L−1
ξ → E0 → 0

we infer that

(141) h2 ≥ h1 − h0.

This inequality, a special case of which is due to Cartan (cf. the reference in foot-
note 2), has the following interpretation for an involutive, constant coefficient linear
P.D.E. system

(142) Bλi
a

∂ua(x)
∂xi

= fλ(x).

Here 1 ≤ a ≤ s = number of unknown functions and 1 ≤ λ ≤ t = number of
equations. We have

h0 = s, h1 = t,
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and so if the system (142) is determined or underdetermined then (141) doesn’t say
anything. However, suppose we are in the overdetermined case

t > s.

Setting
Dλ = Bλi

a w∗
a ⊗ ∂/∂xi,

h2 is the number of linearly independent, 1st order constant coefficient relations
(cf. (86) above)

(143) mj
λ∂/∂xjDλ = 0.

From (141) we have that:

The number of relations (143) is ≥ t− s.

As discussed in §4 above, the relations (143) give the 1st order compatibility
conditions

mj
λ

∂fλ(x)
∂xj

= 0

for the formal solvability of (142). By involutiveness, all the compatibility condi-
tions are 1st order.

Returning to the proof of Proposition 6.2 in general, we suppose that dimΩ = k
so that PΩ ∼= Pk−1. Over PΩ we have the exact complex

(144) 0→ En(−n + l)→ En−1(−n + l + 1)→ · · · → E1(l − 1)→ E0(l)→ 0

where Ek(m) is Ek⊗OPΩ(m). For −n ≤ j ≤ 0 we set Fj = E−j(j + l) so that (144)
becomes the exact complex5

(145) 0→ F−n → F−n+1 → · · · → F−1 → F0 → 0.

We note that by (109) above

(146) Hq(PΩ,Fj) =

⎧⎪⎨
⎪⎩

0 q �= 0, k − 1
0 q = k − 1, j ≥ −k − l− 1
0 q = 0, j ≤ −l − 1

.

Associated to the complex of sheaves (145) are two spectral sequences both abutting
to the hypercohomology of the complex of sheaves. Since (145) is exact one of these
has E1 term equal to zero. Thus the other spectral sequence abuts to zero.

Now by our indexing convention both spectral sequences are in the second quad-
rant. The one with non-zero E1 term has

Ep,q
1 = Hq(PΩ,Fp)

5This argument is similar to the proof of Proposition 5.5 above except that we have chosen to
use a different indexing convention.
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where −n ≤ p ≤ 0 and 0 ≤ q ≤ k − 1. By (146) the only non-zero terms are{
Ep,k−1

1 , p ≤ −k − l

Ep,0
1 , p ≥ −l.

From this we see that the only possible non-zero differentials are

d1 : Ep,0
1 → Ep+1,0

1 p ≥ −l

d1 : Ep,k−1
1 → Ep+1,k−1

1 p ≤ −k − l − 1

dk : E−k−l,k−1
k → E−l,0

k .

It follows that

Ep,q
2 = 0 unless

{
p = −k − l, q = k − 1
p = −l, q = 0

E2 = · · · = Ek

Ek+1 = 0.

In particular, the complex

H0(PΩ,F−l)
d1−→ H0(PΩ,F−l+1)→ · · · → H0(PΩ,F−1)→ H0(PΩ,F0)→ 0

is exact. This implies Proposition 6.2. �
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Guillemin’s Normal Form. Victor Guillemin established a “normal form” for the
Spencer complex of an involutive linear P.D.E. system (cf. Guillemin [1968]). This
result is closely related to the special case l = 2 of Proposition 6.2 and so we should
like to discuss it here.

Let A ⊂W ⊗V ∗ be an involutive tableau, considered as the image of an injective
linear mapping

π : A→W ⊗ V ∗.

In terms of bases {wa} for W and {xi} for V ∗ we write

π = πa
i wa ⊗ xi

where πa
i ∈ A∗. We will establish a certain normal form for the symbol relations on

the πa
i ’s. This normal form will in fact correspond to the symbol relations when the

tableau is put in the normal form given by equation (90) in Chapter IV. Referring
to that discussion, the forms πa

i for a < si are given by linear equations

(147) πa
i =

∑
b≤sj

j≤i

Baj
ib πb

j.

Involutivity of the tableau will have strong commutation properties on matrices
derived from the ‖Baj

ib ‖ above. For example, when s1 = · · · = sl = s and sl+1 =
· · · = sn = 0, the above equations reduce to

(147′) πa
ρ = Baλ

ρb πb
λ

where 1 ≤ λ ≤ l and l + 1 ≤ ρ, σ ≤ n. We have seen in section 5 of Chapter IV
that involutivity is equivalent to the commutation relations

[Bρ(ξ), Bσ(ξ)] = 0 for all ξ

where
Bρ(ξ) = ‖Baλ

ρb ξλ‖.

There will be an analogous statement in the general case, one that will be given
following a general discussion.

The geometric picture is this: If A has character l then the complex characteristic
variety ΞA has dimension l−1, and therefore by a generic linear projection may be
realized as a finite branched covering over a Pl−1. We shall then explore how this
representation may be used to at least partially normalize the relations (147).

To carry this out we let Ω ⊂ V ∗ be a maximal, non-characteristic subspace.
Then dimV ∗ = n, dimΩ = n− l and

PΩ ∩ ΞA = ∅.

Set E = Ω⊥ ⊂ V so that E∗ ∼= V ∗/Ω. Then PE∗ ∼= Pl−1 and by linear projection
there is a diagram

PV ∗\PΩ ⊃ ΞA

↓ ω̃′ ↓ ω̃
PE∗ = PE∗.
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where the map ΞA
ω̃−→ PE∗ is a finite branched covering map. If ξ ∈ PE∗ and we

set (the following has intrinsic meaning)

{Ω, ξ} = span Ω, ξ,

then {Ω, ξ} ∼= Pn−l and we have

{
ω̃′−1(ξ) = {Ω, ξ}
ω̃−1(ξ) = {Ω, ξ} · ΞA.

Choose our basis {xi} for V ∗ so that Ω = span{xl+1, . . . , xn}. We keep the
additional index ranges {

1 ≤ λ, µ ≤ l

l + 1 ≤ ρ, σ ≤ n

and write points in V ∗ as

ζ = (ξ, η)

= ξλxλ + ηρx
ρ;

i.e., in homogeneous coordinates

ζ = [ξ1, . . . , ξl; ηl+1, . . . , ηn]

(from now on we drop the bracket around points ξ in a projective space). Then
with this notation

ω̃(ζ) = ξ.

Since Ω is non-characteristic, we have

(148) A ∩W ⊗ Ω = 0.

Elements in W ⊗Ω are of the form ψ = ψa
ρwa⊗xρ. Thus (148) is equivalent to (cf.

(135) above)
πa

λ(ψ) = 0 ⇒ πa
ρ(ψ) = 0, ψ ∈ A.

In other words, the basis {xi} for V ∗ has the property that Ω =
span{xl+1, . . . , xn} is non-characteristic if, and only if, the forms πa

i are all lin-
ear combinations of the πa

λ for 1 ≤ λ ≤ l, in which case we have the relations (147)
among the symbol relations.

We now recall from §5 of Chapter IV that, in the involutive case, we may assume
that

πa
i = 0 for a > s1.

Thus we may as well assume that s1 = s, and then the equations (147) give in
particular relations (147′). We shall derive a general commutation property of the
matrices Bρ(ξ). For this we let ξ ∈ E∗ and consider expressions

(149) w ⊗ ξ + wρ ⊗ xρ ∈ A ∩ (W ⊗ {Ω, ξ}).
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We note that, by (148), the tensor wρ ⊗xρ ∈W ⊗Ω is uniquely determined by the
property that w ⊗ ξ + wρ ⊗ xρ ∈ A, and we define

Wξ = {w ∈W : there exists an expression (149)}.

Clearly Wξ ⊂W is a linear subspace, and we shall show that for any tensor (149)

(150) Bρ(ξ)w = wρ

where Bρ(ξ) is the linear transformation associated to the matrix (147′).

Proof. If w = µawa ∈Wξ, then for some ψ ∈ A we have

π(ψ) = w ⊗ ξ + wρ ⊗ xρ

= µaξλwa ⊗ xλ + µa
ρwa ⊗ xρ

where we have set wρ = µa
ρwa and the ξλ are the components of ξ. This gives

πa
λ(ψ) = µaξλ

πa
ρ(ψ) = µa

ρ .

But then (147′) gives
µa

ρ = Baλ
ρb µbξλ,

i.e.,
Bρ(ξ)w = wρ.

We shall now show that

Proposition 6.3. With the above notations

(151) Bρ(ξ)Wξ ⊆Wξ

(152) [Bρ(ξ), Bσ(ξ)]|Wξ = 0.

Proof. We shall use the exact sequence (139), or rather its dual. We recall the dual
sequence (88) in §3 above of the canonical resolution of an involutive module, which
using the definition of the Spencer cohomology groups may be written as

0→ A(q) →W ⊗ Sq+1V ∗ δ̄−→
(

W ⊗ V ∗

A

)
⊗ SqV ∗ δ̄−→

(
W ⊗ Λ2V ∗

δ(A ⊗ V ∗)

)
⊗ Sq−1V ∗.

Here, for ψ ∈W ⊗ ΛiV ∗ and P ∈ Sq+1−iV ∗ the mapping δ̄ is given by

(153) δ̄(ψ ⊗ P ) =
∑

i

ψ ∧ dxi ⊗ ∂P

∂xi
mod δ(A ⊗ ΛiV ∗)
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(cf. the proof of (90) in §3 above). For Ω ⊂ V ∗ a non-characteristic subspace, the
dual of (139) above when l = 2 is

(154) 0 →W ⊗ S2Ω δ̄−→
(

W ⊗ V ∗

A

)
⊗Ω δ̄−→

[
W ⊗ Λ2V ∗

δ(A ⊗ V ∗)

]
.

By (153) we have for ψ ∈W ⊗ ΛiV ∗ and P (x) depending only on the last (n − l)-
variables, i.e., P ∈ SΩ,

δ̄(ψ ⊗ P (xl+1, . . . , xn)) =
∑

ρ

ψ ∧ dxρ ⊗ ∂P

∂xρ
.

Suppose now that

w ⊗ ξ + wρ ⊗ xρ ∈ A ⊂W ⊗ V ∗.

Taking the exterior product with ξ gives

wρ ⊗ xρ ∧ ξ ≡ 0 mod δ(A⊗ V ∗)

(here we are using (153) above when P = ξ). But

wρ ⊗ xρ ∧ ξ = −δ̄((wρ ⊗ ξ) ⊗ xρ)

where (wρ ⊗ ξ)⊗ xρ ∈ W ⊗ V ∗ ⊗ Ω. By the exactness of (154) we have

(wρ ⊗ ξ)⊗ xρ = δ̄(
1
2
wρσxρxσ) ∈

[
W ⊗ V ∗

A

]
⊗Ω

where
wρσ = wσρ ∈W.

It follows that {
wρ ⊗ ξ ≡ wρσxσ moduloA

wρσ = wσρ

.

The first of these equations gives (151) and the second gives (152). �
We may now complete our description of the branched covering ω̃ : ΞA → PE∗.

Given ξ ∈ PE∗ there are points

[ξ, η(ξ)] ∈ ΞA ∩ ω̃−1(ξ).

Here, we are writing η(ξ) to express the fact that via the finite branched covering
mapping ΞA → PE∗, the inverse image of a point ξ ∈ PE∗ is a finite number
of points [ξ, η(ξ)] whose η-coordinates are algebraic functions of ξ. Thus, setting
ζ = (ξ, η(ξ)) there is a non-zero vector w ∈W with

σζ(w) = 0.

This gives that
w ⊗ ξ + w ⊗ η(ξ) ∈ A ∩ {Ω, ξ},
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and so w ∈Wξ . Referring to (150), we have

Bρ(w) = ηρ(ξ)w

where the ηρ(ξ) are the components of η(ξ). Thus, the commuting linear transfor-
mations Bρ(ξ)|Wξ may be put in Jordan normal form with the last n−l coordinates
on each sheet giving the eigenvalues for the common eigenvector of these transfor-
mations.

At this stage, one needs to be careful in treating the non-semisimple parts of
the Bρ(ξ)’s. Moreover, one must worry about the characteristic ideal and not just
the characteristic variety.6 We refer to Gabber [1981] for further references and
discussion.

§7. The Graded Module Associated to a Higher Order Tableau.

It is well known that a system of higher order P.D.E. may be rewritten as a
(much larger) 1st order P.D.E. system. In general, however, it is preferable to
treat the higher order system directly. Similarly, in many geometric examples the
tableau of a linear Pfaffian differential system looks like the tableau of a higher
order system—we have called these a tableau of order p. It is desirable to adapt
the formalism—characteristic variety, graded module associated to a tableau, etc.—
to a tableau of order p, and this is what we shall do in this section. For reasons to
appear below, we shall make the notation shift p → q − 1.

We consider a tableau of order q − 1

A ⊂W ⊗ SqV ∗

with prolongations
A(k) ⊂W ⊗ Sk+qV ∗

where (cf. (2)–(4) above)

(155) A(k) = W ⊗ Sk+qV ∗ ∩A⊗ SkV ∗.

We set
A =

⊕
k≥0A

(k) ⊂W ⊗ SV ∗.

By definition the symbol of A is

B = A⊥ ⊂W ∗ ⊗ SqV,

and the symbol module is, again by definition,

B =
⊕

k≥0Bk

where
Bk = A(k)⊥ ⊂W ∗ ⊗ Sk+qV.

6Again it is interesting to note in Cartan [1953] attention is drawn to the technical difficul-

ties encountered when there is an essential non-diagonal piece to the Bρ(ξ)’s (cf. footnote 9 in
Chapter V).
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As before (the case q = 1), B is the SV -submodule of W ∗ ⊗ SV generated by
B = B0 with an appropriate shift in grading.

Example 7.1. We make the identification

SV ∼= C[∂/∂x1, . . . , ∂/∂xn]

by the mapping vi → ∂/∂xi. Given a tableau A ⊂ W ⊗ SqV ∗ of order q − 1 with
symbol B ⊂W ∗ ⊗ SqV , we choose a basis

Dλ = BλI
a w∗

a ⊗ ∂I/∂xI , |I| = q,

for B, and thereby establish a 1–1 correspondence between tableaux of order q− 1
and qth order, constant coefficient homogeneous linear P.D.E. systems

Dλu(x) = 0.

The symbol module is just the sub-module of W ∗⊗C[∂/∂x1, . . . , ∂/∂xn] generated
by the Dλ’s.

Returning to the general discussion we recall our “shift” notations

(W ∗ ⊗ SV )[q−1]
k = W ∗ ⊗ Sk+q−1

(W ∗ ⊗ SV )[q−1] =
⊕

k≥0(W
∗ ⊗ SV )[q−1]

k

and give the following:

Definition 7.2. Given a tableau A ⊂ W ⊗ SqV ∗, we define the associated graded
module MA by the exact sequence

(156) 0→ B→ (W ∗ ⊗ SV )[q−1] →MA → 0,

where the 1st map is homogeneous of degree one and the 2nd is homogeneous of
degree zero.

It follows that
MA =

⊕
k≥0(MA)k

where

(MA)k =
{

A(k−1)∗ k ≥ 1
W ∗ ⊗ Sq−1V k = 0.

When q = 1 this coincides with the graded module associated to an ordinary tableau
introduced in §3 above. Generalizing (57) above we have

The tableau A ⊂W ⊗ SqV ∗ is involutive if, and only if,(157)
the associated graded module MA is involutive in the
sense of Definition 4.1 above.

The proof of (57) is based on (and, in fact, is equivalent to) the surjectivity of the
maps ∂/∂xi : A

(q+1)
i−1 → A

(q)
i−1, q ≥ 0. According to Cartan’s test, this surjectivity is

by definition the same as involutiveness for a tableau of any order. Consequently,



330 VIII. Applications of Commutative Algebra

the proof of (57) given above carries over pretty much verbatim to give a proof of
(157). The “pretty much” refers to the fact that some care must be taken in the
definition of the degree zero piece of MA. This will be discussed now.

The simplest involutive module is (W ∗ ⊗ SV )[q−1]. However, this is not a free
module if q ≥ 2. To explain this we remark that (W ∗ ⊗ SV )[q−1] corresponds to
the empty P.D.E. system. However, when q ≥ 2 there are compatibility conditions
that functions uα

I , |I| = q − 1, be (q − 1)-jets; these conditions correspond to the
non-freeness of (W ∗ ⊗ SV )[q−1] as expressed by7

H0,1((W ∗ ⊗ SV )[q−1]) �= 0 if q ≥ 2.

The meaning of “correspond to” will be elaborated on below.

Example 7.3. We consider a constant coefficient linear P.D.E. system for one un-
known function

(158) BλI ∂qu(x)
∂xI

= fr(x), λ = 1, . . . , t.

The symbol module B of (158) is generated by the homogeneous polynomials

P λ(ξ) = BλIξI ∈ SqV.

If (158) is involutive, then it follows from the exact homology sequence of (156)
that B is an involutive S-module. Let

(159) · · · → E1
ϕ1−→ E0

ϕ0−→ B→ 0

be its canonical resolution where Ei = Ei⊗C S and ϕ0 has degree zero while ϕi has
degree one for i ≥ 1. The localization of (159) is

(160) · · · → E1(−q − 1) ϕ1−→ E0(−q) ϕ0−→ T → 0

where T ⊂ O is the sheaf of ideals of the characteristic variety Ξ = {ξ : P λ(ξ) = 0}.
Over a point ξ /∈ Ξ, the fibre sequence of (163) is

→ E1 ⊗ L
−(q+1)
ξ → E0 ⊗ L−q

ξ → C → 0.

Setting hi = dimEi (= dim H0,i(B)) it follows that

(161) h1 ≥ h0 − 1.

Now
h0 = number of equations (158)

while h1 is the number of independent linear compatibility conditions

(162) mj
λ

∂

∂xj
(BλI ∂q

∂xI
) = 0.

7This discussion here is closely related to the truncation example discussed in §4 above.
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Setting
Qλ(ξ) = mj

λξj

(162) is equivalent to

(163) Qλ(ξ)P λ(ξ) = 0, deg Qλ(ξ) = 1.

We therefore conclude from (164) that:

If (158) is involutive, then there are at least t− 1(164)

independent linear relations (163) among the

polynomials P λ(ξ).

This result is due to Cartan in the case of three independent variables (his proof
applies to the general case).

We remark that (164) remains true for any involutive tableau whose associated
constant coefficient linear P.D.E. system is (158). A special case of this result was
given in Example 7.2 in Chapter IV.

Returning to the general discussion, the involutivity of MA is expressed by

(165) Hk,q(MA) = 0 for k ≥ 1.

Using this we may repeat verbatim the construction of the canonical free resolution
of MA. However, in contrast to the case q = 1 the resolution does not begin with
(W ∗ ⊗ SV )[q−1] (which in any case is not free if q ≥ 2), but with the free module
W̃ ∗⊗SV where W̃ ∗ = W ∗⊗Sq−1V (= H0,0(MA)). What is happening is that the
homological formalism is leading us to the symbol algebra underlying the treatment
of a higher order P.D.E. system as a large 1st order system.

Definition 7.4. Given a tableau A ⊂W ⊗ SqV ∗ and q ≥ 2, we define{
W̃ = W ⊗ Sq−1V ∗, and
Ã ⊂ W̃ ⊗ V ∗

to be the image of A under the natural inclusion W ⊗ SqV ∗ ⊂W ⊗ Sq−1V ∗ ⊗ V ∗.

Example 7.5. In the case q = 2 we let

Bλij
a

∂2ua(x)
∂xi∂xj

= 0

be the 2nd order linear homogeneous constant coefficient system corresponding to
A ⊂W ⊗ S2V ∗. Then the 1st order system

∂ua
i (x)

∂xj
−

∂ua
j (x)

∂xi
= 0

Bλij
a

∂ua
i (x)

∂xj
= 0

corresponds to Ã ⊂ (W ⊗ V ∗) ⊗ V ∗.

Returning to the general discussion, we have the following result (which would
be interesting only if it were false, since it would then say that we have the wrong
formalism):
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Proposition 7.6. There is a natural isomorphism

MÃ
∼−→MA

of graded SV -modules.

This gives us another proof of the previously noted

Corollary 7.7. A is an involutive tableau of order q − 1 if, and only if Ã is an
involutive tableau in the usual sense.

Proof of Proposition 7.6. Using (3) and (4) above we have as subspaces of W ⊗
V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸

k+q

,

Ã(k) = W̃ ⊗ Sk+1V ∗ ∩ Ã⊗ SkV ∗

= W ⊗ Sq−1V ∗ ⊗ Sk+1V ∗ ∩A⊗ SkV ∗

where A ⊂W ⊗ SqV ∗. It follows from this and (155) that

Ã(k) = A(k).

More precisely, Ã(k) is the image of A(k) under the natural inclusion

(166)
jk : W ⊗ Sq+kV ∗ ⊂ W ⊗ Sq−1V ∗ ⊗Sk+1V ∗

‖
W̃ ⊗ Sk+1V ∗

.

We now define the obvious degree zero graded vector space mapping µ by the
diagram

W̃ ∗ ⊗ SV
µ−→ (W ∗ ⊗ SV )[q−1]

‖j∗

W ∗ ⊗ Sq−1V ⊗ SV

where j∗ =
⊕

k≥0 j∗k . A basic observation, whose straightforward verification we
omit, is that j∗ is induced by the multiplication

Sq−1V ⊗ SV → (SV )[q−1].

This induces a commutative diagram

W̃ ∗ ⊗ SV → MÃ → 0
↓ µ ↓ j∗

(W ∗ ⊗ SV )[q−1] → MA → 0

where µ is now a graded module mapping and where j∗ =
⊕

k≥0 j∗k with

j∗k : Ã(k)∗ ∼−→ A(k)∗

being induced by the dual of (166). The module isomorphism j∗ : MÃ
∼−→ MA is

the one promised in the proposition. �
Finally, we shall relate the graded module MA(q) associated to the qth prolon-

gation A(q) ⊂ W ⊗ Sq+1V ∗ of a tableau A ⊂ W ⊗ V ∗ to MA. Denoting by
M+ =

⊕
q≥1 Mq the positively graded sub-module of a graded module M , the

simple answer is given by the
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Proposition 7.8. There is a natural isomorphism

M+
A(q)

∼= (MA)[q]+.

Corollary 7.9. If A is involutive, then so are its prolongations A(q).

Corollary 7.10. The characteristic varieties Ξ of A and Ξ(q) of A(q) coincide.

Both of these results have been proved above. Since as noted in §3 above,
Corollary 7.9 is essentially a homological result, the present proof is a natural way
of establishing it.

We shall give a sketch of the proof in the case q = 1. The point is that we have

A(1) ⊂ A⊗ V ∗ ⊂W ⊗ V ∗ ⊗ V ∗

A(1)(k) ⊂ A⊗ Sk+1V ∗ ⊂W ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k+2

A(k+1) ⊂W ⊗ Sk+2V ∗ ⊂W ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k+2

and, as subspaces of W ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k+2

,

A(1)(k) = A(k+1).

�
Finally, we remark on the characteristic variety of a higher order tableau. Let

A ⊂W ⊗ V ∗(p+1)

be a tableau of order p given as the kernel of a symbol mapping

σ : W ⊗ V ∗(p+1) → U.

For 0 �= ξ ∈ V ∗ we define
σξ : W → U

by
σξ(w) = σ(w ⊗ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

p+1

),

and then we define the characteristic variety of A by

(167) ΞA = {ξ ∈ PV ∗ : kerσξ �= (0)}.
To justify this we consider A as an ordinary tableau A1 by the inclusion

W ⊗ V ∗(p+1) ⊂ (W ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
p

) ⊗ V ∗.

Setting W1 = W ⊗V ∗⊗· · ·⊗V ∗ we may give A1 as the kernel of a suitable mapping

σ1 : W1 ⊗ V ∗ → U1.

As in the proof of (12) in §3 of Chapter V we may show that:

(168) There is a natural isomorphism

ker σξ
∼= kerσ1,ξ.

In particular, the characteristic varieties of A and A1 coincide and are given by

ΞA = {ξ ∈ V ∗ : W ⊗ ξp+1 ∩A �= 0}
where ξp+1 is the (p + 1)st symmetric product of ξ.

æ
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CHAPTER IX

PARTIAL DIFFERENTIAL EQUATIONS

In this chapter and the next, we present an introduction to the theory of overde-
termined systems of partial differential equations, both linear and non-linear, as
it has been developed over the last twenty five years. Rather than giving com-
plete proofs, we have preferred in general to present many examples illustrating the
various methods used in the theory.

The modern theory of these systems was initially undertaken by
Matsushima [1953, 1954-55] and Kuranishi [1957, 1961, 1962] within the
framework of exterior differential systems. The first major result was the Cartan–
Kuranishi prolongation theorem (Kuranishi [1957]). Using
Ehresmann’s theory of jets, Spencer [1962] introduced fundamental new tools for
the theory of overdetermined systems in order to study deformations of pseudogroup
structures. In particular, to linear equations, he associated certain complexes of dif-
ferential operators, namely the so-called naive and sophisticated Spencer sequences
(see Example 1.13, Chapter X). Intrinsic constructions of these Spencer complexes
were given by Bott [1963] and investigated by Quillen [1964]. The formal the-
ory of overdetermined systems was then systematically studied by Goldschmidt
[1967a, 1967b, 1968a, 1968b, 1970b, 1972a, 1974]; for linear equations, introductory
accounts are contained in Malgrange [1966-67], Spencer [1969] and Goldschmidt
[1970a].

This chapter is devoted to the basic existence theorem of Goldschmidt [1967b]
for systems of non-linear partial differential equations. This result consists of two
parts. First, it provides conditions which guarantee the existence of sufficiently
many formal solutions for an arbitrary system. Then for an analytic system satis-
fying these conditions, it gives us the convergence of formal solutions and thus the
existence of local solutions. We show how this theorem can be used to prove the
existence of solutions for two systems involving the Ricci curvature.

§1. An Integrability Criterion.

Let V and V ′ be finite-dimensional vector spaces and let U be an open subset
of Rn. Consider the system of non-linear partial differential equations of order k

(1) Φ(x, Dαu) = 0

for the unknown V -valued function u on U , where x ∈ U and Φ is a V ′-valued
function, and α = (α1, . . . , αn) ranges over all multi-indices of norm ≤ k. If l ≥ 0,
we say that a V -valued function u0 on a neighborhood of x0 ∈ U is an infinitesimal
solution of (1) of order k + l at x0 if

DβΦ(x, Dαu0)|x=x0 = 0,
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for all multi-indices β of norm ≤ l. Clearly, the conditions for u0 to be an infini-
tesimal solution of order k + l at x0 are in fact imposed only on its Taylor series

p =
∑

0≤|α|≤k+l

aα
(x− x0)α

α!

at x0 of order k + l, with aα = (Dαu0)(x0), which we call a formal solution of (1)
of order k + l at x0. If m ≥ l, we say that the polynomial

q =
∑

0≤|β|≤k+m

bβ
(x− x0)β

β!

of degree k + m extends the polynomial p if its coefficients of order ≤ k + l agree
with those of p. Let Rk denote the set of all formal solutions of (1) of order k.

If Φ is analytic, we are interested in finding a convergent power series solution of
(1) on a neighborhood of x0. Thus we first seek formal power series solutions of (1)
at x0. In particular, given a formal solution of (1) of order k+l, we wish to extend it
to a formal solution of higher order. The aim of the existence theory of Goldschmidt
[1967b] is to provide sufficient conditions under which a formal solution of order k
can be extended to a formal power series solution, and in the analytic case to an
analytic solution. One such condition is formal integrability: it requires that, for
all l ≥ 0, every formal solution of (1) of order k + l can be extended to a formal
solution of order k + l + 1. However, verifying directly the formal integrability of
an equation is extremely tedious and difficult. We now present sufficient conditions
for formal integrability, which in general can be effectively verified.

Let u0 be an infinitesimal solution of (1) of order k at x0 and let p be the
corresponding formal solution of order k at x0. If β is a multi-index of norm k, we
denote by

σβ(Φ)p : V → V ′

the derivative of Φ, considered as a function of the independent variables (x, Dαu),
in the direction Dβu at (x0, (Dαu0)(x0)). We denote by T ∗

x0
the cotangent space

of Rn at x0 and by SmW the m-th symmetric power of a subspace W of T ∗
x0

; we
write ξm for the m-th symmetric power of an element ξ of T ∗

x0
. The symbol σ(Φ)p

and its first prolongation σ1(Φ) of Φ at p are the unique linear mappings

σ(Φ)p : SkT ∗
x0
⊗ V → V ′,

σ1(Φ)p : Sk+1T ∗
x0
⊗ V → T ∗

x0
⊗ V ′

determined by

σ(Φ)p(ξk ⊗ v) =
∑
|α|=k

(σα(Φ)pv) · ξα,

σ1(Φ)p(ξk+1 ⊗ v) = (k + 1)
∑
|α|=k

ξ ⊗ (σα(Φ)pv) · ξα,

for ξ =
n∑

j=1

ξjdxj ∈ T ∗
x0

and v ∈ V , where α = (α1, . . . , αn) and

ξα = ξα1
1 · . . . · ξαn

n .
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We also call the kernel gk,p of the mapping σ(Φ)p the symbol of Φ at p and we
set gk+1,p = Ker σ1(Φ)p. Associated to the subspace gk,p of SkT ∗

x0
⊗ V are the

Spencer cohomology groups Hk+l,j(gk,p), with l, j ≥ 0, which will be defined in §2.
Let {η1, . . . , ηn} be a basis of T ∗

x0
; we say that {η1, . . . , ηn} is a quasi-regular basis

for gk at p if

dim gk+1,p = dim gk,p +
n−1∑
j=1

dim(gk,p ∩ (SkWj ⊗ V )),

where Wj is the subspace of T ∗
x0

generated by η1, . . . , ηj. The existence of a quasi-
regular basis for gk at p is equivalent to the vanishing of all these Spencer cohomol-
ogy groups (see Theorem 2.14).

The criterion of Goldschmidt [1967b] for the existence of formal solutions may
be stated as follows. The formal solution p of order k can be extended to a formal
solution of infinite order if:

(i) the mapping Φ in the variables (x, Dαu), with 0 ≤ α ≤ k, is of constant rank
in a neighborhood of (x0, (Dαu0)(x0));

(ii) for all x in a neighborhood of x0, there exists a formal solution of (1) of
order k at x;

(iii) in a neighborhood of x0, every formal solution of (1) of order k can be
extended to a formal solution of order k + 1;

(iv) for all q ∈ Rk in a neighborhood of p, the rank of the linear mapping σ1(Φ)q

is independent of q;
(v) for all q ∈ Rk in a neighborhood of p, the symbol gk,q at q is 2-acyclic, i.e.

the cohomology groups Hk+l,2(gk,q) vanish for l ≥ 0.
The condition (v) can be replaced by the stronger condition of involutivity which

need only be verified at p:
(vi) there exists a quasi-regular basis of T ∗

x0
for gk at p.

In fact, conditions (i)–(v) imply the existence of sufficiently many formal so-
lutions extending p, and, whenever Φ is a real-analytic function, the existence
of an analytic solution u of (1) in a neighborhood of x0 satisfying (Dβu)(x0) =
(Dβu0)(x0), for all 0 ≤ |β| ≤ k.

§2. Quasi-Linear Equations.

In this section, we give an intrinsic version of the basic existence theorem of
Goldschmidt [1967b]; for simplicity, here we mainly restrict our attention to quasi-
linear equations.

We assume that all objects and mappings are differentiable of class C∞. In
general, we do not require that the dimensions of the different components of a
differentiable manifold be the same, and we allow the rank of a vector bundle over
a manifold Y to vary over the different components of Y . Let X be a differentiable
manifold of dimension n, whose tangent and cotangent bundles we denote by T and
T ∗ respectively. If k is a non-negative integer, we let

⊗k
T ∗, SkT ∗ and

∧k
T ∗ be the

k-th tensor, symmetric and exterior powers of T ∗, respectively. We shall identify
SkT ∗ and

∧k
T ∗ with sub-bundles of

⊗k
T ∗ by means of the injective mappings

SkT ∗ →
⊗k

T ∗,
∧k

T ∗ →
⊗k

T ∗
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sending the symmetric product β1 · . . . · βk, with β1, . . . , βk ∈ T ∗, into∑
σ ∈ Sk

βσ(1) ⊗ · · · ⊗ βσ(k),

and the exterior product β1 ∧ · · · ∧ βk into∑
σ ∈ Sk

sgn σ · βσ(1) ⊗ · · · ⊗ βσ(k),

where Sk is the group of permutations of {1, . . . , k} and sgn σ is the signature of
the element σ of Sk.

If Y, Z are differentiable manifolds and ρ1 : Z → X, ρ2 : Z → Y are mappings,
and if F1 is a vector bundle over X and F2 is a vector bundle over Y , we denote
by F1 ⊗Z F2 the vector bundle ρ−1

1 F1 ⊗ ρ−1
2 F2 over Z; if E is a vector bundle over

X, we shall sometimes also denote by E the vector bundle ρ−1
1 E over Z induced

by ρ1.
A fibered manifold E over X is a manifold together with a surjective submersion

π : E → X. A submanifold F of E is said to be a fibered submanifold if π|F :
F → X is a fibered manifold. We denote by E the sheaf of sections of E over X.
Recall that two sections s and s′ of E over a neighborhood V of x0 ∈ X have the
same k-jet at x0 if s(x0) = s′(x0) and if in some, and hence in all, local coordinate
systems the Taylor series of s and s′ agree up through order k. The class determined
by s at x0 will be denoted by jk(s)(x0), and we write π(jk(s)(x0)) = x0. The set
Jk(E) of all such k-jets together with the projection π is a fibered manifold over
X, and x �→ jk(s)(x) is a section of Jk(E) over V , which we call the k-jet jk(s)
of the section s; often Jk(E) is called the bundle of k-jets of sections of E. If
m ≥ k and p ∈ Jm(E), we let πk(p) be the element of Jk(E) that it determines;
thus πkjm(s)(x0) = jk(s)(x0). We also know that πk : Jm(E)→ Jk(E) is a fibered
manifold. We shall identify J0(E) with E.

Let e ∈ E with π(e) = x0; then there is an open neighborhood U of e and
diffeomorphisms

ϕ : U → Rn × Rm, ψ : πU → Rn

such that the diagram
U

ϕ−−−−→ Rn ×Rm⏐⏐"π

⏐⏐"pr1

πU
ψ−−−−→ Rn

commutes, where pr1 is the projection onto the first factor. We obtain correspond-
ing coordinate systems (x1, . . . , xn, y1, . . . , ym) for E on U and (x1, . . . , xn) for X
on πU . A standard local coordinate system for Jk(E) on π−1

0 (U) is

(xi, yj , yj
α),

where 1 ≤ i ≤ n, 1 ≤ j ≤ m and α = (α1, . . . , αn) ranges over all multi-indices
satisfying 1 ≤ |α| ≤ k. If s is a section of E over a neighborhood of x with s(x) ∈ U ,
then

yj
α(jk(s)(x)) = Dαyj(s(x)),

yj(jk(s)(x)) = yj(s(x)).
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If E is a vector bundle, recall that Jk(E) is also a vector bundle; we have

jk(s)(x0) + jk(s′)(x0) = jk(s + s′)(x0),

ajk(s)(x0) = jk(as)(x0),

for a ∈ R. The morphism of vector bundles

ε : SkT ∗ ⊗ E → Jk(E)

determined by

ε(((df1 · . . . · dfk)⊗ s)(x)) = jk

((∏k
i=1fi

)
· s
)
(x),

where f1, . . . , fk are real-valued functions on X vanishing at x ∈ X and s is a
section of E over X, is well-defined since

∏k
i=1 fi vanishes to order k − 1 at x. For

k < 0, we set Jk(E) = 0. One easily verifies that the sequence

0→ SkT ∗ ⊗ E
ε−→ Jk(E)

πk−1−−−→ Jk−1(E)→ 0

is exact, for k ≥ 0.
Let π : E → X and π′ : E′ → X be fibered manifolds over X; a mapping

ϕ : E → E′ is a morphism of fibered manifolds over X if π′ ◦ ϕ = π.
We return to the study of equation (1). Let Ṽ , Ṽ ′ be the trivial vector bundles

U×V , U×V ′ respectively. The function Φ determines a morphism ϕ : Jk(Ṽ )→ Ṽ ′

of fibered manifolds over U ; in fact

Φ(x, Dαu) = ϕ(jk(ũ)(x)),

where x ∈ U and ũ is the graph of the V -valued function u on U . We identify the
set Rk of formal solutions of (1) of order k with

{p ∈ Jk(Ṽ ) | ϕ(p) = 0}.

The solutions of (1) depend only on Rk. We reserve the terminology of differential
equations for such Rk satisfying the additional regularity condition that it be a
fibered submanifold of the jet bundle. More precisely, we have:

Definition. A (non-linear) partial differential equation Rk of order k on E is a
fibered submanifold of π : Jk(E) → X. A solution s of Rk is a section of E such
that jk(s) is a section of Rk.

Let F be an open fibered submanifold of Jk(E) and ϕ : F → E′ be a morphism
of fibered manifolds over X; let s′ be a section of E′ over X. We set

(2) Rk = Kers′ ϕ = {p ∈ F | ϕ(p) = s′(π(p))}.

If

(3) s′(X) ⊂ ϕ(F ),
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the fibers of Rk are non-empty. If (3) holds and

(4) ϕ has locally constant rank,

then, according to Proposition 2.1 of Goldschmidt [1967b], Rk is a fibered subman-
ifold of Jk(E) and a partial differential equation. The l-th prolongation of ϕ is the
morphism

pl(ϕ) : π−1
k F → Jl(E′)

defined on the open subset π−1
k F of Jk+l(E) by

pl(ϕ)(jk+l(s)(x)) = jl(ϕ ◦ jk(s))(x),

for all x ∈ X and s ∈ Ex, with jk(s)(x) ∈ F . We set p0(ϕ) = ϕ. We consider the
subset

Rk+l = Kerjl(s′) pl(ϕ)

of π−1
k F ; the natural projection πk+l : Jk+l+1(E) → Jk+l(E) sends Rk+l+1 into

Rk+l, for all l ≥ 0. If conditions (3) and (4) hold, then Rk+l depends only on
Rk and is called the l-th prolongation of Rk (see §3). We remark that any partial
differential equation of order k on E can be written locally (in Jk(E)) in the form
(2) with ϕ of constant rank (see Goldschmidt [1967b]).

Let (x1, . . . , xn, y1 , . . . , ym) be the coordinate system on the open subset U
of E considered above, where (x1, . . . , xn) is a coordinate system for X, and let
(x1, . . . , xn, z1, . . . , zp) be a similar coordinate system for E′ on an open subset U ′

of E′, with π′U ′ = πU . We consider the standard coordinate systems on the jet
bundles. If ϕ(F ∩ π−1

0 U) ⊂ U ′, the morphism ϕ is determined by the p functions

ϕr(xi, yj , yj
α), 1 ≤ |α| ≤ k,

on F ∩ π−1
0 U equal to zr ◦ ϕ. The first prolongation p1(ϕ) of ϕ is then determined

by
ϕr(xi, yj, yj

α)

and

∂ϕr

∂xk
(xi, yj , yj

α) +
m∑

l=1

∂ϕr

∂yl
(xi, yj , yj

α)yl
εk

+
∑

1≤|β|≤k

1≤l≤m

∂ϕr

∂yl
β

(xi, yj , yj
α)yl

β+εk
,

with 1 ≤ r ≤ p, 1 ≤ k ≤ n, where εk is the multi-index whose k-th entry is equal
to one and whose other entries are equal to zero.

Example 2.1. Let F = E′ = Jk(E) and ϕ be the identity mapping of Jk(E). Then
pl(ϕ) is the canonical imbedding

λl : Jk+l(E)→ Jl(Jk(E))

sending jk+l(s)(x) into jl(jk(s))(x), for x ∈ X and s ∈ Ex.
We again consider equation (1); if s′ is the zero-section of Ṽ ′, then Rk = Kers′ ϕ,

and, for l ≥ 0, we may identify Rk+l with the set of formal solutions of (1) of order
k + l.
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We now return to the situation considered above. If Rk is a differential equation,
we therefore call an element of Rk+l a formal solution of Rk of order k + l, and an
element of

R∞ = pr limRk+l

a formal solution of Rk (of infinite order). Given a formal solution of Rk of order
m ≥ k, we seek conditions which will insure that it can be extended to a formal
solution. One such condition is:

(5) the mappings πk+l : Rk+l+1 → Rk+l are surjective, for all l ≥ 0.

Spencer [1962] formulated the so-called δ-Poincaré estimate, which was proved
by Ehrenpreis, Guillemin and Sternberg [1965], and later by Sweeney [1967], and
which gives the convergence of power series solutions for analytic partial differen-
tial equations satisfying condition (5). Malgrange [1972] (Appendix) realized that
this estimate is essentially equivalent to the “privileged neighborhood theorem” of
Grauert [1960] and used it together with the method of majorants to prove directly
the following existence theorem for analytic differential equations. An adaptation
of the proof of a result of Douady [1966] yields the required theorem of Grauert.

Theorem 2.2. Suppose that X is a real-analytic manifold, that E, E′ are real-
analytic fibered manifolds and that ϕ : F → E′ is a real-analytic morphism and s′

is an analytic section of E′. Let x0 ∈ X and l ≥ 0. If πk+m : Rk+m+1,x0 → Rk+m,x0

is surjective for all m ≥ l, then given p ∈ Rk+l,x0 there exists an analytic section s
of E over a neighborhood U of x0 such that jk+l(s)(x0) = p and jk(s)(x) ∈ Rk for
all x ∈ U .

If conditions (3) and (4) hold, the section s given by the theorem is a solution
of the differential equation Rk.

We present below sufficient conditions for (5) to hold which involve only a finite
number of prolongations of Rk.

We now assume that E and E′ are vector bundles over X. We say that the
morphism of fibered manifolds ϕ : F → E′ is quasi-linear if there exists a morphism
of vector bundles

σ(ϕ) : SkT ∗ ⊗ E → E′

over πk−1F such that

ϕ(p + εu) = ϕ(p) + σ(ϕ)πk−1p(u),

for all p ∈ F , u ∈ SkT ∗⊗E, with p+εu belonging to F . Here ε is the monomorphism
SkT ∗ ⊗ E → Jk(E) and the vector bundles SkT ∗ ⊗ E and E′ are considered as
induced vector bundles over πk−1F , via the mapping π. If ϕ is quasi-linear, the
mapping σ(ϕ) is uniquely determined by ϕ and is called the symbol of ϕ.

If ϕ is quasi-linear and σ(ϕ) is an epimorphism, and if

F + ε(SkT ∗ ⊗E) ⊂ F,

then it is easily seen that ϕ is a surjective submersion; thus under these hypotheses,
conditions (3) and (4) hold and so (2) is a differential equation.
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Example 2.3. Let E be the vector bundle S2T ∗ and consider the fibered submanifold
S2

+T ∗ of E whose sections are the positive-definite symmetric 2-forms on X. Let
F be the open fibered submanifold J2(S2

+T ∗) of J2(E). A section g of S2
+T ∗ is a

Riemannian metric on X and we consider the Levi–Civita connection ∇g of g and
the Riemann curvature tensor R(g) of g, which is the section of

∧2
T ∗ ⊗

∧2
T ∗

determined by

R(g)(ξ1 , ξ2, ξ3, ξ4) = g(ξ4, (∇g
ξ1
∇g

ξ2
−∇g

ξ2
∇g

ξ1
−∇g

[ξ1,ξ2]
)ξ3),

for ξ1, ξ2, ξ3, ξ4 ∈ T . In fact, according to the first Bianchi identity, R(g) is a
section of the sub-bundle G of

∧2
T ∗ ⊗

∧2
T ∗ consisting of those elements θ of∧2

T ∗ ⊗
∧2

T ∗ which satisfy the relation

θ(ξ1, ξ2, ξ3, ξ4) + θ(ξ2, ξ3, ξ1, ξ4) + θ(ξ3, ξ1, ξ2, ξ4) = 0,

for all ξ1, ξ2, ξ3, ξ4 ∈ T ; according to Lemma 3.1 of Gasqui and Goldschmidt [1983],
G is equal to the image of the morphism of vector bundles

τ : S2T ∗ ⊗ S2T ∗ →
∧2T ∗ ⊗

∧2T ∗

defined by

τ (u)(ξ1, ξ2, ξ3, ξ4) =
1
2
{u(ξ1, ξ3, ξ2, ξ4) + u(ξ2, ξ4, ξ1, ξ3)

− u(ξ1, ξ4, ξ2, ξ3)− u(ξ2, ξ3, ξ1, ξ4)},

for all u ∈ S2T ∗ ⊗ S2T ∗ and ξ1, ξ2, ξ3, ξ4 ∈ T . Let E′ = G and let

Φ : J2(S2
+T ∗)→ G

be the morphism of fibered manifolds over X sending j2(g)(x) into R(g)(x), for
x ∈ X. Then Φ is quasi-linear and its symbol

σ(Φ) : S2T ∗ ⊗ S2T ∗ → G

over J1(S2
+T ∗) is determined by τ ; in fact, in terms of the local coordinate expression

for the curvature of a metric, it is easily seen that

Φ(j2(g)(x) + εu) = R(g)(x) + τu,

for g ∈ S2
+T ∗

x and u ∈ (S2T ∗ ⊗ S2T ∗)x, with x ∈ X. Since τ is an epimorphism
onto G, we see that Φ is a surjective submersion; hence if R is a section of G over
X, then

N2 = KerR Φ

is a differential equation, whose solutions are the Riemannian metrics g satisfying
the equation

R(g) = R.
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Example 2.4. Suppose that n ≥ 3. If g is a Riemannian metric on X, we denote by

Trg :
∧2

T ∗ ⊗
∧2

T ∗ → T ∗ ⊗ T ∗

the morphism defined by

(Trgu)(ξ1, ξ2) =
n∑

i=1

u(ti, ξ1, ti, ξ2),

for x ∈ X, u ∈ (
∧2

T ∗⊗
∧2

T ∗)x and ξ1, ξ2 ∈ Tx, where {t1, . . . , tn} is an orthonor-
mal basis of Tx. It is well-known that

(6) Trg(G) = S2T ∗

(see for example Gasqui [1982]). The Ricci curvature Ric(g) of g is the section of
S2T ∗ equal to−TrgR(g). Now as in Example 2.3, let E = S2T ∗ and F = J2(S2

+T ∗).
We set E′ = S2T ∗ and let

ϕ : J2(S2
+T ∗)→ S2T ∗

be the morphism of fibered manifolds over X sending j2(g)(x) into Ric(g)(x), for
x ∈ X. Since the morphism Φ of Example 2.3 is quasi-linear, we see that this
morphism ϕ is also quasi-linear and that its symbol

σ(ϕ) : S2T ∗ ⊗ S2T ∗ → S2T ∗

over J1(S2
+T ∗) sends (j1(g)(x), u) into −Trgτ (u), for u ∈ (S2T ∗ ⊗ S2T ∗)x; in fact,

ϕ(j2(g)(x) + εu) = Ric(g)(x) − Trgτ (u),

for u ∈ (S2T ∗ ⊗ S2T ∗)x, with x ∈ X. According to (6), σ(ϕ) is an epimorphism,
and so we see that ϕ is a surjective submersion. Hence if R is a section of S2T ∗

over X, then
N2 = KerR ϕ

is a differential equation, whose solutions are the Riemannian metrics g satisfying
the equation

(7) Ric(g) = R.

Example 2.5. Suppose that n ≥ 3 and let E = S2T ∗, F = J2(S2
+T ∗) and E′ = S2T ∗

as in Example 2.4. Let λ ∈ R and

ψλ : J2(S2
+T ∗)→ S2T ∗

be the morphism of fibered manifolds over X sending j2(g)(x) into
Ric(g)(x)−λg(x), for g ∈ S2T ∗

x , with x ∈ X. Since the morphism ϕ of Example 2.4
is quasi-linear, we see that ψλ is also quasi-linear and that its symbol

σ(ψλ) : S2T ∗ ⊗ S2T ∗ → S2T ∗
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over J1(S2
+T ∗) is equal to σ(ϕ). Therefore ψλ is a surjective submersion; if 0 is the

zero-section of S2T ∗, then
Nλ

2 = Ker0 ψλ

is a differential equation whose solutions are the Riemannian metrics g satisfying
the identity

Ric(g) = λg,

and are Einstein metrics.

We now return to the situation we were considering before the above examples.
Let

∆l,k : Sk+lT ∗ → SlT ∗ ⊗ SkT ∗

be the natural inclusion. Let ρ : Y → X be a fibered manifold; if

ψ : SkT ∗ ⊗ E → E′

is a morphism of vector bundles over Y , where SkT ∗ ⊗E and E′ are considered as
induced vector bundles over Y via the mapping ρ, the l-th prolongation

(ψ)+l : Sk+lT ∗ ⊗ E → SlT ∗ ⊗ E′

of ψ is the morphism of vector bundles over Y equal to the composition

Sk+lT ∗ ⊗E
∆l,k⊗ id−−−−−→ SlT ∗ ⊗ SkT ∗ ⊗E

id⊗ψ−−−→ SlT ∗ ⊗E′.

If ϕ is quasi-linear, the l-th prolongation of σ(ϕ) (over πk−1F ) is denoted by σl(ϕ).
The following result is given by Goldschmidt [1967b], §5, and is easily verified using
the standard local coordinates on the jet bundles.

Proposition 2.6. If the morphism ϕ : F → E′ is quasi-linear, then, for l ≥ 1, so
is the morphism

pl(ϕ) : π−1
k F → Jl(E′)

and its symbol is determined by σl(ϕ); we have

(8) pl(ϕ)(p + εu) = pl(ϕ)(p) + εσl(ϕ)πk−1p(u),

for all p ∈ Jk+l(E), u ∈ Sk+lT ∗ ⊗ E, with πkp ∈ F .

Example 2.7. Let E, E′ be arbitrary vector bundles over X; assume that F = Jk(E)
and that ϕ : Jk(E)→ E′ is a morphism of vector bundles. Then

D = ϕ ◦ jk : E → E ′

is a linear differential operator of order k. In fact, any linear differential operator
E → E ′ of order k is obtained in this way. The l-th prolongation

pl(ϕ) = pl(D) : Jk+l(E)→ Jl(E′)

of ϕ is a morphism of vector bundles over X. The symbol

σ(ϕ) : SkT ∗ ⊗ E → E′
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of ϕ is the morphism ϕ ◦ ε of vector bundles over X. The l-th prolongation of the
symbol of ϕ is the morphism of vector bundles σl(ϕ) = (σ(ϕ))+l over X. Then the
diagram

Sk+lT ∗ ⊗E
σl(ϕ)−−−−→ SlT ∗ ⊗ E′⏐⏐"ε

⏐⏐"ε

Jk+l(E)
pl(ϕ)−−−−→ Jl(E′)

commutes. We set

p(D) = p0(D) = ϕ, σ(D) = σ0(D) = σ(ϕ)

and
σl(D) = σl(ϕ),

for l ≥ 0. A linear differential equation of order k on E is a sub-bundle Rk of Jk(E).
If ϕ has locally constant rank, then Rk = Ker ϕ is a linear differential equation,
and its l-th prolongation Rk+l = Ker pl(ϕ) is a vector bundle with variable fiber
which depends only on Rk.

We now describe the first obstruction to the integrability of the non-linear equa-
tions determined by the morphism of fibered manifolds ϕ, which is assumed to be
quasi-linear. Let W be the cokernel of the morphism σ1(ϕ), which is a vector bun-
dle over πk−1F with variable fiber; if ν : T ∗ ⊗ E′ → W is the natural projection,
the sequence

(9) Sk+1T ∗ ⊗E
σ1(ϕ)−−−→ T ∗ ⊗ E′ ν−→ W → 0

is exact. We define a mapping
Ω : Rk →W

as follows. If p ∈ Rk,x, with x ∈ X, let q ∈ Jk+1(E) with πkq = p; then by (8) and
the exactness of (9), the element

(10) Ω(p) = νε−1(p1(ϕ)q − j1(s′)(x))

of Wπk−1p is well-defined, since ϕ(p) = s′(x). We denote by 0 the zero-section of
W ; the following result is given by Proposition 2.1 of Goldschmidt [1972a].

Proposition 2.8. The sequence

Rk+1
πk−→ Rk

Ω−−−−→−−−−→
0◦πk−1

W

is exact, i.e.
πkRk+1 = {p ∈ Rk | Ω(p) = 0}.

Proof. Let p ∈ Rk,x, with x ∈ X, and let q be an element of Jk+1(E) satisfying
πkq = p. If q ∈ Rk+1, according to (10) we see that Ω(p) = 0. Conversely, if
Ω(p) = 0, then by the exactness of (9) there exists u ∈ (Sk+1T ∗ ⊗ E)x such that

σ1(ϕ)πk−1pu = −ε−1(p1(ϕ)q − j1(s′)(x)).
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Then, by (8), we have
p1(ϕ)(p + εu) = j1(s′)(x)

and the element q′ = p + εu of Jk+1(E) belongs to Rk+1 and satisfies πkq′ = p.
Thus Ω represents the obstruction to the surjectivity of πk : Rk+1 → Rk. The

techniques for computing this first obstruction were first applied to equations aris-
ing in the theory of Lie pseudogroups by Goldschmidt [1972a, 1972b]. Subsequently,
Gasqui [1975, 1979a, 1979b, 1982] studied the first obstruction and formal integra-
bility questions for several other equations.

Examples 2.4 and 2.5 (continued). Let g be a Riemannian metric on X. If 1
denotes the trivial real line bundle over X, we consider the trace mappings

Tr0g : S2T ∗ → 1,

Tr1g : T ∗ ⊗ S2T ∗ → T ∗

defined by

Tr0gu =
n∑

i=1

u(ti, ti),

(Tr1gv)(ξ) =
n∑

i=1

v(ti, ti, ξ),

for x ∈ X, u ∈ S2T ∗
x , v ∈ (T ∗⊗S2T ∗)x, ξ ∈ Tx, where {t1, . . . , tn} is an orthonormal

basis of Tx. The Bianchi operator

Bg : S2T ∗ → T ∗

of g is the first-order linear differential operator defined by

Bgu = Tr1g∇gu− 1
2d Tr0gu,

for u ∈ S2T ∗. Clearly, the symbol

σ(Bg) : T ∗ ⊗ S2T ∗ → T ∗

of Bg is equal to Tr1g − 1
2 id ⊗ Tr0g. Since ∇gg = 0, we see that Bgg = 0. We recall

that the Ricci curvature Ric(g) of g satisfies the Bianchi identity

(11) BgRic(g) = 0.

The following algebraic result is proved by Gasqui [1982] using decompositions
of O(n)-modules into irreducible submodules.

Lemma 2.9. The sequence of vector bundles over X

S3T ∗ ⊗ S2T ∗ (Trg◦τ)+1−−−−−−→ T ∗ ⊗ S2T ∗ σ(Bg)−−−−→ T ∗ → 0
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is exact.

Therefore the sequence of vector bundles

(12) S3T ∗ ⊗ S2T ∗ σ1(ϕ)−−−→ T ∗ ⊗ S2T ∗ ν−→ T ∗ → 0

over J1(S2
+T ∗) is exact, where ν sends (j1(g)(x), u) into σ(Bg)u, for g ∈ S2

+T ∗
x ,

u ∈ (T ∗ ⊗ S2T ∗)x, with x ∈ X. We now compute the first obstruction to the
integrability of the equation Nλ

2 . Let p = j2(g)(x) ∈ Nλ
2 , with x ∈ X and g ∈ S2

+T ∗
x ;

then (Ric(g) − λg)(x) = 0. By (10), (11) and the exactness of (12), we have

Ω(p) = νε−1j1(Ric(g) − λg)(x)

= σ(Bg)ε−1j1(Ric(g)− λg)(x)

= Bg(Ric(g) − λg)(x) = 0,

since Bgg = 0. Therefore if Nλ
3 denotes the first prolongation of Nλ

2 , the mapping
π2 : Nλ

3 → Nλ
2 is surjective, by Proposition 2.8.

The computation of the first obstruction Ω for the equation N2 of Example 2.4
is quite similar. Namely, if p = j2(g)(x) ∈ N2, with x ∈ X and g ∈ S2

+T ∗
x , then

(Ric(g)− R)(x) = 0 and

Ω(p) = νε−1j1(Ric(g) − R)(x)

= σ(Bg)ε−1j1(Ric(g)− R)(x)

= Bg(Ric(g) −R)(x) = −(BgR)(x).

Thus by Proposition 2.8, we see that p ∈ π2N3 if and only if (BgR)(x) = 0. For a
general section R, the mapping π2 : N3 → N2 is not surjective (see DeTurck [1981,
1982]). In fact, a solution g of (7) is also a solution of the equation BgR = 0, and
this will be taken into account in the next example.

æ

Example 2.10. If h ∈ S2T ∗, let

h� : T → T ∗

be the mapping determined by

h(ξ, η) = 〈η, h�(ξ)〉,

for ξ, η ∈ T . If h is non-degenerate, that is, if h� is an isomorphism, we denote by

h� : T ∗ → T

the inverse of h�. We suppose that n ≥ 3 and consider the objects of Example 2.4.
The proofs of the following algebraic lemmas due to DeTurck [1981] can be proved
using the methods of Gasqui [1982] involving decompositions into irreducible O(n)-
modules; here g denotes a Riemannian metric on X.
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Lemma 2.11. The mapping

S2T ∗ ⊗ S2T ∗ (Trg◦τ)⊕σ1(Bg)−−−−−−−−−−→ S2T ∗ ⊕ (T ∗ ⊗ T ∗)

is an epimorphism of vector bundles.

Lemma 2.12. The sequence of vector bundles

S3T ∗ ⊗ S2T ∗ (Trg◦τ)+1⊕σ2(Bg)−−−−−−−−−−−→ (T ∗ ⊗ S2T ∗) ⊕ (S2T ∗ ⊗ T ∗)
µg−→ T ∗ → 0

is exact, where µg sends u⊕v, with u ∈ T ∗⊗S2T ∗ and v ∈ S2T ∗⊗T ∗, into σ(Bg)u.

Let h be a section of S2T ∗. We define a section Lg(h) of S2T ∗ ⊗ T by

(13) g(Lg(h)(ξ, η), ζ) =
1
2
{(∇g

ξh)(η, ζ) + (∇g
ηh)(ζ, ξ) − (∇g

ζh)(ξ, η)},

for ξ, η, ζ ∈ T . If ω ∈
⊗k

T ∗, let Lg(h)ω be the element of
⊗k+1

T ∗ given by

(14) (Lg(h)ω)(ξ, ξ1, . . . , ξk) = −
k∑

j=1

ω(ξ1, . . . , ξj−1, L
g(h)(ξ, ξj), ξj+1, . . . , ξk),

for ξ, ξ1, . . . , ξk ∈ T . By means of (14), it is easily seen that Lg(h)R is a section of
T ∗ ⊗ S2T ∗ satisfying the relation

(15) 〈ξ, σ(Bg)(Lg(h)R)〉 = −R((Tr0g ⊗ id)Lg(h), ξ),

for ξ ∈ T . From (13), it follows directly that

(16) Bg(h) = g�(Tr0g ⊗ id)Lg(h).

If R is a non-degenerate section of S2T ∗, from (15) and (16) we deduce that

(17) Bg(h) = − g� · R�(σ(Bg)(Lg(h)R)).

Let x ∈ X and assume that h(x) = 0; then g + h is a Riemannian metric on a
neighborhood U of x and

∇g+h −∇g : T → T ∗ ⊗ T

is a differential operator of order zero on U which arises from a section of S2T ∗⊗T .
In fact, we have

∇g+h −∇g = Lg(h)

at x; the verification of this relation is essentially the same as that of identity (4.8)
of Gasqui and Goldschmidt [1983]. Thus

(∇g+hR)(x) = (∇gR)(x) + (Lg(h)R)(x),

and so

(18) Bg+h(R) = Bg(R) + σ(Bg)(Lg(h)R)
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at x.
We now assume that R is a non-degenerate section of S2T ∗. We consider the

morphism of fibered manifolds

ψR : J1(S2
+T ∗)→ T ∗

defined by
ψR(j1(g)(x)) = (g� · R�)(Bg(R))(x).

According to (18) and (17), we have

ψR(j1(g + h)(x)) = ψR(j1(g)(x)) − Bg(h)(x)

= ψR(j1(g)(x)) − σ(Bg)ε−1j1(h)(x).

Thus ψR is quasi-linear and its symbol

σ(ψR) : T ∗ ⊗ S2T ∗ → T ∗

over S2
+T ∗ sends (g(x), u) into −σ(Bg)u, for u ∈ (T ∗ ⊗ S2T ∗)x, and is surjective

by Lemma 2.9. Therefore, according to Proposition 2.6, the morphism of fibered
manifolds

Ψ = ϕ⊕ p1(ψR) : J2(S2
+T ∗)→ S2T ∗ ⊕ J1(T ∗)

is quasi-linear, and its symbol

σ(Ψ) : S2T ∗ ⊗ S2T ∗ → S2T ∗ ⊕ J1(T ∗)

over J1(S2
+T ∗) at p = j1(g)(x) is determined by

−{(Trg ◦ τ )⊕ σ1(Bg)} : (S2T ∗ ⊗ S2T ∗)x → (S2T ∗ ⊕ (T ∗ ⊗ T ∗))x;

in fact,
σ(Ψ)(j1(g)(x), u) = −(Trgτ (u)⊕ εσ1(Bg)u),

for u ∈ (S2T ∗ ⊗ S2T ∗)x. Let x ∈ X and g0 ∈ S2
+T ∗

x . Since the symbol of ψR

is surjective, there exists p ∈ J1(S2
+T ∗)x with ψR(p) = 0 and π0(p) = g0. By

Lemma 2.11, the image of σ(Ψ) is equal to the vector bundle over J1(S2
+T ∗) induced

from S2T ∗ ⊕ ε(T ∗ ⊗ T ∗); hence it is easily seen that there exists q ∈ J2(S2
+T ∗)

satisfying π1(q) = p and Ψ(q) = R(x)⊕ 0 and that Ψ is a submersion. Therefore

N ′
2 = KerR⊕0 Ψ

is a differential equation of order 2 satisfying

(19) π0N
′
2 = S2

+T ∗.

Its solutions are the same as of those of equation (7). The diagram

J3(S2
+T ∗)

p1(Ψ)−−−−→ J1(S2T ∗)⊕ J1(J1(T ∗))8⏐⏐id

8⏐⏐id⊕λ1

J3(S2
+T ∗)

p1(ϕ)⊕p2(ψR)−−−−−−−−−→ J1(S2T ∗)⊕ J2(T ∗)
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is commutative, where λ1 is injective; hence the first prolongation N ′
3 of N ′

2 is equal
to

Kerj1(R)⊕0 p1(ϕ) ⊕ p2(ψR).

By Proposition 2.6, we have

(p1(ϕ) ⊕ p2(ψR))(p + εu)

= (p1(ϕ) ⊕ p2(ψR))(p) − ((ε(Trg ◦ τ )+1u)⊕ (εσ2(Bg)u)),

for p = j3(g)(x) ∈ J3(S2
+T ∗), u ∈ (S3T ∗ ⊗ S2T ∗)x. Therefore by Lemma 2.12, the

first obstruction
Ω′ : N ′

2 → T ∗

for the equation N ′
2 is well-defined by

(20) Ω′(p) = µg(ε−1j1(Ric(g)− R)(x)⊕ ε−1j2(g� · R�(Bg(R)))(x)),

for p = j2(g)(x) ∈ N ′
2, with x ∈ X and g ∈ S2

+T ∗
x satisfying

(Ric(g) − R)(x) = 0

and

(21) j1(g� ·R�(Bg(R)))(x) = 0.

It is easily verified that the sequence

N ′
3

π2−→ N ′
2

Ω′
−→−→
0◦π

T ∗

is exact. Moreover, by (20), (11) and (21), we have

Ω′(p) = σ(Bg)ε−1j1(Ric(g) − R)(x)

= (Bg(Ric(g) −R))(x) = −(BgR)(x) = 0.

Thus, the mapping π2 : N ′
3 → N ′

2 is surjective.
For k ≥ 0, we denote by

δ = ∆1,k : Sk+1T ∗ → T ∗ ⊗ SkT ∗

the natural inclusion; we have

δ(β1 · . . . · βk+1) =
k+1∑
i=1

βi ⊗ β1 · . . . · β̂i · . . . · βk+1,

for all β1, . . . , βk+1 ∈ T ∗, where the symbol ˆ above a letter means that it is omitted.
We extend δ to a morphism of vector bundles

δ :
∧j

T ∗ ⊗ Sk+1T ∗ →
∧j+1

T ∗ ⊗ SkT ∗
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sending ω ⊗ u into (−1)jω ∧ δu, for all ω ∈
∧j

T ∗ and u ∈ Sk+1T ∗. If we set
SlT ∗ = 0, for l < 0, the Poincaré lemma for forms with polynomial coefficients
implies that the sequence

(22)
0 → SkT ∗ δ−→ T ∗ ⊗ Sk−1T ∗ δ−→

∧2
T ∗⊗Sk−2T ∗ δ−→ · · ·

→
∧n

T ∗ ⊗ Sk−nT ∗ → 0

is exact, for k ≥ 1.
Let ρ : Y → X be a fibered manifold and let

ψ : SkT ∗ ⊗ E → E′

be a morphism of vector bundles over Y , where SkT ∗⊗E and E′ are considered as
induced vector bundles over Y via the mapping ρ. Let gk be the kernel of ψ, which
is a vector bundle over Y with variable fiber. For l ≥ 0, the kernel gk+l of the l-th
prolongation (ψ)+l of ψ is equal to

(Sk+lT ∗ ⊗E) ∩ (SlT ∗ ⊗ gk)

and is called the l-th prolongation of gk. We set gk+l = Sk+lT ∗ ⊗E, considered as
a vector bundle over Y , for l < 0. It is easily seen that the diagram

(23)

∧j
T ∗ ⊗ Sk+l+1T ∗ ⊗ E

id ⊗(ψ)+(l+1)−−−−−−−−→
∧j

T ∗ ⊗ Sl+1T ∗ ⊗E′⏐⏐"δ

⏐⏐"δ∧j+1
T ∗ ⊗ Sk+lT ∗ ⊗ E

id ⊗(ψ)+l−−−−−−−−→
∧j+1

T ∗ ⊗ SlT ∗ ⊗E′

commutes, and so the morphism δ induces by restriction mappings

δ :
∧j

T ∗ ⊗ gk+l+1 →
∧j+1

T ∗ ⊗ gk+l;

the cohomology of the complexes

(24) 0→ gm
δ−→ T ∗ ⊗ gm−1

δ−→
∧2

T ∗ ⊗ gm−2
δ−→ · · · →

∧n
T ∗ ⊗ gm−n → 0

is the Spencer cohomology of gk. We denote by Hm−j,j(gk) the cohomology of (24)
at

∧j T ∗ ⊗ gm−j. We say that gk is r-acyclic if Hm,j(gk) = 0, for all m ≥ k and
0 ≤ j ≤ r, and that gk is involutive if it is n-acyclic. It is easily seen that gk is
always 1-acyclic.

The following theorem asserts that all but a finite number of these cohomology
groups vanish, whenever there is an integer d such that dimEx ≤ d for all x ∈ X
(see Quillen [1964], Sweeney [1968]).

Theorem 2.13. If there is an integer d for which dimEx ≤ d, for all x ∈ X, then
there exists an integer k0 depending only on n, k and d such that

Hm,j(gk) = 0,
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for all m ≥ k0, j ≥ 0.

Let x ∈ X and {t1, . . . , tn} be a basis of Tx. If {α1, . . . , αn} is the basis of T ∗
x dual

to {t1, . . . , tn}, then we denote by SkT ∗
x,{t1,...,tj} the subspace of SkT ∗

x generated
by the symmetric products αi1 · . . . · αik, with j + 1 ≤ i1 ≤ · · · ≤ ik ≤ n. If y ∈ Y ,
with ρ(y) = x, we set

gk,y,{t1,...,tj} = gk,y ∩ (SkT ∗
x,{t1,...,tj} ⊗Ex).

We say that {t1, . . . , tn} is a quasi-regular basis for gk at y if

dim gk+1,y = dim gk,y +
n−1∑
j=1

dim gk,y,{t1,...,tj}.

The following criterion for the involutivity of gk is due to Serre (see Guillemin
and Sternberg [1964], Appendix; see also §§2,3, Chapter VIII).

Theorem 2.14. The following conditions are equivalent:
(i) there exists a quasi-regular basis of Tx for gk at y;
(ii) Hm,j(gk)y = 0, for all m ≥ k, j ≥ 0.

An elementary argument, due to Sternberg and based on É. Cartan’s proof of
the Poincaré lemma, shows that condition (i) of the above theorem implies (ii).
Any basis of Tx is quasi-regular for the sub-bundle T ∗ of S1T ∗; since Sk+1T ∗ is
its k-th prolongation, this argument proves that the sequence (22) is exact (see §2,
Chapter VIII).

Using the preceding theorem, it is easily seen that:

Lemma 2.15. If gk+1 is a vector bundle over Y and gk is involutive at y0 ∈ Y ,
then gk is involutive for all y in a neighborhood of y0.

We again consider the morphism ϕ : F → E′, where F is an open fibered
submanifold of Jk(E). Assume that ϕ is quasi-linear and suppose that conditions
(3) and (4) hold; then Rk is a differential equation. The symbol gk of Rk and the
l-th prolongation gk+l of the symbol of Rk are the vector bundles with variable
fiber over Rk whose fibers at p ∈ Rk are

gk,p = Ker σ(ϕ)πk−1p,(25)

gk+l,p = Ker σl(ϕ)πk−1p = (gk)+l,p;(26)

they depend only on Rk and not on ϕ (see §3).
We say that the differential equation Rk is formally integrable if:
(i) gk+l+1 is a vector bundle over Rk, for all l ≥ 0;
(ii) πk+l : Rk+l+1 → Rk+l is surjective, for all l ≥ 0.
The following result (Goldschmidt [1967b], Theorem 8.1) is the formal part of

the basic existence theorem for quasi-linear morphisms; it gives us a criterion for
formal integrability. Together with Theorem 2.2, it provides us with the existence
of analytic solutions for analytic quasi-linear partial differential equations.
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Theorem 2.16. Assume that (3) and (4) hold. If
(A) gk+1 is a vector bundle over Rk,
(B) πk : Rk+1 → Rk is surjective,
(C) gk is 2-acyclic,

then Rk is formally integrable.

In fact, if (3), (4), (A) and (B) hold, Goldschmidt [1967b] constructs the second
obstruction to the integrability of Rk, which is a mapping

κ : Rk+1 → Hk,2(gk)

over Rk, and then proves that the sequence

Rk+2
πk+1−−−→ Rk+1

κ−−→−−→
0◦πk

Hk,2(gk)

is exact. Thus the higher obstructions to integrability lie in the cohomology groups
Hk+l,2(gk) and condition (C) then implies that the mappings πk+l : Rk+l+1 → Rk+l

are surjective for l > 0.
A complete proof of Theorem 2.16 for linear equations will be given in Chapter X

(Theorem 1.6); in particular, in the course of this proof, the mapping κ will be
constructed.

According to Theorem 2.14, we may replace condition (C) in the above theorem
by:

(C′) for all p ∈ Rk, there exists a quasi-regular basis of Tπ(p) for gk at p.

We remark that conditions (A), (B) and (C′) are of “finite type”, in the sense
that they involve only ϕ and σ(ϕ) and their first prolongations.

From Theorems 2.13 and 2.16, Goldschmidt [1967b] deduces the following version
of the Cartan–Kuranishi prolongation theorem (Kuranishi [1957]), which asserts
that the condition of formal integrability is of “finite type”: to determine whether
Rk is formally integrable, we need examine only a finite number of prolongations
of ϕ.

Theorem 2.17. Assume that X is connected and that (3) and (4) hold. There
exists an integer k0 ≥ k depending only on n, k and the rank of E such that, if

(i) gk+l+1 is a vector bundle over Rk, for all 0 ≤ l ≤ k0 − k,
(ii) πk+l : Rk+l+1 → Rk+l is surjective, for all 0 ≤ l ≤ k0 − k,

then Rk is formally integrable.

We now show how Theorems 2.16 and 2.2 give us the existence of solutions for
the equations of Examples 2.5 and 2.10 in the analytic case.

Examples 2.5 and 2.10 (continued). For the differential equations Nλ
2 and N ′

2 we
have verified condition (B). The involutivity of the symbols of Nλ

2 and N ′
2 will be

a consequence of the following lemma of Gasqui [1982] and DeTurck [1981].

Lemma 2.18. Let g be a Riemannian metric on X and x ∈ X. An orthonormal
basis of Tx is quasi-regular for the kernels of the morphisms

Trg ◦ τ : S2T ∗ ⊗ S2T ∗ → S2T ∗,(27)

(Trg ◦ τ )⊕ σ1(Bg) : S2T ∗ ⊗ S2T ∗ → S2T ∗ ⊕ (T ∗ ⊗ T ∗)(28)
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at x.

We remark that the first prolongations of the kernels of the morphisms (27) and
(28) are equal to the kernels of (Trg ◦ τ )+1 and (Trg ◦ τ )+1 ⊕ σ2(Bg) respectively.

Let g be a Riemannian metric on X and x ∈ X; set p = j2(g)(x). If p ∈ Nλ
2 (resp.

N ′
2), then the fiber of the symbol of Nλ

2 (resp. N ′
2) is the kernel of (27) (resp. (28))

at x. Thus by Lemma 2.18 condition (C′) holds for Nλ
2 and N ′

2, while condition
(A) for these equations is a consequence of Lemmas 2.9 and 2.12. Therefore, by
Theorem 2.16, Nλ

2 and N ′
2 are formally integrable.

Assume that X is a real-analytic manifold. Then ψλ and Nλ
2 are analytic. If R

is an analytic non-degenerate section of S2T ∗, then Ψ and N ′
2 are analytic. The

following result of DeTurck [1981] is now a direct consequence of Theorem 2.2 and
(19); its proof outlined here is a variant of the one given by DeTurck.

Theorem 2.19. Let X be a real-analytic manifold of dimension n ≥ 3 and let R
be an analytic non-degenerate section of S2T ∗. If x ∈ X and g0 ∈ S2

+T ∗
x , there

exists an analytic Riemannian metric g on a neighborhood of x such that

g(x) = g0, Ric(g) = R.

The following theorem is due to Gasqui [1982].

Theorem 2.20. Let X be a real-analytic manifold of dimension n ≥ 3 and x ∈ X.
Let g0 be a Riemannian metric on X and R0 ∈ Gx such that

−Trg0R0 = λg0(x),

with λ ∈ R. Then there exists an analytic Riemannian metric g on a neighborhood
of x such that

g(x) = g0, R(g)(x) = R0, Ric(g) = λg.

Proof. Since the morphism Φ of Example 2.3 is quasi-linear and its symbol is sur-
jective, we see that there is an element p of J2(S2

+T ∗)x satisfying π0(p) = g0(x)
and Φ(p) = R0. From our hypothesis on R0, we see that p ∈ Nλ

2 . Because Nλ
2

is formally integrable, Theorem 2.2 gives us an analytic solution g of Nλ
2 over a

neighborhood of x such that j2(g)(x) = p.

§3. Existence Theorems.

We now briefly show how the results of §2 can be generalized to arbitrary systems
of partial differential equations. As the equations are in general no longer quasi-
linear, we must consider the structure of affine bundle which the jet bundles possess.

We no longer assume that E and E′ are vector bundles, but continue to suppose
that they are fibered manifolds over X. We denote by V (E) the bundle of vectors
tangent to the fibers of π : E → X.

According to Proposition 5.1 of Goldschmidt [1967b], for k ≥ 1 the jet bundle
Jk(E) is an affine bundle over Jk−1(E) modeled on the vector bundle SkT ∗⊗Jk−1(E)

V (E) over Jk−1(E). In fact, if p ∈ Jk−1(E) with π(p) = x, the vector space
SkT ∗

x ⊗ Vπ0p(E) considered as an additive group acts freely and transitively on
the fiber of Jk(E) over p; for u ∈ SkT ∗

x ⊗ Vπ0p(E), we denote by u + q the image
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of the element q of Jk(E)p under the action of u. In terms of the standard local
coordinate system for Jk(E) considered in §2, this action can be described as follows.
If α = (α1, . . . , αn) is a multi-index of norm k, we consider the section

dxα = (dx1)α1 · . . . · (dxn)αn

of SkT ∗. If an element q of Jk(E) satisfies π0q ∈ U and π(q) = x, and if (xi, yj , yj
α)

are the coordinates of q and

u =
∑
|α|=k

aj
α(dxα)(x)⊗ ∂

∂yj
(π0q),

the coordinates of u + q are (xi, yj, zj
α), where

zj
α =

{
yj

α + aj
α, if |α| = k,

yj
α, if 1 ≤ |α| < k.

An intrinsic definition of this action is given by Goldschmidt [1967b], §5. If E is a
vector bundle, then Vπ0p(E) is canonically isomorphic to Ex and so

SkT ∗
x ⊗ Vπ0p(E) � SkT ∗ ⊗ Ex;

in this case, the action of SkT ∗
x ⊗ Vπ0p(E) on Jk(E) can be described in terms of

the vector bundle structure of Jk(E) and the morphism ε:

u + q = ε(u) + q,

where on the left-hand side u is considered as an element of SkT ∗
x ⊗Vπ0p(E), while

on the right-hand side u is viewed as an element of (SkT ∗ ⊗ E)x.
From the affine bundle structure of Jk(E), we obtain a morphism of vector

bundles
µ : SkT ∗ ⊗Jk(E) V (E)→ V (Jk(E)),

sending (p, u), with p ∈ Jk(E) and u ∈ SkT ∗
π(p) ⊗ Vπ0p(E), into the tangent vector

d

dt
(p + tu)|t=0,

where t ∈ R. It is easily seen that the sequence

0 → SkT ∗ ⊗Jk(E) V (E) µ−→ V (Jk(E))
πk−1∗−−−→ π−1

k−1V (Jk−1(E))→ 0

of vector bundles over Jk(E) is exact (see Goldschmidt [1967b], Proposition 5.2).
We shall identify SkT ∗⊗Jk(E) V (E) with its image in V (Jk(E)) under the mapping
µ.

Let F be an open fibered submanifold of Jk(E) and let ϕ : F → E′ be a morphism
of fibered manifolds over X. The mapping ϕ∗ : V (F )→ V (E′) induces a morphism

ϕ∗ = ϕ∗ ◦ µ : SkT ∗ ⊗F V (E)→ V (E′),
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which we also denote by σ(ϕ); let σl(ϕ) be the composition

Sk+lT ∗ ⊗F V (E)
∆l,k⊗ id−−−−→ SlT ∗ ⊗ SkT ∗ ⊗F V (E)

id⊗ϕ∗−−−→ SlT ∗ ⊗E′ V (E′).

According to Proposition 5.6 of Goldschmidt [1967b], for l ≥ 1 the mapping

pl(ϕ) : π−1
k F → Jl(E′)

is a morphism of affine bundles over pl−1(ϕ) whose associated morphism of vector
bundles is induced by σl(ϕ); in other words,

(29) pl(ϕ)(u + p) = σl(ϕ)πkp(u) + pl(ϕ)p,

for all p ∈ Jk+l(E), with πkp ∈ F , and u ∈ Sk+lT ∗
π(p) ⊗ Vπ0p(E). This formula

is easily verified using the standard local coordinates on jet bundles. If E, E′

are vector bundles and ϕ is quasi-linear, then σl(ϕ) can be identified with the
mapping of §2 denoted there by σl(ϕ); moreover, Proposition 2.6 can be deduced
from formula (29).

Let Rk be a differential equation of order k on E. The l-th prolongation of Rk

is the subset Rk+l of Jk+l(E) determined by the equality

λlRk+l = Jl(Rk) ∩ λlJk+l(E),

where Jl(Rk) is considered as a subset of Jl(Jk(E)). The projection πk+l : Jk+l+1(E)→
Jk+l(E) sends Rk+l+1 into Rk+l. The symbol of Rk is the sub-bundle with varying
fiber

gk = V (Rk) ∩ (SkT ∗ ⊗Rk V (E))

of (SkT ∗ ⊗Jk(E) V (E))|Rk , which is equal to the kernel of the morphism of vector
bundles

(SkT ∗ ⊗Jk(E) V (E))|Rk → (V (Jk(E))|Rk)/V (Rk)

over Rk. Let gk+l be the l-th prolongation of gk; it is a sub-bundle with varying
fiber of Sk+lT ∗ ⊗Rk V (E).

If s′ is a section of E′ over X and Rk is given by (2), and if conditions (3) and
(4) are satisfied, then the l-th prolongation Rk+l of Rk is equal to Kerjl(s′) pl(ϕ)
and

gk = (Ker σ(ϕ))|Rk , gk+l = (Ker σl(ϕ))|Rk ;

thus in this case, our definition of Rk+l coincides with the one given in §2. Using
the identity (29), the first obstruction Ω : Rk → W to the integrability of Rk,
where W is a vector bundle with variable fiber over Rk, can be constructed in a
way similar to that of §2; then we still have

πkRk+1 = {p ∈ Rk | Ω(p) = 0}

(see Goldschmidt [1972a], Proposition 2.1). If moreover E, E′ are vector bundles
and ϕ is quasi-linear, the morphisms σ(ϕ) and σl(ϕ) can be identified with the
mappings of §2, while gk and gk+l are given by (25) and (26).

We say that a differential equation Rk of order k on E is formally integrable if:
(i) gk+l+1 is a vector bundle over Rk, for all l ≥ 0;
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(ii) πk+l : Rk+l+1 → Rk+l is surjective, for all l ≥ 0.
If Rk is formally integrable, then for l ≥ 0, according to Proposition 7.2 of Gold-
schmidt [1967b], Rk+l is a fibered submanifold of Jk+l(E) and πk+l : Rk+l+1 →
Rk+l is an affine sub-bundle of πk+l : Jk+l+1(E)|Rk+l → Rk+l, whose associated
vector bundle is the vector bundle π−1

k gk+l+1 over Rk+l induced from gk+l+1 by
πk : Rk+l → Rk; this last statement implies that for each p ∈ Rk+l the fiber of
Rk+l+1 over p is an affine subspace of the fiber of Jk+l+1(E) over p whose associated
vector space is gk+l+1,πkp.

Theorem 2.16 can be viewed as a special case of Theorem 8.1 of Goldschmidt
[1967b], which we now state as

Theorem 3.1. Let Rk be a differential equation of order k on E. If
(A) gk+1 is a vector bundle over Rk,
(B) πk : Rk+1 → Rk is surjective,
(C) gk is 2-acyclic,

then Rk is formally integrable.

Again as for Theorem 2.16, according to Theorem 2.14, we may replace condition
(C) in the above theorem by:

(C′) for all p ∈ Rk, there exists a quasi-regular basis of Tπ(p) for gk at p.

Theorem 2.17 also holds for a differential equation of order k on E, with k0 ≥ k
depending only on n, k and the dimension of E.

Theorem 2.2 now provides us with the existence of analytic solutions:

Theorem 3.2. Suppose that X is a real-analytic manifold and that E is a real-
analytic fibered manifold. If Rk is an analytic formally integrable differential equa-
tion of order k on E, then for all p ∈ Rk+l there exists an analytic solution s of
Rk on a neighborhood of x = π(p) such that jk+l(s)(x) = p.

We now present the intrinsic formulation of the criterion of §1 for the existence of
analytic solutions of analytic equations; it is a direct consequence of Theorems 3.1
and 2.2.

Theorem 3.3. Assume that X is a real-analytic manifold and that E, E′ are real-
analytic fibered manifolds. Let F be an open fibered submanifold of Jk(E) and let
ϕ : F → E′ be an analytic morphism of fibered manifolds over X and s′ be an
analytic section of E′ over X. Let

Rk = Kers′ ϕ, Rk+1 = Kerj1(s′) p1(ϕ),
gk = (Ker σ(ϕ))|Rk , gk+1 = (Ker σ1(ϕ))|Rk ,

and let p ∈ Rk. If there exists a neighborhood U of p in F such that:
(i) ϕ has constant rank on U ,
(ii) s′(πU) ⊂ ϕ(F ),
(iii) πk : Rk+1 ∩ π−1

k (U)→ Rk ∩ U is surjective,
(iv) gk+1 |(U∩Rk) is a vector bundle,
(v) Hk+l,2(gk)|(U∩Rk) = 0, for all l ≥ 0,

then there exists an analytic section s of E over a neighborhood V of x0 = π(p)
such that jk(s)(x0) = p and jk(s)(x) ∈ Rk for all x ∈ V .

According to Lemma 2.15, the condition (v) can be replaced by the stronger
condition:



§3. Existence Theorems 357

(vi) there exists a quasi-regular basis of Tx0 for gk at p.
Kuranishi [1967] proves the existence of analytic solutions of analytic partial dif-

ferential equations by the method of Cartan–Kähler, using the Cauchy–Kowalewski
theorem, under these assumptions (i)–(iv) and (vi).

æ
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CHAPTER X

LINEAR DIFFERENTIAL OPERATORS

In this chapter, we consider only linear systems of partial differential equations,
and use the notation and terminology introduced in Chapter IX. In general, if
D : E → F is a linear differential operator, where E, F are vector bundles over the
manifold X, and if f is a section of F , the inhomogeneous equation

Du = f

is not solvable for a section u of E unless f satisfies a requisite compatibility con-
dition. Indeed, certain conditions must be imposed on the formal power series
expansion j∞(f)(x) of f at x ∈ X in order that it may be written as j∞(Du)(x),
for some section u of E. Under certain regularity assumptions on D, they can be
expressed in terms of a differential operator P : F → B of finite order, where B
is a vector bundle over X. This operator is called the compatibility condition for
D and is obtained by repeatedly differentiating the equation. We then obtain a
complex of differential operators

E D−→ F P−→ B

which is exact at the formal power series level: the formal power series expansion
j∞(f)(x) of f at x can be written in the form j∞(Du)(x), for some section u of E,
if and only if Pf vanishes to infinite order at x. For example, the inhomogeneous
equation du = f , where u is a real-valued function and f is a 1-form on X, is not
solvable for u unless df = 0.

In Section 1, we present a complete proof of the formal existence theorem of
Goldschmidt [1967a] for homogeneous linear systems (Theorem 1.6), and existence
results for the compatibility condition of a linear differential operator, as well as
existence theorems for analytic differential operators. We also construct formally
exact complexes of differential operators, whose vector bundles can be explicitly de-
scribed under specific hypotheses; these include the sophisticated Spencer sequence
(see Theorems 1.9 and 1.11, Examples 1.10, 1.12 and 1.13).

Section 2 is devoted to various examples of these complexes, while Section 3 is
concerned with exactness results for our complexes under the additional assumption
of ellipticity.

§1. Formal Theory and Complexes.

Let E, F be vector bundles over the differentiable manifold X of dimension n.
We denote by C∞(U, E) the space of sections of the vector bundle E over an open
subset U of X. Let ϕ : Jk(E) → F be a morphism of vector bundles and let
D = ϕ ◦ jk : E → F be the corresponding differential operator of order k. We
consider the morphisms associated to ϕ and D in Example 2.7 of Chapter IX. Let

J∞(E) = pr limJm(E)
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be the bundle of jets of infinite order of sections of E, and set p∞(D) = pr lim pm(D).
If k = 1, then

(1) D(fs) = σ(D)(df ⊗ s) + fDs,

where f is a real-valued function on X and s is a section of E over X. Indeed, this
formula holds if f is a constant function; on the other hand, if x ∈ X and f(x) = 0,
then it is valid at x, according to the definitions of ε and σ(D).

Let Rk be the kernel of ϕ and Rk+l the kernel of pl(ϕ). The symbol gk of (Rk, ϕ)
is the kernel of σ(ϕ) : SkT ∗ ⊗ E → F and its l-th prolongation gk+l is the kernel
of the morphism of vector bundles

σl(ϕ) = (σ(ϕ))+l : Sk+lT ∗ ⊗ E → SlT ∗ ⊗ F

over X. For l < 0, we write Rk+l = Jk+l(E) and gk+l = Sk+lT ∗ ⊗ E; then the
sequence

0 → gk+l
ε−→ Rk+l

πk+l−1−−−−→ Rk+l−1

is exact. We recall that, if ϕ has locally constant rank, Rk is a linear differential
equation and that the l-th prolongation Rk+l of Rk is determined by the equality

λlRk+l = Jl(Rk) ∩ λlJk+l(E).

If Rk is a vector bundle, we call gk the symbol of the equation Rk. If Rk+l is a
vector bundle, it is easily verified that the diagram

0 −−−−→ Rk+l+m −−−−→ Jk+l+m(E)
pl+m(ϕ)−−−−−→ Jl+m(F )⏐⏐"id

⏐⏐"λm

0 −−−−→ (Rk+l)+m −−−−→ Jk+l+m(E)
pm(pl(ϕ))−−−−−−→ Jm(Jl(F ))

is commutative and exact, where λm is injective; therefore the m-th prolongation
(Rk+l)+m of the equation Rk+l is equal to Rk+l+m. It follows that the m-th prolon-
gation (gk+l)+m of gk+l is equal to gk+l+m. We say that Rk is formally integrable
if:

(i) Rk+l is a vector bundle for all l ≥ 0;
(ii) πk+l : Rk+l+1 → Rk+l is surjective for all l ≥ 0.
We recall the following lemma of Goldschmidt [1967a] which we will require later.

Lemma 1.1. If

E′ ψ′

−→ E
ψ′′

−−→ E′′

is an exact sequence of vector bundles over X, then the kernel of ψ′ and the cokernel
of ψ′′ are both vector bundles.

Let B be a vector bundle over X. If D′ : F → B is a differential operator of
order l, we say that the sequence

(2) E D−→ F D′
−→ B
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is formally exact if the sequence

J∞(E)
p∞(D)−−−−→ J∞(F )

p∞(D′)−−−−−→ J∞(B)

is exact.

Example 1.2. Suppose that X = Rn and that (2) is a complex of constant coef-
ficient differential operators. If U is an open convex subset of Rn, according to
the Ehrenpreis–Malgrange theorem (see Ehrenpreis [1970], Malgrange [1963] and
Hörmander [1973], §7.6), the sequence

C∞(U, E) D−→ C∞(U, F ) D′
−→ C∞(U, B)

is exact.
Unfortunately, formal exactness is not a good concept for operators with variable

coefficients, even for analytic operators, as we shall see below with Example 1.5. It
shall be replaced by stronger conditions (see Theorem 1.4).

Lemma 1.3. Let ϕ : Jk(E) → F , ψ : Jl(F ) → B be morphisms of vector bundles
over X, and set D = ϕ◦ jk, D′ = ψ ◦ jl. Let m0 ≥ 0 and assume that the sequences
of vector bundles

(3) Jk+l+m(E)
pl+m(ϕ)−−−−−→ Jl+m(F )

pm(ψ)−−−−→ Jm(B)

are exact, for all m ≥ m0. Then the sequence (2) is formally exact, Rk+l+m is a
vector bundle for all m ≥ m0 and Nl+m0 = Ker pm0(ψ) is a formally integrable
differential equation of order l + m0 on F . Moreover, if Rk+l+m0 = Ker pl+m0 (ϕ)
is formally integrable, the sequences

(4) Sk+l+m+1T ∗ ⊗ E
σl+m+1(ϕ)−−−−−−−→ Sl+m+1T ∗ ⊗ F

σm+1(ψ)−−−−−→ Sm+1T ∗ ⊗B

are exact for all m ≥m0.

Proof. The first assertion of the lemma is a direct consequence of Corollary 2, §3,
n0 5 of Bourbaki [1965], since finite-dimensional vector spaces are artinian. From
Lemma 1.1, it follows that Rk+l+m and Nl+m = Ker pm(ψ) are vector bundles,
for m ≥ m0; the exactness of the sequences (3) gives us also the surjectivity of
πl+m : Nl+m+1 → Nl+m , for m ≥ m0. For m ≥ m0, we consider the commutative
diagram (5). If Rk+l+m0 is formally integrable, its columns are exact; by means of
this diagram, the exactness of the sequences (3) then implies the exactness of (4),
for m ≥m0.

If X is a real-analytic manifold and E is a real-analytic vector bundle over X,
we denote by Eω the sheaf of analytic sections of E.

Theorem 1.4. Suppose that X is a real-analytic manifold, and that E, F , B are
real-analytic vector bundles over X. Let ϕ : Jk(E) → F , ψ : Jl(F ) → B be real-
analytic morphisms of vector bundles over X, and set D = ϕ ◦ jk, D′ = ψ ◦ jl. Let
m0 ≥ 0; if the sequences (3) are exact for all m ≥ m0 and Rk+l+m0 = Ker pl+m0 (ϕ)
is formally integrable, then the sequence

Eω
D−→ Fω

D′
−→ Bω
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is exact.

Proof. Let f be an analytic section of F over a neighborhood U of x ∈ X satisfying
D′f = 0. From the exactness of the sequences (3), we deduce that, for m ≥ l +m0 ,

Nk+m = Kerjm(f) pm(ϕ)|U

is an affine sub-bundle of the vector bundle Jk+m(E)|U whose associated vector
bundle is Rk+m|U . By means of the commutativity of diagram (5) and the exactness
of the sequence (4), with m ≥ m0, given by Lemma 1.3, we easily see that πk+l+m :
Nk+l+m+1 → Nk+l+m is surjective for all m ≥ m0. According to Theorem 2.2,
Chapter IX, there exists an analytic section s of E over a neighborhood of x such
that jk+l+m0 (s) is a section of Nk+l+m0 ; then Ds = f on this neighborhood.

Goldschmidt [1968a] shows that one can replace the hypothesis “Rk+l+m0 is
formally integrable” in the above theorem by the weaker condition:

πm : Rm+r → Rm has locally constant rank for all m ≥ k + l + m0, r ≥ 0.

The following example shows that these conditions can not be weakened in an
essential way.
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Example 1.5. Suppose that X = R with its standard coordinate x, and that E = F
is the trivial real line bundle. We identify a section of E with a real-valued function
on X. Consider the analytic first-order differential operator D : E → E given by

Df = x2 df

dx
− f,

where f ∈ E . Let ϕ : J1(E) → E be the morphism of vector bundles satisfying
D = ϕ ◦ j1, and Rl+1 = Ker pl(ϕ). For l ≥ 0, it is easily verified that Rl+1 is
a vector bundle of rank 1 on X and that π0 : Rl+1 → E is an isomorphism on
X − {0}; therefore R1 is formally integrable on X − {0}. However dim gl+1,x = 1
for x = 0, and so πl : Rl+1 → Rl is not surjective at x = 0 and does not have
constant rank on X. On the other hand, the sequence

0 → Rl+1 → Jl+1(E)
pl(ϕ)−−−→ Jl(E)→ 0

is exact, for all l ≥ 0; thus the sequences (3) corresponding to the complex

(6) E D−→ E → 0

are exact for all m ≥ 0, and this complex is formally exact by Lemma 1.3. However
the sub-complex

(7) Eω
D−→ Eω → 0

of (6) is not exact. Indeed, we see that R∞,x = 0 for x = 0. Hence there exists a
unique formal solution of infinite order at 0 of the equation

(8) Df = −x;

in fact, if f is a solution of the equation (8) on a neighborhood of 0, then the Taylor
series of f at 0 is

∞∑
n=0

n! xn+1.

Therefore there does not exist a real-analytic function f on a neighborhood of 0
satisfying (8) near 0, and (7) is not exact. One can also see that the complex (6)
itself is not exact.

We now give the version of Theorem 2.16, Chapter IX for linear equations (Gold-
schmidt [1967a], Theorem 4.1).
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Theorem 1.6. Let ϕ : Jk(E)→ F be a morphism of vector bundles. If
(A) Rk+1 is a vector bundle,
(B) πk : Rk+1 → Rk is surjective,
(C) gk is 2-acyclic,

then Rk is a formally integrable linear differential equation.

Proof. According to (A), the morphism p1(ϕ) is of locally constant rank and so
its cokernel B is a vector bundle. We denote by ψ : J1(F ) → B the natural
projection; we set p−1(ψ) = 0. For l ≥ 0, we consider the commutative diagram
(9). Its columns are exact, and its rows are complexes and are exact at Sk+l+1T ∗⊗
E, Jk+l+1(E) and Jk+l(E). We denote by hl the cohomology of the top row at
Sl+1T ∗ ⊗ F . If l = 0, it follows from (B) and the definition of ψ that the top row
is exact, i.e. h0 = 0.

Lemma 1.7. Let l ≥ 0. If hl = 0, then we have an isomorphism

(10) hl+1 → Hk+l,2(gk).

Proof. According to the commutativity of the diagram (23) of Chapter IX, the
diagram (11) commutes and is exact, except perhaps for its first column at

∧2
T ∗⊗

gk+l and its first row at Sl+2T ∗ ⊗F ; hence it gives us a natural isomorphism (10).
We now return to the proof of Theorem 1.6. From diagram (9) with l = 1, we

obtain an exact sequence

Rk+2
πk+1−−−→ Rk+1

Ω−→ h1;

if p ∈ Rk+1, then Ω(p) is the cohomology class of ε−1pl+1(ϕ)q in h1, where q ∈
Jk+2(E) satisfies πk+1q = p; by means of the isomorphism (10) with l = 0, we
therefore have an exact sequence

Rk+2
πk+1−−−→ Rk+1

κ−→ Hk,2(gk).

Since Hk,2(gk) = 0, we see that πk+1 : Rk+2 → Rk+1 is surjective. More generally,
by induction on l ≥ 1, from diagram (9), Lemma 1.7 and (C), we simultaneously
obtain the surjectivity of πk+l : Rk+l+1 → Rk+l and the exactness of the second
row of (9). Moreover, by Lemma 1.1 and the exactness of the top row of (9), gk+l

is a vector bundle for l ≥ 1; the exactness of the sequences

0→ gk+l+1
ε−→ Rk+l+1

πk+l−−−→ Rk+l → 0

and (A) now imply that Rk+l is a vector bundle for all l ≥ 0.
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We thus have completed the proof of Theorem 1.6 and, if we denote by D′ : F →
B the first-order differential operator ψ ◦ j1, in the process, by Lemma 1.3, we have
also proved the following

Theorem 1.8. Let ϕ : Jk(E) → F be a morphism of vector bundles and let D be
the differential operator ϕ◦ jk of order k. Assume that conditions (A), (B) and (C)
of Theorem 1.6 hold. Then there exist a vector bundle B and a first-order linear
differential operator D′ : F → B such that the sequence

E D−→ F D′
−→ B

is formally exact; moreover the sequences

Jk+l+1(E)
pl+1(D)−−−−−→ Jl+1(F )

pl(D
′)−−−−→ Jl(B)

are exact, for all l ≥ 0.

Again, as in Theorems 2.16 and 3.1 of Chapter IX, according to Theorem 2.14,
Chapter IX, we may replace condition (C) by:

(C′) for all x ∈ X, there exists a quasi-regular basis of Tx for gk at x.

Similarly, using Theorem 2.13, Chapter IX, we have the corresponding version
of Theorem 2.17, Chapter IX, which is given by Goldschmidt [1968a], Theorem 4.2.

The following generalization of Theorem 1.8 is given by Goldschmidt [1968a],
Theorem 3 and [1967a], Theorem 4.4.

Theorem 1.9. Let ϕ : Jk(E) → F be a morphism of vector bundles and let D =
ϕ ◦ jk.

(i) Assume that X is connected and that there is an integer l0 ≥ 0 such that
Rk+l is a vector bundle for all l ≥ l0. Then there exists a complex

(12) E D−−→ B0
P1−−→ B1

P2−−→ B2 → · · · → Bj−1
Pj−−→ Bj

Pj+1−−→ · · · ,

where Bj is a vector bundle and B0 = F , and where Pj : Bj−1 → Bj is a linear
differential operator of order lj , which is formally exact; moreover, if r0 = 0 and
rj = l1 + l2 + · · ·+ lj , for j ≥ 1, the sequences

(13)
Jk+m(E)

pm(D)−−−→ Jm(B0)
pm−r1 (P1)−−−−−−→ Jm−r1 (B1)

pm−r2 (P2)−−−−−−→ Jm−r2 (B2)→ · · ·

→ Jm−rj−1 (Bj−1)
pm−rj

(Pj)
−−−−−−→ Jm−rj (Bj)→ · · ·

are exact at Jm−rj (Bj) for m ≥ rj+1 and j ≥ 0.
(ii) Let

0 = r0 < r1 < · · · < rj < rj+1 < · · ·

be integers such that Rk+r1−1 is formally integrable and

Hk+rj+m−j,j+1(gk) = 0

for all j ≥ 1 and m ≥ 0. Then there exists a complex (12), where Bj is a vector
bundle and B0 = F , and where Pj : Bj−1 → Bj is a linear differential operator of
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order lj = rj − rj−1, for j ≥ 1, which is formally exact; moreover the sequences
(13) are exact at Jm−rj (Bj) for m ≥ rj+1 and j ≥ 0.

If the hypotheses of Theorem 1.9,(i) are satisfied and if the mappings πk+l :
Rk+l+1 → Rk+l are of constant rank for all l ≥ l0, the cohomologies of two different
sequences (12) are isomorphic and depend, up to isomorphisms, only on Rk+l0

(see Goldschmidt [1968a]). The sequences of type (12) were first introduced by
Kuranishi [1964].

We now give a brief outline of the proof of Theorem 1.9,(ii). Since pr1 (ϕ)
has locally constant rank, its cokernel B1 is a vector bundle. We denote by
ψ1 : Jr1(F ) → B1 the natural projection and set P1 = ψ1 ◦ jr1 . As Rk+r1−1 is
formally integrable and Hk+r1−1+m,2(gk) = 0, for all m ≥ 0, an argument similar
to the one given above to prove the exactness of the sequences of vector bundles of
Theorem 1.8 tells us that the sequences

Jk+r1+m(E)
pr1+m(ϕ)
−−−−−−→ Jr1+m(F )

pm(ψ1)−−−−→ Jm(B1)

are exact for all m ≥ 0. If j ≥ 2 and Pi, Bi are defined for 1 ≤ i ≤ j − 1 and if
the sequences (13) are exact at Jm−ri (Bi) for m ≥ ri+1 and 0 ≤ i ≤ j − 1, then,
according to Lemma 1.1, plj (Pj−1) has locally constant rank and so its cokernel Bj

is a vector bundle; we denote by ψj : Jlj (Bj−1) → Bj the natural projection and
set Pj = ψj ◦ jlj . If pm = lj +m+1, qm = pm + lj−1, one shows that the sequences

Sqm T ∗ ⊗Bj−2
σpm (Pj−1)−−−−−−−→ Spm T ∗ ⊗ Bj−1

σm+1(Pj)−−−−−−→ Sm+1T ∗ ⊗ Bj

are exact for m ≥ 0. Then one deduces that the sequences

Jlj−1+lj +m(Bj−2)
plj+m(Pj−1)
−−−−−−−−→ Jlj+m(Bj−1)

pm(Pj)−−−−→ Jm(Bj)

are exact for all m ≥ 0.

Example 1.10. Let l be an integer ≥ 2 for which Rk+l−1 is formally integrable
and gk+l−1 is involutive; then the hypotheses of Theorem 1.9,(ii) hold with rj =
l + (j − 1), for j ≥ 1. In this case, one can give a more explicit description of a
sequence (12) obtained from Theorem 1.9,(ii) and the above construction. First, let
B′′

1 be a vector bundle isomorphic to the cokernel of pl−1(ϕ) and P ′′
1 be a differential

operator of order l − 1 such that the sequence

Jk+l−1(E)
pl−1(D)−−−−−→ Jl−1(F )

p(P ′′
1 )−−−−→ B′′

1 → 0

is exact. Since gk+l−1 is involutive, one defines vector bundles B′
1, . . . , B

′
n and

morphisms of vector bundles

σ1 : SlT ∗ ⊗ F → B′
1, σj : T ∗ ⊗ B′

j−1 → B′
j ,

for 2 ≤ j ≤ n, as follows. Let B′
1 be a vector bundle isomorphic to the cokernel of

σl(ϕ) and σ1 a morphism such that the sequence

Sk+lT ∗ ⊗E
σl(ϕ)−−−→ SlT ∗ ⊗ F

σ1−→ B′
1 → 0
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is exact. We set B′
0 = B0 = F ; if j ≥ 2, we obtain B′

j and σj from B′
j−2, B′

j−1 and
σj−1 by letting B′

j be a vector bundle isomorphic to the cokernel of (σj−1)+1 and
σj be a morphism such that the sequence

Slj−1+1T ∗ ⊗ B′
j−2

(σj−1)+1−−−−−−→ T ∗ ⊗B′
j−1

σj−→ B′
j → 0

is exact, where l1 = l and lj = 1 for 2 ≤ j ≤ n. In fact, if we write σr
j = (σj)+r ,

the sequences

(14)
Sk+l+mT ∗ ⊗E

σl+m(ϕ)−−−−→ Sl+mT ∗⊗F
σm
1−→ SmT ∗ ⊗ B′

1

σm−1
2−−→ Sm−1T ∗ ⊗B′

2 →

· · · → Sm−n+2T ∗ ⊗B′
n−1

σm−n+1
n−−−−→ Sm−n+1T ∗ ⊗ B′

n → 0

are exact for all m ≥ 0. We set B′
n+1 = 0 and

Bj = B′
j ⊕ (

∧j−1
T ∗ ⊗B′′

1 ),

for 1 ≤ j ≤ n + 1. We identify T ∗ ⊗Bj with

(T ∗ ⊗ B′
j)⊕ (T ∗ ⊗

∧j−1
T ∗ ⊗ B′′

1 ).

Let
µj : T ∗ ⊗

∧j−2
T ∗ ⊗ B′′

1 →
∧j−1

T ∗ ⊗B′′
1

be the morphism sending α⊗ ω⊗ u into (α ∧ ω)⊗ u, for α ∈ T ∗, ω ∈
∧j−2

T ∗ and
u ∈ B′′

1 . For 2 ≤ j ≤ n + 1, we write

νj = (σj , µj) : T ∗ ⊗Bj−1 → Bj .

Then there exists a differential operator P ′
1 : F → B′

1 of order l such that σ(P ′
1) = σ1

and P ′
1 ·D = 0, and we define P1 : F → B1 by

P1f = (P ′
1f, P ′′

1 f),

for f ∈ F . If 2 ≤ j ≤ n + 1 and Pj−1 is defined, then Pj : Bj−1 → Bj is the unique
first-order differential operator such that σ(Pj) = νj and Pj · Pj−1 = 0. We obtain
a sequence

(15) E D−−→ B0
P1−−→ B1

P2−−→ B2 → · · · → Bn
Pn+1−−→ Bn+1 → 0

such that the sequences

(16)
Jk+l+m(E)

pl+m(D)−−−−→ Jl+m(B0)
pm(P1)−−−→ Jm(B1)

pm−1(P2)−−−−−→ Jm−1(B2)→ · · ·

→ Jm−n+1(Bn)
pm−n(Pn+1)−−−−−−−→ Jm−n(Bn+1)→ 0

are exact for all m > 0.
According to Lemma 1.3, the equation Ker p(Pj) obtained from the sequence

(12) given by Theorem 1.9,(ii) is formally integrable, for j ≥ 1. If X is a real-
analytic manifold, E, F are real-analytic vector bundles and ϕ : Jk(E) → F is an
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analytic morphism of vector bundles satisfying the hypotheses of Theorem 1.9,(ii),
according to the above construction of the sequence (12), the vector bundles Bj

and the operators Pj given by Theorem 1.9,(ii) can be chosen to be analytic. Then
by Theorem 1.4, the sub-complex

Eω
D−−→ (B0)ω

P1−−→ (B1)ω
P2−−→ (B2)ω → · · · → (Bj−1)ω

Pj−−→ (Bj)ω
Pj+1−−→ · · ·

of (12) is exact. If ϕ is analytic and satisfies the hypotheses of Theorem 1.9,(i), and
if moreover πm : Rm+r → Rm has constant rank for all m ≥ k + l0 and r ≥ 0, then
the vector bundles Bj and the operators Pj given by Theorem 1.9,(i) can also be
chosen to be analytic, and the above sub-complex of (12) is exact (see Goldschmidt
[1968a], Corollary 4). Goldschmidt [1970b] proves that, if X is connected and ϕ
is analytic, then, outside an analytic set, ϕ satisfies all these regularity conditions:
Rk+l is a vector bundle for all l ≥ 0, and πm : Rm+r → Rm has constant rank for
all m ≥ k and r ≥ 0.

If ϕ satisfies the hypotheses of Theorem 1.9,(ii) together with additional assump-
tions, the proof of Theorem 1.9,(ii) gives us the existence of a sequence of type (12)
whose vector bundles can be explicitly described.

Theorem 1.11. Let ϕ : Jk(E) → F be a morphism of vector bundles and let
D = ϕ ◦ jk. Assume that Rk = Ker ϕ is formally integrable and that σ(D) :
SkT ∗ ⊗E → F is surjective. Let q ≥ 0 be an integer.

(i) Let
0 = r0 < r1 < · · · < rq = rq+1

be integers such that the cohomology groups

(17) Hk+rj−1+m−j−1,j+1(gk)

vanish for all 1 ≤ j ≤ q + 1 and m ≥ 1, with m �= rj − rj−1. Then there exists a
complex

(18) E D−−→ B0
P1−−→ B1

P2−−→ B2 → · · · → Bq−1
Pq−−→ Bq → 0,

where Bj is a vector bundle isomorphic to Hk+rj−j−1,j+1(gk) for j ≥ 0 and B0 = F ,
and where Pj is a linear differential operator of order lj = rj − rj−1 for 1 ≤ j ≤ q,
such that the sequences

(19)

Sk+mT ∗ ⊗E
σm(D)−−−→ SmT ∗ ⊗B0

σm−l1 (P1)
−−−−−−→ Sm−l1T ∗ ⊗B1

σm−l1−l2 (P2)−−−−−−−−→

Sm−l1−l2T ∗ ⊗B2 → · · · → Sm−l1−···−lq−1T ∗ ⊗ Bq−1

σm−l1−···−lq (Pq)
−−−−−−−−−−→ Sm−l1−···−lq T ∗ ⊗ Bq → 0

are exact for all m ≥ 0.
(ii) Let (18) be a complex, where Bj is a vector bundle, B0 = F and Pj is a

linear differential operator of order lj ≥ 1. If the sequences (19) are exact for all
m ≥ 0, the complex (18) is formally exact; moreover the sequences

Jk+m(E)
pm(D)−−−→ Jm(F )

pm−l1 (P1)−−−−−→ Jm−l1 (B1)
pm−l1−l2 (P2)−−−−−−−−→ Jm−l1−l2(B2)→

· · · → Jm−l1−···−lq (Bq)→ 0
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are exact for all m ≥ 0. Furthermore, if we set r0 = 0 and rj = l1 + · · ·+ lj , for
1 ≤ j ≤ q, and rj = rq for j > q, then the cohomology groups (17) vanish for all
j ≥ 1 and m ≥ 0 except possibly for m = lj and j = 1, . . . , q, and Bj is isomorphic
to Hk+rj−j−1,j+1(gk).

æ

Example 1.12. If k = 1 and g1 is involutive, and if R1 = Ker ϕ is formally integrable
and σ(D) : T ∗⊗E → F is surjective, then the hypotheses of Theorem 1.11,(i) hold,
with q = n−1 and rj = j for 0 ≤ j ≤ n−1. We thus obtain a complex (18), where
Bj is equal to

H0,j+1(g1) = (
∧j+1T ∗ ⊗E)/δ(

∧jT ∗ ⊗ g1),

for 1 ≤ j ≤ n − 1, for which the sequences (19) are exact for all m ≥ 0. In fact,
since

δ(α ∧ u) = (−1)iα ∧ δu,

for α ∈
∧i

T ∗ and u ∈
∧j

T ∗ ⊗ SmT ∗ ⊗ E, the morphism

(20) T ∗ ⊗
∧j

T ∗ ⊗E →
∧j+1

T ∗ ⊗ E,

sending α ⊗ ω ⊗ u into (α ∧ ω) ⊗ u, for α ∈ T ∗, ω ∈
∧j

T ∗, u ∈ E, induces by
passage to the quotient a morphism of vector bundles

σj : T ∗ ⊗H0,j(g1)→ H0,j+1(g1).

Since σ(D) is surjective, the diagram

0 0 0⏐⏐" ⏐⏐" ⏐⏐"
0 −−−−→ g1 −−−−→ T ∗ ⊗E

σ(D)−−−−→ F −−−−→ 0⏐⏐"ε

⏐⏐"ε

⏐⏐"id

0 −−−−→ R1 −−−−→ J1(E)
p(D)−−−−→ F −−−−→ 0⏐⏐"π0

⏐⏐"π0

⏐⏐"
0 −−−−→ E −−−−→ E −−−−→ 0⏐⏐"

0

is commutative and exact; therefore π0 : R1 → E is surjective and we may identify
B0 = F with H0,1(g1) in such a way that σ(D) = σ0. Then, if we write P0 = D,
the differential operators Pj : Bj−1 → Bj are uniquely determined by the relations
σ(Pj) = σj and Pj ·Pj−1 = 0, for 1 ≤ j ≤ n− 1 (see Goldschmidt [1967a], §5). The
resulting complex (18) is called the sophisticated Spencer sequence of the first-order
equation R1.
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Example 1.13. If there exists an integer l ≥ 0 such that Rk+l = Ker pl(ϕ) is
formally integrable and gk+l+1 is involutive, the sophisticated Spencer sequence of
Rk+l is a complex

(21) C0 D0−−→ C1 D1−−→ C2 D2−−→ · · · → Cn → 0,

where C0 = Rk+l and Cj is a vector bundle over X isomorphic to the cokernel of
the composition

∧j−1
T ∗ ⊗ gk+l+1

δ−→
∧j

T ∗ ⊗ gk+l
id⊗ε−−→

∧j
T ∗ ⊗Rk+l,

and where Dj is a first-order linear differential operator such that:
(i) Ker p(D0) = λ1Rk+l+1 is formally integrable, its symbol is involutive, and

the mapping jk+l : E → Jk+l(E) induces, by restriction, an isomorphism

{u ∈ E | Du = 0} → {v ∈ C0 | D0v = 0};

(ii) the sequences

SmT ∗ ⊗ C0 σm−1(D0)−−−−−→ Sm−1T ∗ ⊗C1 σm−2(D1)−−−−−→ Sm−2T ∗ ⊗C2 → · · ·

→ Sm−nT ∗ ⊗Cn → 0

are exact for all m ≥ 0;
(iii) if (12) is a complex, where B0 = F and where Pj is a differential operator of

order lj and rj = l1 + · · ·+ lj , for which the sequences (13) are exact at Jm−rj (Bj)
for m ≥ rj+1 and j ≥ 0, its cohomology at Bj−1 is isomorphic to the cohomology
of (21) at Cj.

The sophisticated Spencer sequences were originally introduced by Spencer [1962];
other constructions are given in Bott [1963], Quillen [1964], Goldschmidt [1967a]
and Spencer [1969].

Under certain regularity assumptions on the differential operator D, Theorem 1.14,(i)
gives us the existence of a compatibility condition D′ : F → B for D and the fol-
lowing theorem (see Goldschmidt [1968a], Theorem 1 and [1968b], Theorem 2) tells
us that the solvability questions for the complex

E D−→ F D′
−→ B

can be reduced to those pertaining to a formally exact complex

E D1−−→ F1
D′

1−−→ B1

for which Ker p(D1) is formally integrable and D1 = P ·D, where P : F → F1 is a
differential operator obtained from D in finitely many steps. In particular, if f is a
section of F , the solutions of the inhomogeneous equation Du = f are the same as
those of the equation D1u = Pf .
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Theorem 1.14. Let ϕ : Jk(E) → F be a morphism of vector bundles and let
D = ϕ◦jk. Assume that X is connected and that there is an integer r0 ≥ 0 such that
Rk+l is a vector bundle for all l ≥ r0 and that the mappings πk+l : Rk+l+r → Rk+l

have constant rank for all l ≥ r0 and r ≥ 0. Then there exist integers m0 ≥ r0 and
l0 ≥ 0, a vector bundle F1 and a differential operator P : F → F1 of order m0 + l0
such that the following assertions hold:

(i) The differential operator D1 = P · D : E → F1 is of order
k+m0 and, if ψ = p(D1) : Jk+m0(E)→ F1, the equation Ker ψ is equal to πk+m0Rk+m0+l0

and is formally integrable; the solutions and formal solutions of this equation are
exactly those of Rk+r0 .

(ii) Let B, B1 be vector bundles and D′ : F → B, D′
1 : F1 → B1 be differential

operators of order l and q respectively. If the sequences

Jk+l+r(E)
pl+r (D)−−−−−→ Jl+r(F )

pr(D′)−−−−→ Jr(B),

Jk+m0+q+r(E)
pq+r(D1)−−−−−−→ Jq+r(F1)

pr(D′
1)−−−−→ Jr(B1)

are exact for all r ≥ 0, there exist an integer m ≥ 0 and a differential operator
Q : B → Jm(B1) satisfying the following conditions:

(a) the diagram

E D−−−−→ F D′
−−−−→ B⏐⏐"id

⏐⏐"P

⏐⏐"Q

E D1−−−−→ F1
jm◦D′

1−−−−→ Jm(B1)

commutes. Hence, if f ∈ F satisfies D′f = 0, then D′
1(Pf) = 0.

(b) For f ∈ F satisfying D′f = 0, the solutions u ∈ E of the inhomogeneous
equation Du = f coincide with the solutions of the equation D1u = Pf. Moreover,
P induces an isomorphism from the cohomology of the complex

E D−→ F D′
−→ B

to the cohomology of the complex

E D1−−→ F1
D′

1−−→ B1.

Hence, if f1 ∈ F1 satisfies D′
1f1 = 0, there exists f ∈ F satisfying Pf = f1 and

D′f = 0.

The first part of the above theorem is the prolongation theorem of Goldschmidt
[1968a]; a result generalizing it together with the Cartan–Kuranishi prolongation
theorem is given by Goldschmidt [1974], Theorem 1.
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§2. Examples.

Example 2.1. Let E be a vector bundle over X. A connection on E is a linear
differential operator

∇ : E → T ∗ ⊗ E

such that

(22) ∇(fs) = df ⊗ s + f∇s,

where f is a real-valued function on X and s is a section of E. According to (1),
the relation (22) is equivalent to the fact that ∇ is a first-order differential operator
whose symbol

σ(∇) : T ∗ ⊗E → T ∗ ⊗ E

is the identity mapping.
Let ∇ be a connection on E. It determines a splitting χ∇ : E → J1(E) of the

exact sequence of vector bundles

0→ T ∗ ⊗ E
ε−→ J1(E) π0−→ E → 0

satisfying
ε ◦ p(∇) = id − χ∇ ◦ π0

and a first-order differential equation

R1 = Ker p(∇) = χ∇(E);

clearly π0 : R1 → E is an isomorphism and the symbol of R1 is equal to 0.
By (22), the first-order linear differential operator

d∇ :
∧jT ∗ ⊗ E →

∧j+1T ∗ ⊗ E

determined by

(23) d∇(ω ⊗ s) = dω ⊗ s + (−1)jω ∧∇s,

for ω ∈
∧j T ∗ and s ∈ E , is well-defined. According to (23), its symbol

(24) σ(d∇) : T ∗ ⊗
∧j

T ∗ ⊗ E →
∧j+1

T ∗ ⊗E

is equal to (20). Moreover, the differential operator

d∇ · ∇ : E →
∧2T ∗ ⊗ E

is of order zero and arises from a morphism of vector bundles

K : E →
∧2

T ∗ ⊗ E,

the curvature of ∇, which we shall identify with a section of
∧2

T ∗ ⊗ E∗ ⊗ E; in
fact, we have

K(ξ, η)s = (∇ξ∇η −∇η∇ξ −∇[ξ,η])s,



§2. Examples 375

for ξ, η ∈ T , s ∈ E .
We denote by Rl+1 the l-th prolongation of R1. Using Proposition 2.8, Chap-

ter IX, it can be shown that the sequence

R2
π1−→ R1

K◦π0−−−→
∧2T ∗ ⊗ E

is exact; since the symbol of R1 is equal to 0, by Theorem 1.6, we therefore see that
R1 is formally integrable if and only if the curvature K of ∇ vanishes (see Gasqui
and Goldschmidt [1983], Theorem 2.1).

Suppose that the curvature K of ∇ vanishes. Then, according to (23), the
sequence

(25) E ∇−→ T ∗ ⊗ E d∇
−→

∧2T ∗ ⊗ E d∇
−→ · · · →

∧nT ∗ ⊗ E → 0

is a complex. Since the morphism (24) is equal to (20), and (25) is a complex, the
construction given in Example 1.12 shows that (25) is the sophisticated Spencer
sequence of R1. Let U be a connected and simply-connected open subset of X; it
is well-known that the mapping

(26) {s ∈ C∞(U, E) | ∇s = 0} → Ex,

sending s into s(x), is an isomorphism of vector spaces. Let E′ be the trivial vector
bundle U × Ex and ϕ : E|U → E′ be the unique isomorphism of vector bundles
sending s ∈ C∞(U, E) satisfying ∇s = 0 into the constant section a �→ (a, s(x)) of
E′ over U . Then the diagram

∧iT ∗ ⊗ E id⊗ϕ−−−−→
∧iT ⊗ E ′⏐⏐"d∇

⏐⏐"d∧i+1T ∗ ⊗ E id⊗ϕ−−−−→
∧i+1T ∗ ⊗ E ′

over U , where d is the exterior differential operator acting on functions with values
in Ex, commutes. Therefore by the Poincaré lemma, the sequence (25) is exact and
we have proved all but the last assertion of the next theorem, which follows from
the fact that H1(U, R) = 0 (see Gasqui and Goldschmidt [1983], Proposition 2.1).

Theorem 2.2. Let ∇ be a connection on E. Then the curvature K of ∇ vanishes if
and only if R1 = Ker p(∇) is formally integrable. If K = 0, then the complex (25) is
the sophisticated Spencer sequence of R1 and is exact; moreover, if U is a connected
and simply-connected open subset of X, the mapping (26) is an isomorphism and
the sequence

C∞(U, E) ∇−→ C∞(U, T ∗ ⊗ E) d∇
−−→ C∞(U,

∧2
T ∗ ⊗ E)

is exact.

Example 2.3. Let V be a finite-dimensional vector space and let E be the trivial
vector bundle X×V . The exterior differential operator d : E → T ∗⊗E for V -valued
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functions on X is a connection on E. The sequence (25) corresponding to d is the
de Rham sequence

(27) E d−→ T ∗ ⊗ E d−→
∧2T ∗ ⊗ E d−→ · · · →

∧nT ∗ ⊗ E → 0,

which is exact by the Poincaré lemma. Thus the curvature of d vanishes and (27)
is therefore the sophisticated Spencer sequence of the formally integrable equation
on E equal to Ker p(d).

Example 2.4. We denote by FC the complexification of a real vector bundle F .
Assume that E is a complex vector bundle over X. Let SkE and

∧k
E denote the

k-th symmetric and exterior powers (over C) of the complex vector bundle E. The
bundle Jk(E) is a complex vector bundle if we set

c · jk(s)(x) = jk(c · s)(x),

for x ∈ X, s ∈ Ex and c ∈ C. The real vector bundle SkT ∗ ⊗ E is canonically
isomorphic to the complex vector bundle SkT ∗

C
⊗C E and we shall identify these

two vector bundles. The morphism

ε : SkT ∗
C
⊗C E → Jk(E)

sends ((df1 · . . . · dfk)⊗ s)(x) into

jk

((∏k
i=1fi

)
· s
)
(x),

where f1, . . . , fk are complex-valued functions on X vanishing at x and s is a section
of E over X. If F is also a complex vector bundle and D : E → F is a C-linear
differential operator of order k, then

pl(D) : Jk+l(E)→ Jl(F )

is a morphism of complex vector bundles, as is the morphism

σl(D) : Sk+lT ∗
C ⊗C E → SlT ∗

C ⊗C F.

Assume now that n = 2m+k, where m ≥ 1 and k ≥ 0. An almost CR-structure
(of codimension k) on X is a complex sub-bundle E′′ of TC of rank m (over C)
such that E′′ and its complex conjugate E ′′ have a zero intersection. This almost
CR-structure is said to be a CR-structure if E ′′ is stable under the Lie bracket, i.e.
[E ′′, E ′′] ⊂ E ′′.

LetOX be the sheaf of complex-valued functions on X and let 1C denote the triv-
ial complex line bundle over X. If E′′ is an almost CR-structure on X, let ρ : T ∗

C
→

E′′∗ be the projection induced by the inclusion
E′′ → TC and let

∂b : OX → E ′′∗

be the first-order differential operator which is equal to the composition of the
exterior differential operator d : OX → T ∗

C
and ρ : T ∗

C
→ E ′′∗. The symbol

σ(∂b) : T ∗
C
→ E′′∗ of ∂b is equal to ρ and so is surjective; therefore R1 = Ker p(∂b)
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is a first-order differential equation on 1C and π0 : R1 → 1C is surjective (see
Example 1.12). The symbol g1 of R1 is equal to the annihilator E′′⊥ of E′′. The
k-th prolongation gk+1 of g1 is equal to the sub-bundle Sk+1E′′⊥ of Sk+1T ∗

C
. Let

x ∈ X; a basis {t1, . . . , tn} of TC,x over C, for which the subspace of TC spanned
(over C) by the vectors tj , with n−m + 1 ≤ j ≤ n, is equal to E′′

x , is quasi-regular
for the sub-bundle g1 = E′′⊥ of T ∗

C
at x in the sense that

dimC g2,x = dimC g1,x +
n−1∑
j=1

dimC(T ∗
C,x,{t1,...,tj} ∩ E′′

x
⊥),

where T ∗
C,x,{t1,...,tj} is the annihilator in T ∗

C,x of the subspace of TC,x spanned by
{t1, . . . , tj} over C. Then the arguments proving that condition (i) of Theorem 2.14,
Chapter IX implies condition (ii) show that g1 is involutive. Moreover, it is easily
seen that

H0,j(g1) =
∧jT ∗

C
/(E′′⊥ ∧

∧j−1T ∗
C
).

Since the restriction mapping ρ :
∧j

T ∗
C
→

∧j
E′′∗ induces an isomorphism of vector

bundles

(28)
∧j

T ∗
C/(E′′⊥ ∧

∧j−1
T ∗

C)→
∧j

E′′∗,

we obtain a canonical isomorphism

ψj : H0,j(g1)→
∧j

E′′∗.

Clearly, the diagram

(29)

T ∗ ⊗H0,j(g1)
σj−−−−→ H0,j+1(g1)⏐⏐"id⊗ψj

⏐⏐"ψj+1

T ∗ ⊗
∧j

E′′∗ γj−−−−→
∧j+1

E′′∗

is commutative, where σj is defined in Example 1.12 and γj is the morphism T ∗
C
⊗C∧j

E′′∗ →
∧j+1

E′′∗ sending α⊗β into ρ(α)∧β. It is easily seen that the sequence

0→ S2E′′⊥ → S2T ∗
C

σ1(∂b)−−−−→ T ∗
C ⊗C E′′∗ γ1−→

∧2
E′′∗ → 0

is exact. We now compute the first obstruction Ω : R1 →
∧2

E′′∗ to the integrability
of R1. If p ∈ R1, then

Ω(p) = γ1ε
−1p1(∂b)q,

where q ∈ J2(1C) satisfies π1q = p. According to Proposition 2.8, Chapter IX, the
sequence

(30) R2
π1−→ R1

Ω−→
∧2

E′′∗

is exact.
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Lemma 2.5. Let x ∈ X. If f ∈ OX,x satisfies (∂bf)(x) = 0 and u is the element
ε−1j1(∂bf)(x) of T ∗

C
⊗C E′′, then

(31) u(ζ, η(x)) = ζ · (η · f),

(32) Ω(j1(f)(x))(ξ(x), η(x)) = 〈[ξ, η], df〉(x),

for all ξ, η ∈ E ′′x , ζ ∈ TC,x.

Proof. We can write

∂bf =
r∑

j=1

gjαj,

where αj ∈ E ′′x , gj ∈ OX,x and gj(x) = 0. Then

u =
r∑

j=1

(dgj ⊗ αj)(x)

and
u(ζ, η(x)) = (ζ · gj)〈η, αj〉(x).

On the other hand,

η · f = 〈η, ∂bf〉 =
r∑

j=1

〈η, gjαj〉 =
r∑

j=1

gj〈η, αj〉

and so

ζ · (η · f) =
r∑

j=1

(ζ · gj)〈η, αj〉(x),

since gj(x) = 0. Formula (32) is a direct consequence of (31).

Proposition 2.6. Let E′′ be an almost CR-structure on X. Then the following
four statements are equivalent:

(i) E′′ is a CR-structure;
(ii) there exists a differential operator ∂b : E ′′∗ →

∧2 E ′′∗ such that the diagram

T ∗
C

d−−−−→
∧2T ∗

C⏐⏐"ρ

⏐⏐"ρ

E ′′∗ ∂b−−−−→
∧2E ′′∗

commutes;
(iii) π1 : R2 → R1 is surjective;
(iv) R1 is a formally integrable differential equation.

Proof. The existence of the operator ∂b of (ii) is easily seen to be equivalent to the
following condition: if α ∈ E ′′⊥, then (dα)(ξ, η) = 0, for all ξ, η ∈ E ′′. From the
formula

(dα)(ξ, η) = ξ · α(η)− η · α(ξ)− α([ξ, η]),



§2. Examples 379

we deduce the equivalence of (i) and (ii) (see Kuranishi [1977], Proposition 1). From
the exactness of sequence (30), we see that (iii) is equivalent to the vanishing of Ω.
If f is a constant function on X, then ∂bf = 0 and Ω(j1(f)(x)) = 0, for x ∈ X.
Therefore (iii) holds if and only if the mapping

Ω ◦ ε : E′′⊥ →
∧2

E′′∗

is equal to zero. By (32), we have

(Ω ◦ ε)(α)(ξ, η) = 〈[ξ, η], α〉,

for ξ, η ∈ E ′′, α ∈ E′′⊥. Thus Ω ◦ ε = 0 if and only if E′′ is a CR-structure, and so
(i) is equivalent to (iii). Since g1 = E′′⊥ is an involutive sub-bundle of T ∗

C
and g2

is a vector bundle, the equivalence of (iii) and (iv) is provided by Theorem 1.6.
From the isomorphisms (28) and Proposition 2.6, it follows that, if E′′ is a CR-

structure, for all j ≥ 0 there exists a differential operator

∂b :
∧jE ′′∗ →

∧j+1E ′′∗

such that the diagram ∧jT ∗
C

d−−−−→
∧j+1T ∗

C⏐⏐"ρ

⏐⏐"ρ

∧jE ′′∗ ∂b−−−−→
∧j+1E ′′∗

commutes. Clearly,

(33) OX
∂b−→ E ′′∗ ∂b−→

∧2E ′′∗ ∂b−→ · · · →
∧mE ′′∗ → 0

is a complex and

(34) ∂b(α ∧ β) = ∂bα ∧ β + (−1)jα ∧ ∂bβ,

for all α ∈
∧j E ′′∗, β ∈

∧r E ′′∗. According to (34) and (1),

σ(∂b) : T ∗
C ⊗C

∧j
E′′∗ →

∧j+1
E′′∗

is equal to γj . Since σ(∂b) : T ∗
C
→ E′′∗ is surjective and g1 is involutive, from the

isomorphisms ψj and the commutativity of diagram (29), if E′′ is a CR-structure,
we see that (33) is isomorphic to the sophisticated Spencer sequence of the formally
integrable first-order equation R1, described in Example 1.12.

Example 2.7. We continue to use the notation and terminology introduced in Ex-
ample 2.4. If X is a complex manifold, the sub-bundle T ′′ of TC of tangent vectors
of type (0, 1) satisfies the conditions T ′′∩T ′′ = 0 and [T ′′, T ′′] ⊂ T ′′. The complex
structure of X determined by T ′′ is a CR-structure (of codimension zero), and in
this case the operator ∂b is equal to the Cauchy–Riemann operator

∂ : OX → T ′′∗
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and, if n = 2m, the sequence (33) is the Dolbeault sequence

(35) OX
∂−→ T ′′∗ ∂−→

∧2T ′′∗ ∂−→ · · · →
∧mT ′′∗ → 0

of X, which is always exact (see §3). More generally, let X be a real submanifold of
a complex manifold Y of codimension k. If i : X → Y is the inclusion mapping and
T ′′

Y is the bundle of tangent vectors to Y of type (0, 1), let E′′ be the sub-bundle of
TC with variable fiber determined by

i∗(E′′
x ) = i∗(TC,x) ∩ T ′′

Y,i(x),

for x ∈ X. If E′′ is a vector bundle, then clearly it is a CR-structure of codimension
k on X; if k = 1, it is easily seen that this condition always holds. If E′′ is a vector
bundle, the operator ∂b : OX → E ′′∗ is called the tangential Cauchy–Riemann
operator; its solutions include the restrictions to X of the holomorphic functions
on Y . The complex (33) was first introduced in this case, with k = 1, by Kohn and
Rossi [1965].

Example 2.8. In the preceding example, let Y = C2, with complex coordinates
(z, w) and let X be the real hypersurface of Y defined by the equation Im w =
|z|2. We consider the induced CR-structure E′′ (of codimension 1) on X and its
tangential Cauchy–Riemann operator ∂b, which is essentially the famous locally
non-solvable example of H. Lewy [1957]: the sequence

(36) OX
∂b−→ E ′′∗ → 0

given by (33) is not exact.

We now again consider the morphism of vector bundles ϕ : Jk(E) → F and
the objects associated to it. If Rk+l is a vector bundle and there exists an integer
m ≥ 0 such that gk+l+m = 0, we say that Rk+l is a differential equation of finite
type. In this case, from Theorem 2.2 and the proof of Theorem 2.2 of Gasqui and
Goldschmidt [1983], we obtain:

Theorem 2.9. Let ϕ : Jk(E) → F be a morphism of vector bundles and let D
be the differential operator ϕ ◦ jk of order k. Let l ≥ 0 be an integer such that
Rk+l = Ker pl(ϕ) is formally integrable and gk+l+1 = 0. Let (12) be a complex,
where Bj is a vector bundle and Pj is a linear differential operator of order lj .
If rj = l1 + · · · + lj , suppose that the sequences (13) are exact at Jm−rj (Bj) for
m ≥ rj+1 and j ≥ 0. Then the complex (12) is exact and moreover, if U is a
connected and simply-connected open subset of X and x ∈ U , the mapping

{s ∈ C∞(U, E) | Ds = 0} → Rk+l,x,

sending s into jk+l(s)(x), is an isomorphism of vector spaces and the sequence

C∞(U, E) D−→ C∞(U, F ) P1−→ C∞(U, B1)

is exact.

To prove Theorem 2.9, one shows that the cohomology of the sequence (12) is
isomorphic to the cohomology of the complex (25), where E = Rk+l and ∇ is the
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connection on Rk+l corresponding to the unique morphism χ∇ : Rk+l → J1(Rk+l)
for which the diagram

Rk+l+1
id−−−−→ Rk+l+1⏐⏐"πk+l

⏐⏐"λ1

Rk+l

χ∇−−−−→ J1(Rk+l)

commutes, where πk+l is an isomorphism. Using Theorem 2.2, one sees that the
curvature of ∇ vanishes and that the desired assertions hold.

Example 2.10. If β is a section of
⊗q

T ∗, we denote by Lξβ the Lie derivative of
β along a vector field ξ on X. Let g be a Riemannian metric on X. We wish to
describe the compatibility condition for the first-order linear differential operator

D : T → S2T ∗,

sending ξ into Lξg, under various assumptions on g. We consider the morphism
ϕ = p(D), with E = T and F = S2T ∗ and some of the objects introduced in
Example 2.3, Chapter IX. The mapping σ(ϕ) : T ∗ ⊗ T → S2T ∗ is surjective and
the fiber g1,x of its kernel g1 at x ∈ X is equal to the Lie algebra of the orthogonal
group of the Euclidean vector space (Tx, g(x)); moreover g2 = 0 (see Gasqui and
Goldschmidt [1983], §3). Thus we see that R1 = Ker p(ϕ) is a differential equation
of finite type. The solutions of the equation R1 or of the homogeneous equation
Dξ = 0 are the Killing vector fields of (X, g). We denote by Ej the sub-bundle of∧j+1

T ∗ ⊗
∧2

T ∗, which is the kernel of the morphism of vector bundles

µ :
∧j+1

T ∗ ⊗
∧2

T ∗ →
∧j+2

T ∗ ⊗ T ∗

determined by
µ(ω ⊗ (α ∧ β)) = (α ∧ ω) ⊗ β − (β ∧ ω) ⊗ α,

for ω ∈
∧j+1

T ∗, α, β ∈ T ∗; then E1 = G. The Spencer cohomology of g1 is given
by:

(37)
H0,0(g1) = T, H0,1(g1) � S2T ∗, H0,j(g1) = 0,

H1,0(g1) = H1,1(g1) = 0, H1,j(g1) � Ej−1,

for j > 1, and Hm,i(g1) = 0, for m ≥ 2, i ≥ 0, where the isomorphisms depend
only on g (see Gasqui and Goldschmidt [1983], §3).

Let H be the sub-bundle of T ∗ ⊗ G consisting of those elements ω of T ∗ ⊗ G
which satisfy the relation

ω(ξ1, ξ2, ξ3, ξ4, ξ5) + ω(ξ2, ξ3, ξ1, ξ4, ξ5) + ω(ξ3, ξ1, ξ2, ξ4, ξ5) = 0,

for all ξ1, ξ2, ξ3, ξ4, ξ5 ∈ T . In fact, according to the second Bianchi identity
(DR)(g) = ∇gR(g) is a section of H . Let δ : H → T ∗ ⊗ G be the inclusion
mapping; the image B′

j of the morphism

δ :
∧j−1

T ∗ ⊗H →
∧j

T ∗ ⊗G,
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sending ω ⊗ u into (−1)j−1ω ∧ δu, for ω ∈
∧j−1

T ∗, u ∈ H , is a sub-bundle of∧j
T ∗ ⊗ G. According to the exactness of the sequences (3.25l) and (3.31l) of

Gasqui and Goldschmidt [1983], there exist morphisms σ1 : S3T ∗⊗S2T ∗ → H and
σj : T ∗ ⊗ B′

j−1 → B′
j , for 2 ≤ j ≤ n, such that the sequences (14) are exact for all

m ≥ 0; in fact, σ1 is the first prolongation of τ .
We set ∇ = ∇g and R = R(g). Let

R′
g : S2T ∗ → G, (DR)′g : S2T ∗ → H

be the linear differential operators of order 2 and 3 which are the linearizations along
g of the non-linear operators h �→ R(h) and h �→ (DR)(h) respectively, where h is
a Riemannian metric on X. If h ∈ S2T ∗, we therefore have

R′
g(h) =

d

dt
R(g + th)|t=0, (DR)′g(h) =

d

dt
(DR)(g + th)|t=0.

The invariance of the operators R and DR gives us the formulas

(38) R′
g(Lξg) = LξR, (DR)′g(Lξg) = Lξ∇R,

for all ξ ∈ T (see Gasqui and Goldschmidt [1983], Lemma 4.4). By formula (4.30)
of Gasqui and Goldschmidt [1983], we have

σ((DR)′g) = σ1.

Let G̃ be the sub-bundle of G with variable fiber, whose fiber at x ∈ X is

G̃x = {(LξR)(x) | ξ ∈ Tx with (Lξg)(x) = 0},

and let α : G→ G/G̃ be the canonical projection. If G̃ is a vector bundle, we define
a second-order linear differential operator

D1 : S2T ∗ → G/G̃
by setting

(D1h)(x) = α(R′
g(h− Lξg))(x),

for x ∈ X and h ∈ S2T ∗
x , where ξ is an element of Tx satisfying h(x) = (Lξg)(x)

whose existence is guaranteed by the surjectivity of σ(D). By the first relation of
(38), we see that this operator is well-defined; clearly we have D1 · D = 0. By
Proposition 5.1 of Gasqui and Goldschmidt [1983], the sequence

J3(T )
p2(D)−−−−→ J2(S2T ∗)

p(D1)−−−→ G/G̃→ 0

is exact. For j ≥ 1, we consider the vector bundle

Bj = B′
j ⊕ (

∧j−1T ∗ ⊗G/G̃)

and we let
P1 : S2T ∗ → B1

be the third-order linear differential operator given by

P1h = ((DR)′g(h), D1h),

for h ∈ S2T ∗.

For x ∈ X, let ρ denote the representation of g1,x on Tx and also on
⊗q

T ∗
x . We

say that (X, g) is a locally symmetric space if ∇R = 0. According to Theorem 7.1
and §5 of Gasqui and Goldschmidt [1983], we have:

æ
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Theorem 2.11. If (X, g) is a locally symmetric space, R3 = Ker p2(ϕ) is a
formally integrable differential equation and G̃ is a vector bundle equal to the “in-
finitesimal orbit of the curvature”

{ρ(u)R | u ∈ g1}.

We now suppose that ∇R = 0. From the second relation of (38), we deduce that
P1 ·D = 0. Since g2 = 0, the hypotheses of Theorem 1.9,(ii) hold for ϕ with k = 1,
rj = j + 2, for j ≥ 1. Therefore, if νj : T ∗⊗Bj−1 → Bj is the morphism defined in
Example 1.10, for 2 ≤ j ≤ n + 1, according to the construction given there, there
exists a complex

(39) T D−−→ S2T ∗ P1−−→ B1
P2−−→ B2 → · · · → Bn

Pn+1−−→ Bn+1 → 0,

with σ(Pj) = νj, for 2 ≤ j ≤ n + 1, of the type (15) of Example 1.10 such that the
sequences (16) are exact for all m ≥ 0, with E = T , B0 = S2T ∗. In Gasqui and
Goldschmidt [1983], §7, the operators P2, . . . , Pn+1 are determined explicitly (see
also Gasqui and Goldschmidt [1988a]).

From Theorem 2.9, we now deduce the following result of Gasqui and Gold-
schmidt [1983] (Theorem 7.2):

Theorem 2.12. If ∇R = 0, the complex (39) is exact and, if U is a simply-
connected open subset of X, the sequence

C∞(U, T ) D−→ C∞(U, S2T ∗) P1−→ C∞(U, H ⊕G/G̃)

is exact.

According to Lemma 5.3 of Gasqui and Goldschmidt [1983], the assumption

H ∩ (T ∗ ⊗ G̃) = 0

implies that (X, g) is a locally symmetric space; if this condition is satisfied, there
is an exact sequence

T D−−→ S2T ∗ D1−−→ G/G̃ P ′
2−−→ B′

2 → · · · → B′
n+1

P ′
n+2−−→ B′

n+2 → 0

obtained from the complex of type (15) corresponding to the differential operator
D1 (see Gasqui and Goldschmidt [1988a], Theorem 2.3).

Proposition 6.1 of Gasqui and Goldschmidt [1983] tells us that

Proposition 2.13. If X is connected, the differential equation R1 is formally in-
tegrable if and only if (X, g) has constant curvature.

Consider the connection ∇ in
∧l

T ∗ and the corresponding differential operator

d∇ :
∧j+1T ∗ ⊗

∧lT ∗ →
∧j+2T ∗ ⊗

∧lT ∗

of Example 2.1; according to Gasqui and Goldschmidt [1983], §6, if l = 2, it induces
by restriction a first-order linear differential operator

d∇ : Ej → Ej+1, for j ≥ 1.
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Suppose that (X, g) has constant curvature K; then R = −Kτ (g⊗ g). Consider
the first-order linear differential operator

Dg : S2T ∗ → G

defined by
Dgh = R′

g(h) + 2Kτ (h⊗ g),

for h ∈ S2T ∗. According to Gasqui and Goldschmidt [1983], §6 and [1984a], §16,
the Calabi sequence

(40) T D−−→ S2T ∗ Dg−−→ E1 d∇
−−→ E2 d∇

−−→ · · · → En−1 → 0

is a complex. By (37), the hypotheses of Theorem 1.11,(i) are satisfied with k = 1,
q = n − 1, rj = j + 1, for 1 ≤ j ≤ n − 1; it is shown in Gasqui and Goldschmidt
[1983] that (40) is a complex of the type (18), for which the sequences (19) are
exact. From Theorem 2.9, we obtain:

Theorem 2.14. If (X, g) has constant curvature, the complex (40) is exact and,
if U is a simply-connected open subset of X, the sequence

C∞(U, T ) D−→ C∞(U, S2T ∗)
Dg−−→ C∞(U, G)

is exact.

The sequence (40) is the resolution of the sheaf of Killing vector fields of the
space of constant curvature (X, g) introduced by Calabi [1961]. The sequences of
Example 2.10 have been used to study infinitesimal rigidity questions for symmetric
spaces related to the Blaschke conjecture, namely by Bourguignon for the real
projective spaces RPn (see Besse [1978]), and by Gasqui and Goldschmidt [1983,
1984b, 1988b, 1989a, 1989b] for the complex projective spaces CPn, with n ≥ 2,
the complex quadrics of dimension ≥ 5, and for arbitrary products of these spaces
with flat tori. In particular, the infinitesimal orbit of the curvature is determined
explicitly for these spaces.

Example 2.15. Let g be a Riemannian metric on X. We say that the Riemannian
manifold (X, g) is conformally flat if, for every x ∈ X, there is a diffeomorphism ϕ
of a neighborhood U of x onto an open subset of Rn and a real-valued function u
on U such that

ϕ∗g′ = eug,

where g′ is the Euclidean metric on Rn. We consider some of the objects introduced
in Example 2.10. Let

Tr : S2T ∗ → R,

Trj :
∧j+1

T ∗ ⊗ T ∗ ⊗ T ∗ →
∧j

T ∗ ⊗ T ∗

be the trace mappings defined by

Tr h =
r∑

i=1

h(ti, ti),

(Trju)(ξ1, . . . , ξj, η) =
n∑

i=1

u(ti, ξ1, . . . , ξj, ti, η),
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for all h ∈ S2T ∗
x , u ∈ (

∧j+1
T ∗ ⊗ T ∗ ⊗ T ∗)x, ξ1, . . . , ξj, η ∈ Tx, with x ∈ X, where

{t1, . . . , tn} is an orthonormal basis of Tx. We denote by S2
0T ∗ the kernel of Tr and

we set
E0

j = Ej ∩ Ker Trj .

If ( , ) is the scalar product on T ∗ induced by g, we consider the scalar product
( , ) on

∧l
T ∗ determined by

(41) (α1 ∧ · · · ∧ αl, β1 ∧ · · · ∧ βl) = det (αi, βj),

for α1, . . . , αl, β1 , . . . , βl ∈ T ∗. This scalar product in turn induces a scalar product
on

∧j+1
T ∗ ⊗

∧2
T ∗ and hence on its sub-bundle Ej . We denote by ρj : Ej → E0

j

the orthogonal projection onto E0
j .

We suppose that n ≥ 3; we wish to determine the compatibility condition for
the first-order linear differential operator

D : T → S2
0T ∗

sending ξ into 1
2

(
Lξg − 1

n Tr(Lξg)g
)
, when (X, g) is conformally flat. We consider

the morphism ϕ = p(D) with E = T and F = S2
0T ∗. The mapping σ(ϕ) : T ∗⊗T →

S2
0T ∗ is surjective. We have g3 = 0 and so R1 = Ker p(D) is a differential equation

of finite type; the solutions of R1 or of the homogeneous equation Dξ = 0 are the
conformal Killing vector fields of (X, g). The only non-zero Spencer cohomology
groups of g1 are given by:

(42)

H0,0(g1) = T, H0,1(g1) � S2
0T ∗,

H1,j(g1) � E0
j−1, for 2 ≤ j ≤ n− 2,

H2,n−1(g1) �
∧nT ∗ ⊗ S2

0T ∗, H2,n(g1) =
∧nT ∗ ⊗ T ∗,

where the isomorphisms depend only on g (see Gasqui and Goldschmidt [1984a],
§2).

The Weyl tensor W(g) of (X, g) is the section ρ1R of E0
1 . If n ≥ 4, a result of

H. Weyl asserts that the Riemannian manifold (X, g) is conformally flat if and only
if its Weyl tensor vanishes. If n = 3, we have E0

1 = 0 and the Weyl tensor always
vanishes.

Proposition 5.1 of Gasqui and Goldschmidt [1984a] tells us that

Proposition 2.16. If n ≥ 4, the differential equation R1 is formally integrable if
and only if W = 0.

The linearization along g of the non-linear differential operator h �→ W(h), where
h is a Riemannian metric on X, is the second-order linear differential operator

W ′
g : S2T ∗ → E1

defined by

W ′
g(h) =

d

dt
W(g + th)|t=0.

If W = W(g) = 0, the operator W ′
g takes its values in E0

1 . We consider the first-
order differential operators

Pj+1 = ρj+1d
∇ : E0

j → E0
j+1,
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for 1 ≤ j ≤ n − 4, and

Pn−1 = d∇ · Trn−1 :
∧nT ∗ ⊗ S2

0T ∗ →
∧nT ∗ ⊗ T ∗.

Let
φ :

∧n−2
T ∗ ⊗ T ∗ ⊗ T ∗ ⊗ T ∗ →

∧n−1
T ∗ ⊗

∧2
T ∗

be the morphism sending β1⊗β2⊗α1⊗α2 into (β1∧α1)⊗(β2∧α2), for β1 ∈
∧n−2

T ∗,
β2, α1, α2 ∈ T ∗. The mapping

φ̂ :
∧n−2

T ∗ ⊗ T ∗ →
∧n−1

T ∗ ⊗
∧2

T ∗

sending u into φ(u ⊗ g) is an isomorphism. Let R0 be the section of T ∗ ⊗ T
determined by

g(R0(ξ), η) = Ric(ξ, η),

where Ric is the Ricci curvature of g, and ξ, η ∈ T . We define a morphism

θ :
∧n−2

T ∗ ⊗
∧2

T ∗ →
∧n−1

T ∗ ⊗ T ∗

by

θ(u)(ξ1 , . . . , ξn−1, η) =
1

n − 2

n−1∑
l=1

(−1)l+n−1u(ξ1, . . . , ξ̂l, . . . , ξn−1, R
0(ξl), η),

for u ∈
∧n−2

T ∗ ⊗
∧2

T ∗, ξ1, . . . , ξn−1, η ∈ T .
Assume that n ≥ 4 and that W = 0. Then there exists a unique second-order

differential operator
Pn−2 : E0

n−3 →
∧nT ∗ ⊗ S2

0T ∗

such that

Trn−1Pn−2 =
(−1)

2

n

(d∇ · φ̂−1 · d∇ − θ) : E0
n−3 →

∧n−1T ∗ ⊗ T ∗

(see Gasqui and Goldschmidt [1984a], Chapter I).
By (42), the hypotheses of Theorem 1.11,(i) are satisfied with k = 1, q = n − 1,

rj = j+1, for 1 ≤ j ≤ n−3, and rn−2 = n, rn−1 = n+1. Gasqui and Goldschmidt
[1984a] show that the sequence

(43) T D−→ S2
0T ∗ W′

g−→ E0
1

P2−→ · · · → E0
n−3

Pn−2−−→
∧nT ∗ ⊗ S2

0T ∗ Pn−1−−→
∧nT ∗ ⊗ T ∗ → 0

is a complex of type (18), for which the sequences (19) are exact. From Theorem 2.9,
we obtain the following result of Gasqui and Goldschmidt [1984a]:

Theorem 2.17. If n ≥ 4 and (X, g) is conformally flat, the sequence (43) is exact
and, if U is a simply-connected open subset of X, the sequence

C∞(U, T ) D−→ C∞(U, S2
0T ∗)

W′
g−−→ C∞(U, E0

1)
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is exact.

Gasqui and Goldschmidt [1984a] also construct a resolution of type (18) of the
sheaf of conformal Killing vector fields of a conformally flat space when n = 3.

We now return to the morphism ϕ of §1, the corresponding differential operator
D : E → F and the objects associated to them. If U is an open subset of X, let
C∞

0 (U, E) denote the space of sections of E with compact support contained in U .
Suppose that E and F are endowed with scalar products ( , ). The formal adjoint
D∗ : F → E of D is the unique differential operator such that∫

U

(Du, v) =
∫

U

(u, D∗v),

for any oriented subset U of X and for all u ∈ C∞
0 (U, E), v ∈ C∞(U, F ); it is of

order k.
Let (12) be a complex of differential operators for which the sequences (13) are

exact at Jm−rj (Bj) for m ≥ rj+1 and j ≥ 0. If the vector bundles E, F , Bj are
endowed with scalar products, in general the adjoint complex

· · · → Bj

P∗
j−−→ Bj−1

P∗
j−1−−→ · · · → B2

P∗
2−−→ B1

P∗
1−−→ B0

D∗
−→ E ,

with B0 = F , does not necessarily satisfy the analogous condition. However, there
are just a few examples for which it does, namely:

Example 2.3 (continued). Let g be a Riemannian metric on X and fix a scalar
product on the vector space V . Then we obtain scalar products on the vector
bundles

∧j T ∗ ⊗E; the adjoint sequence∧nT ∗ ⊗ E d∗
−→

∧n−1T ∗ ⊗ E d∗
−→ · · · →

∧2T ∗ ⊗ E d∗
−→ T ∗ ⊗ E d∗

−→ E → 0

of (27) is the sophisticated Spencer sequence of the equation Ker p(d∗), where
d∗ :

∧n T ∗ ⊗ E →
∧n−1 T ∗ ⊗ E , and is exact.

Example 2.15 (continued). The vector bundles of the sequence (43) all inherit scalar
products from the metric g. If n ≥ 4 and W = 0, the adjoint sequence∧nT ∗ ⊗ T ∗ P∗

n−1−−→
∧nT ∗ ⊗ S2

0T ∗ P∗
n−2−−→ E0

n−3 → · · · → E0
1

P∗
1−→ S2

0T ∗ D∗
−→ T ∗ → 0

of (43), where P1 = W ′
g, is again a complex of type (18), for which the sequences

(19) are exact; moreover it is exact (see Gasqui and Goldschmidt [1984a]).

§3. Existence Theorems for Elliptic Equations.

We again consider the morphism ϕ : Jk(E) → F , the differential operator D =
ϕ ◦ jk : E → F and the objects of §1 associated to them. If x ∈ X and α ∈ T ∗

x , let

σα(D) : Ex → Fx

be the linear mapping defined by

σα(D)u =
1
k!

σ(D)(αk ⊗ u),
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where u ∈ Ex and αk denotes the k-th symmetric product of α. If E and F are
endowed with scalar products and D∗ : F → E is the formal adjoint of D, then we
have

(44) σα(D∗) = (−1)kσα(D)∗.

If B is another vector bundle and D′ : F → B is a differential operator of order l,
then, for all x ∈ X and α ∈ T ∗

x , it is easily verified that

(45) σα(D′ ·D) = σα(D′) · σα(D) : Ex → Bx.

We say that α ∈ T ∗
x , with x ∈ X, is non-characteristic for D if the mapping

σα(D) : Ex → Fx is injective. Thus α is non-characteristic for D if and only if
there are no non-zero elements e of Ex such that αk ⊗ e ∈ gk.

Assume now that k = 1 and thus that D is a first-order operator. We say that
a subspace U of T ∗

x , with x ∈ X, is non-characteristic for D if

(U ⊗E) ∩ g1 = 0.

Let U be a sub-bundle of T ∗; if x0 ∈ X and g1,x0 is involutive and if Ux0 is a
maximal non-characteristic subspace of T ∗

x0
for D, then, for all x ∈ X belonging to

a neighborhood of x0, the subspace Ux of T ∗
x is maximal non-characteristic.

Assume that D is a first-order differential operator satisfying the following con-
ditions:

(i) R1 = Ker p(D) is formally integrable;
(ii) σ(D) : T ∗ ⊗E → F is surjective;
(iii) g1 is involutive.
We consider the initial part

(46) E D−→ F D′
−→ B

of the sophisticated Spencer sequence of the first-order equation R1 given by Ex-
ample 1.12, where D′ is a differential operator of order 1. We now describe the
normal forms for D and for the complex (46) introduced by Guillemin [1968] (see
also Spencer [1969]).

Given a point x0 ∈ X, let Ux0 be a maximal non-characteristic subspace of T ∗
x0

.
We choose a local coordinate system (x1, . . . , xn) for X on a neighborhood of x0

such that dx1, . . . , dxk forms a basis for Ux0 at x0. The subspace Ux of T ∗
x spanned

by dx1, . . . , dxk at x is maximal non-characteristic for D for all x belonging to a
neighborhood V of x0. Let U be the sub-bundle of T ∗|V spanned by the sections
dx1, . . . , dxk. We consider the complex (46) restricted to V . For i = 1, . . . , k, the
morphism

σdxi(D) : E → F

is injective and the vector bundle

Ei = σdxi(D)(E)

is isomorphic to E. It is easily seen that the sum E1 + · · ·+ Ek is direct, and we
choose a complement E0 to this sum in F ; thus we have

F = E0 ⊕E1 ⊕ · · · ⊕Ek.
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For i = 0, 1, . . . , k, we let πi : F → Ei be the projection and we set

D0 = π0D, Di = σdxi(D)−1 · πi ·D,

for i = 1, . . . , k. Then in terms of the differential operators

D0 : E → E0, Di : E → E ,

we have

D = D0 +
k∑

i=1

σdxi(D)Di.

¿From the definitions, for i = 1, . . . , k, we see that

Di =
∂

∂xi
+ Li,

and that

Li = Li

(
∂

∂xk+1
, . . . ,

∂

∂xn

)
, D0 = D0

(
∂

∂xk+1
, . . . ,

∂

∂xn

)
are differential operators involving differentiations only along the sheets of the fo-
liation x1 = constant, x2 = constant, . . . , xk = constant.

The main results of Guillemin [1968] are summarized in

Theorem 3.1. For 1 ≤ i, j ≤ k, there exist first-order differential operators

D′
ij : E0 → E , D′

i : E0 → E0
such that

[Di, Dj] = D′
ijD0, D0Di = D′

iD0,

where [Di, Dj] = DiDj−DjDi. Moreover, the differential operator D0 also satisfies
conditions (i), (ii) and (iii); if D′

0 : E0 → B0 is the first-order differential operator
which is the compatibility condition for D0 whose symbol σ(D′

0) : T ∗ ⊗E0 → B0 is
surjective, the complex (46) can be described as follows:

We may identify F with E0 ⊕ (U ⊗E) and B with

B0 ⊕ (U ⊗E0)⊕ (
∧2

U ⊗E)

and the operators D and D′ are given by

Du = D0u +
k∑

i=1

dxi ⊗Diu,

D′(f0 +
k∑

i=1

dxi ⊗ fi)

= D′
0f0 +

k∑
i=1

dxi ⊗ (D0fi −D′
if0)

+
∑

1≤i<j≤k

dxi ∧ dxj ⊗ (Difj −Djfi −D′
ijf0),

for u ∈ E , f0 ∈ E0, f1, . . . , fk ∈ E .
We no longer make any assumptions on the operator D. We say that D is a

determined (resp. an underdetermined) differential operator if, for all x ∈ X, there
exists a non-zero cotangent vector α ∈ T ∗

x such that σα(D) is an isomorphism (resp.
is surjective). The following result is due to Quillen [1964] (see also Gasqui [1976]).
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Proposition 3.2. Let ϕ : Jk(E) → F be a morphism of vector bundles and let
D = ϕ ◦ jk. Then the differential operator D is underdetermined if and only if the
morphisms

σl(ϕ) : Sk+lT ∗ ⊗E → SlT ∗ ⊗ F

are surjective for all l ≥ 0. If D is underdetermined, then Rk = Ker ϕ is formally
integrable and the morphisms

pl(ϕ) : Jk+l(E)→ Jl(F )

are surjective for all l ≥ 0.

¿From the proof of Theorem 1.6, it follows that the second assertion of this
proposition is an easy consequence of the first. From Proposition 3.2, we infer that,
if D is underdetermined, then g1 is involutive.

We say that D is elliptic (resp. determined elliptic, underdetermined elliptic) if
for all x ∈ X and α ∈ T ∗

x , with x ∈ X, the mapping σα(D) is injective (resp. is
an isomorphism, is surjective). If there exists an integer l ≥ 0 such that gk+l = 0,
then D is elliptic (see Goldschmidt [1967a], Proposition 6.2).

Lemma 3.3. Let B be a vector bundle over X and D′ : F → B be a differential
operator of order k. Assume that E, F , B are endowed with scalar products. If for
all x ∈ X and α ∈ T ∗

x , with α �= 0, the sequence

(47) Ex
σα(D)−−−−→ Fx

σα(D′)−−−−→ Bx

is exact, then the differential operator

� = DD∗ + D′∗D′ : F → F

of order 2k is determined elliptic.

Proof. Let x ∈ X and α ∈ T ∗
x , with α �= 0. If u ∈ Ex, by (44) and (45), we have

(σα(�)u, u) = (−1)k((σα(D)σα(D)∗ + σα(D′)∗σα(D′))u, u)

= (−1)k{(σα(D)∗u, σα(D)∗u) + (σα(D′)u, σα(D′)u)}.

If σα(�)u = 0, we deduce that σα(D′)u = 0 and σα(D)∗u = 0. From the exactness
of the sequence (47), we infer that u = 0 and so � is determined elliptic.

Theorem 3.4. If D : E → F is a determined elliptic or underdetermined elliptic
operator, then the sequence

E D−→ F → 0

is exact.

If D is determined elliptic, this result is classic (see Hörmander [1963], Theo-
rem 7.5.1). If D is underdetermined elliptic, one chooses scalar products on the
vector bundles E and F ; by Lemma 3.3, the operator DD∗ : F → F is determined
elliptic and the theorem for D follows from the previous case.

Let

(48) B0
Q0−−→ B1

Q1−−→ B2
Q2−−→ · · · → Br−1

Qr−1−−→ Br → 0
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be a complex, where Bj is a vector bundle over X and Qj is a linear differential
operator of order lj ≥ 1. We say that (48) is an elliptic complex if, for all x ∈ X
and α ∈ T ∗

x , with α �= 0, the sequence

0→ B0,x
σα(Q0)−−−→ B1,x

σα(Q1)−−−→ B2,x → · · · → Br−1,x
σα(Qr−1)−−−−−→ Br,x → 0

is exact.

Examples 2.7 and 2.8 (continued). If X is a complex manifold, the Cauchy–Riemann
operator ∂ : OX → T ′′∗ is elliptic and the Dolbeault sequence (35) is an elliptic
complex. On the other hand, if E′′ is a CR-structure on X of codimension > 0,
the tangential Cauchy–Riemann operator ∂b : OX → E ′′∗ fails to be elliptic. The
operator ∂b of Example 2.8 is determined.

The following theorem is a direct consequence of the proof of Quillen’s theorem
(see Quillen [1964] and Goldschmidt [1967a], Proposition 6.5; see also Proposi-
tion 6.2, Chapter VIII).

Theorem 3.5. Suppose that the complex (48) satisfies the following condition: for
all m ≥ 0, the sequences

Sm+l0 T ∗ ⊗ B0
σm(Q0)−−−−→ SmT ∗ ⊗B1

σm−l1 (Q1)
−−−−−−→ Sm−l1T ∗ ⊗B2

σm−l1−l2 (Q2)−−−−−−−−→ · · ·

→ Sm−l1−···−lr−2T ∗ ⊗ Br−1

σm−l1−···−lr−1 (Qr−1)
−−−−−−−−−−−−−→ Sm−l1−···−lr−1T ∗ ⊗ Br → 0

are exact. If Q0 is elliptic, then (48) is an elliptic complex.

If D is elliptic and if there exists an integer l ≥ 0 such that Rk+l is formally
integrable and gk+l+1 is involutive, then, by Proposition 6.4 of Goldschmidt [1967a],
the operator D0 of the sophisticated Spencer sequence (21) of Rk+l is also elliptic,
and so from Theorem 3.5 we deduce that (21) is an elliptic complex.

We are interested in knowing under which conditions an elliptic complex is exact.
Proposition 3.2 asserts that an elliptic complex (48) with r = 1 is a complex of type
(12) and Theorem 3.4 tells us that it is always exact. If r > 1, the following example
shows that a formally exact elliptic complex is not necessarily exact, and hence that
in this case we must restrict our attention to complexes of type (12).

Example 3.6. Suppose that X = C with its complex coordinate z = x +
√
−1 y.

We set
∂

∂z
=

1
2

(
∂

∂x
−
√
−1

∂

∂y

)
,

∂

∂z
=

1
2

(
∂

∂x
+
√
−1

∂

∂y

)
.

Let E be the trivial complex line bundle over X and F = E ⊕ E. Consider the
first-order differential operator D : E → F given by

Df =
(

z2 ∂f

∂z
− f,

∂f

∂z

)
,

for f ∈ E . Let B = E and D′ : F → B be the first-order differential operator
defined by

D′(u, v) =
∂u

∂z
− z2 ∂v

∂z
+ v,
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for u, v ∈ E . Then we obtain a complex

(49) E D−→ F D′
−→ B → 0.

Since σα

(
∂
∂z

)
: Ex → Ex is an isomorphism, for x ∈ X and α ∈ T ∗

x , with α �= 0,
we easily see that (49) is an elliptic complex. If Rl+1 = Ker pl(D), the sequence

0 → Rl+1 → Jl+1(E)
pl(D)−−−→ Jl(F )

pl−1(D′)−−−−−→ Jl−1(B)→ 0

is exact for l ≥ 0, and the sequence (49) is formally exact by Lemma 1.3. Indeed,
since

pl

(
∂

∂z

)
: Jl+1(E)→ Jl(E)

is surjective for all l ≥ 0, we see that pl−1(D′) is surjective for l ≥ 1. Moreover, let
a ∈ X and u, v ∈ Ea satisfy

(50) pl−1(D′)(jl(u)(a), jl(v)(a)) = 0;

there exists f1 ∈ Ea such that jl

(
∂f
∂z

)
(a) = jl(v)(a). Set

u′ = u− z2 ∂f1

∂z
+ f1;

because of (50), we obtain jl−1

(
∂u′

∂z

)
(a) = 0. Then according to the complex

analytic analogue of Example 1.5, we can choose a holomorphic function f2 on a
neighborhood of a such that

jl

(
z2 ∂f2

∂z
− f2 − u′

)
(a) = 0;

if f = f1 + f2, we have
jl(Df − (u, v))(a) = 0.

Therefore Rl+1 is a vector bundle for all l ≥ 0. As in Example 1.5, it is easily seen
that π0 : Rl+1 → E is an isomorphism on X − {0} and hence that R1 is formally
integrable on X − {0}. However, dimC gl+1,a = 1 for a = 0, and so πl : Rl+1 → Rl

is not surjective at a = 0 and does not have constant rank on X. On the other
hand, the complex (49) is not exact. In fact, consider (−z, 0) ∈ C∞(F ); we have
D′(−z, 0) = 0 and a solution of the equation Df = (−z, 0) is a holomorphic function
f satisfying z2 ∂f

∂z −f = −z. According to the argument given in Example 1.5, there
does not exist such a function f on a neighborhood of 0.

We no longer impose any of the above restrictions on the operator D. Assume
that X is connected and that there is an integer r0 ≥ 0 such that Rk+l is a vector
bundle for all l ≥ r0 and that the mappings πk+l : Rk+l+r → Rk+l have constant
rank for all l ≥ r0 and r ≥ 0. Then according to Theorem 1.9,(i), we may consider
a complex (12), where Bj is a vector bundle over X and B0 = F , and where Pj

is a differential operator of order lj ; if rj = l1 + · · ·+ lj , we may suppose that the
sequences (13) are exact at Jm−rj (Bj) for m ≥ rj+1 and j ≥ 0.

If D is not elliptic, in general the complex (12) will not be exact; indeed, we
have seen that the complex (36), which is the Spencer sequence associated to the
first-order operator ∂b of Example 2.8, is not exact. We now state
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The Spencer Conjecture. If D is elliptic, the complex (12) is exact.

The main cases when this conjecture is known to be true for overdetermined
operators are described in the following two theorems; the first one is due to Spencer
and the second one to MacKichan, Sweeney and Rockland.

Theorem 3.7. Suppose that X is a real-analytic manifold, E, F are real-analytic
and D is an analytic differential operator. If D is elliptic, the complex (12) is exact.

Theorem 3.8. Suppose either that E is a real line bundle, or that E is a complex
line bundle, F is a complex vector bundle and that D is C-linear. If D is an elliptic
first-order operator and if Rl+1 is formally integrable for some l ≥ 0, the complex
(12) is exact.

The important special case of Theorem 3.8, namely that of a first-order ellip-
tic operator, acting on the trivial complex line bundle and determined by com-
plex vector fields, for which R1 is formally integrable, can be treated using the
Newlander–Nirenberg theorem (see Trêves [1981], Theorem 1.1, Chapter I).

To verify the Spencer Conjecture, it suffices to consider the case of operators D
for which Rk = Ker p(D) is formally integrable. Indeed, according to Goldschmidt
[1968a, 1968b], we may replace the differential operator D by the operator D1 =
P ·D given by Theorem 1.14,(i); then D1 is elliptic, Ker p(D1) is formally integrable
and the cohomology of the sequence (12) is isomorphic to that of a sequence (12)
corresponding to D1.

We now suppose that Rk = Ker p(D) is formally integrable. Let l ≥ 0 be
an integer for which gk+l+1 is involutive. According to Example 1.13, to prove
the Spencer Conjecture for D, it suffices to show that the sophisticated Spencer
sequence (21) of Rk+l is exact at Cj , for j > 0. By Theorem 3.5 and the remark
which follows it, if D is elliptic, (21) is an elliptic complex. The first-order operator
D0 of (21) satisfies the assumptions considered above for the existence of Guillemin
normal forms.

We now give a proof due to Spencer [1962] of the exactness of the complex (21)
under the hypotheses of Theorem 3.7; it consists of an adaptation of H. Cartan’s
argument for the exactness of the Dolbeault sequence (see also Spencer [1969]). As
we have seen above, Theorem 3.7 is a consequence of this result.

Assume that the hypotheses of Theorem 3.7 hold. Then the vector bundles
and the differential operators Dj of (21) are real-analytic. Let x0 be an arbitrary
point of X. We choose real-analytic scalar products on the vector bundles Cj over a
neighborhood U of x0 and consider the complex (21) restricted to U . The Laplacian

� = Dj−1D
∗
j−1 + D∗

j Dj : Cj → Cj ,

with Dj = 0 for j = −1 and n, is real-analytic. As (21) is an elliptic complex,
according to Lemma 3.3, � is a determined elliptic operator. Now let u be a
section of Cj over a neighborhood of x0 satisfying Dju = 0. By Theorem 3.4, there
exists a section v of Cj over a neighborhood V ⊂ U of x0 such that �v = u on V .
We set w = u−Dj−1D

∗
j−1v; since Dju = 0, we have Djw = 0 on V . On the other

hand,
D∗

j−1w = D∗
j−1u−D∗

j−1�v = 0,

and so �w = 0 on V . Since � is a determined elliptic, analytic operator, it
follows that w is real-analytic (see Hörmander [1963], Chapter X). According to
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Theorem 1.11,(ii) and Theorem 1.4, there exists an analytic section w′ of Cj−1

over a neighborhood V ′ of x0 such that Dj−1w
′ = w on V ′; thus

u = Dj−1(D∗
j−1v + w′)

on a neighborhood of x0, and this proves Theorem 3.7.

Example 2.7 (continued). The Cauchy–Riemann operator ∂ : OX → T ′′∗ of a
complex manifold X is real-analytic (with respect to the structure of real-analytic
manifold on X determined by its complex structure). Since the first-order equa-
tion R1 = Ker p(∂) is formally integrable and involutive and (35) is the Spencer
sequence of R1 described in Example 1.12, Theorem 3.7 implies that the sequence
(35) is exact.

We now describe the δ-estimate discovered by Singer. For the moment, we no
longer make any of the above assumptions on E and the operator D. We use some
of the notation introduced in Example 2.4, and suppose that E and F are complex
vector bundles and that D : E → F is a C-linear differential operator. Hermitian
scalar products ( , ) on E and F determine a Hermitian scalar product on E ⊗C F
by setting

(e1 ⊗ f1, e2 ⊗ f2) = (e1 , e2)(f1, f2),

for e1, e2 ∈ E, f1, f2 ∈ F . We fix Hermitian scalar products ( , ) on T ∗
C

and E.
We obtain a Hermitian scalar product ( , ) on

∧l T ∗
C

for which (41) holds for all
α1, . . . , αl, β1 , . . . , βl ∈ T ∗

C
. The imbedding of SlT ∗ into

⊗l
T ∗ defined in §1,

Chapter IX extends uniquely to a C-linear imbedding SlT ∗
C
→

⊗l
T ∗

C
; we identify

SlT ∗
C

with its image in
⊗l

T ∗
C

under this mapping. Thus the Hermitian scalar
product on

⊗l
T ∗

C
induces a scalar product on SlT ∗

C
, and the Hermitian scalar

products on T ∗
C

and E induce a scalar product on∧j
T ∗ ⊗ Sk+lT ∗ ⊗ E =

∧j
T ∗

C ⊗C Sk+lT ∗
C ⊗C E.

We consider the restriction ( , ) of this Hermitian scalar product to
∧j

T ∗ ⊗ gk+l

and set ‖u‖2 = (u, u), for u ∈
∧j T ∗ ⊗ gk+l.

Definition. We say that the C-linear differential operator D : E → F of order k
satisfies the δ-estimate if there exist Hermitian scalar products on T ∗

C
and E such

that
‖δu‖2 ≥ ‖u‖2,

for all u ∈ (T ∗ ⊗ gk+1) ∩ Ker δ∗, where δ∗ : T ∗ ⊗ gk+1 → gk+2 is the adjoint of δ.

The following result of Rockland [1972] (Appendix A) is verified by adapting
the proof of MacKichan [1971] (Example 4.3) that the Cauchy–Riemann operator
∂ : OX → T ′′∗ of Example 2.7 satisfies the δ-estimate.

Proposition 3.9. If E is a complex line bundle, then a first-order C-linear differ-
ential operator D : E → F satisfies the δ-estimate.

Spencer [1962] proposed a generalization of the ∂-Neumann problem for overde-
termined linear elliptic systems on small convex domains. This Spencer–Neumann
problem has been studied by Sweeney [1968, 1976] and has been solved only in
the case of operators satisfying the δ-estimate by MacKichan [1971], using the
work of Kohn and Nirenberg [1965]. An estimate of Sweeney [1969] implies that
the corresponding harmonic spaces vanish and gives us the following result due to
MacKichan [1971] and Sweeney [1969].
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Theorem 3.10. Suppose that D is a C-linear elliptic differential operator satis-
fying the δ-estimate. If there exists an integer l ≥ 0 such that Rk+l is formally
integrable, then the complex (12) is exact.

Theorem 3.8 now follows from Proposition 3.9 and the above theorem.
The δ-estimate also gives a generalization of symmetric hyperbolic operators,

in conjunction with the Guillemin normal form of Theorem 3.1 (see MacKichan
[1975]).

Example 3.11. Let X be an open subset of Rk × Cr, with coordinates (t, z) =
(t1, . . . , tk, z1, . . . , zr). We write zj = xj +

√
−1 yj and

∂

∂zj
=

1
2

(
∂

∂xj
−
√
−1

∂

∂yj

)
,

∂

∂zj
=

1
2

(
∂

∂xj
+
√
−1

∂

∂yj

)
.

Let E be the trivial complex line bundle of rank m over X and F be the direct sum
of (r + 1)-copies of E. Let

P1 : E → E , P2 : E → E

be the first-order differential operators given by

P1u =
k∑

i=1

ai(t, z)
∂u

∂ti
, P2u =

r∑
j=1

bj(t, z)
∂u

∂zj
,

for u ∈ E , where aj(t, z), bl(t, z) are m ×m matrices which are holomorphic in z.
Assume that k ≥ 1 and that P1 is determined in the t-variables, i.e. for all x ∈ X,
there exists

(51) α =
k∑

j=1

αjdtj ∈ T ∗
x − {0}

for which σα(P1) : Ex → Ex is an isomorphism. Consider the first-order differential
operator D : E → F defined by

Du =
(

P1u + P2u,
∂u

∂z1
, . . . ,

∂u

∂zr

)
,

for u ∈ E . Then using a variant of Proposition 3.2, one verifies that R1 = Ker p(D)
is a formally integrable differential equation, that σ(D) : T ∗ ⊗E → F is surjective

and that g1 is involutive. Moreover, if B is the direct sum of
(

r + 1
2

)
-copies of E,

the differential operator D′ : F → B defined by

D′(u0, u1, . . . , ur) =
(

∂u0

∂zj
− (P1 + P2)uj ,

∂uq

∂zl
− ∂ul

∂zq

)
j,l,q=1,...,r

l<q

,

for u0, u1, . . . , ur ∈ E , is the compatibility condition for D; in fact,

(52) E D−→ F D′
−→ B
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is the initial part of the sophisticated Spencer sequence of the first-order equation
R1. If P1 is elliptic in the t-variables, i.e. for all x ∈ X and α ∈ T ∗

x − {0} of the
form (51), the mapping σα(P1) : Ex → Ex is an isomorphism, then D is elliptic
and, by Theorem 3.5, the sequence (52) is the initial part of an elliptic complex of
type (12). It is easily seen that the excactness of the complex (52) is equivalent to
the solvability of the system

P1u + P2u = f,

∂u

∂zj
= 0, 1 ≤ j ≤ r,

for u ∈ E , where f ∈ E satisfies ∂f
∂zj = 0, for 1 ≤ j ≤ r. This inhomogeneous

system was first considered by Nirenberg [1974]; the exactness of the complex (52)
was proved by Menikoff [1977] for a class of such systems.

Example 3.12. Let X be an open subset of Rr+k, with coordinates (x, y) = (x1, . . . , xr, y1, . . . , yk),
and k ≥ 1. Let E be a trivial vector bundle over X and F be the direct sum of
(k + 1)-copies of E. Let

P0 : E → E , Pj : E → E ,

with j = 1, . . . , k, be first-order differential operators, where

Pj =
∂

∂yj
+ Lj

and where

P0 = P0

(
∂

∂x1
, . . . ,

∂

∂xr

)
, Lj = Lj

(
∂

∂x1
, . . . ,

∂

∂xr

)

are operators which involve differentiations only along the sheets of the foliations
y1 = constant, . . . , yk = constant. Assume that P0 is determined and that

[P0, Pj] = [Pj, Pl] = 0,

for j, l = 1, . . . , k. Consider the first-order differential operator D : E → F defined
by

Du = (P0u, P1u, . . . , Pku),

for u ∈ E . Then using Proposition 3.2, one verifies that R1 = Ker p(D) is a
formally integrable differential equation, that σ(D) : T ∗ ⊗E → F is surjective and
that g1 is involutive. Set y0 = x1 and let U be the sub-bundle of T ∗ spanned by
dy0, dy1, . . . , dyk. We identify F = B0 with U ⊗ E and set Bj =

∧j+1
U ⊗ E, for

j ≥ 0. We consider the first-order differential operator Dj : Bj−1 → Bj , with j ≥ 1,
determined by

Dj(dyα1 ∧ · · · ∧ dyαj ⊗ u) =
k∑

l=0

dyl ∧ dyα1 ∧ · · · ∧ dyαj ⊗ Plu,

where 0 ≤ α1, . . . , αj ≤ k and u ∈ E . We obtain a complex

(53) E D−−→ F D1−−→ B1
D2−−→ B2 → · · · → Bk+1 → 0
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which is the sophisticated Spencer sequence of the first-order equation R1. In view
of Theorem 3.1, if the D0-component of the Guillemin decomposition of a first-order
operator vanishes, then this operator is isomorphic to one of the type considered
here. We write U = X ∩ (Rr × {0}). If the restriction of P0 to U is elliptic, then
D is elliptic and, by Theorem 3.5, the sequence (53) is an elliptic complex of type
(12).

In Dencker [1982], the notion of operators E → E of real principal type is defined;
determined elliptic operators belong to this class. The following result is due to
D. Yang [1986].

Theorem 3.13. If the restriction of the differential operator P0 to U is of real
principal type and if r ≥ 3, then the complex (53) is exact.

Thus if the restriction of P0 to U is elliptic, the above theorem gives examples
of elliptic complexes of type (12) which are exact.
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in Mathematics, Vol. 52, Birkhäuser, Boston, Basel, Stuttgart, 1984.

1984b Infinitesimal rigidity of S1 ×RPn, Duke Math. J., 51 (1984), 675–690.
1988a Complexes of differential operators and symmetric spaces, in “Defor-

mation theory of algebras and structures and applications,” edited by
M. Hazewinkel and M. Gerstenhaber, Kluwer Academic Pub., Dor-
drecht, Boston, London, 1988, 797–827.

1988b Some rigidity results in the deformation theory of symmetric spaces,
in “Deformation theory of algebras and structures and applications,”
edited by M. Hazewinkel and M. Gerstenhaber, Kluwer Academic
Pub., Dordrecht, Boston, London, 1988,
839–851.
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9 (1970), 165–174.



402 Bibliography
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Centre de Mathématique, 1981.

Warner, F.

1971 “Foundations of differentiable manifolds and Lie groups,” Scott, Fore-
man, Glenview, Ill., London, 1971.

Weinstein, A.

1971 Symplectic manifolds and their Lagrangian submanifolds, Adv. in Math.,
6 (1971) 329–346.

Yang, D.

1986 Local solvability of overdetermined systems defined by commuting first
order differential operators, Comm. Pure Appl. Math., 39 (1986), 401–
421.

1987 Involutive hyperbolic differential systems, Mem. Amer. Math. Soc., 68
(1987), No. 370.


