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Abstract

We explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the
defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiωtF (r)
for some constant ω ∈ R and complex-valued function F (r). We show that the corresponding
metric is static if and only if F (r) = h(r)eia for some constant a ∈ R and real-valued
function h(r). We describe the behavior of the resulting solutions, which are called spherically
symmetric static states. We also describe how, in the low field limit, the parameters defining
these static states are related and show that these relationships imply important properties
of the static states.

1 Introduction

The study of dark matter in the universe has been an exciting field of research in physics for
decades and many notions and ideas have been presented to describe this exotic matter. One
idea is using a scalar field to describe dark matter. This idea has been considered for at least
twenty years, having been studied under the name of boson stars or scalar field dark matter
[1–3, 6, 7, 10, 12–14, 16, 18–21]. In addition, Bray [4] has presented geometrical motivations for
describing dark matter in this way.

The Einstein-Klein-Gordon equations (see equation (1)) are the defining equations of this
concept of dark matter. Due to the fact that the Klein-Gordon equation (see equation (1b)) is
a wave-like equation, we refer to this notion of dark matter as wave dark matter.

Describing the Einstein-Klein-Gordon equations in spherical symmetry is an excellent place
to start studying wave dark matter for two reasons. First, it immensely simplifies the equations
involved making them easier to solve. Secondly, as with many theories, there are some very
interesting objects to be described that are approximately spherically symmetric. In the case
of wave dark matter, dwarf spheroidal galaxies are approximately spherically symmetric and
almost entirely dark matter [15, 22] implying that their kinematics are controlled by their dark
matter component. Thus determining what the wave dark matter model predicts in spherical
symmetry would be important in showing the level of compatibility of wave dark matter with
dwarf spheroidal galaxies.

The purpose of this work is to present a few results in this regard. In particular, we describe
an important class of spherically symmetric solutions of the Einstein-Klein-Gordon equations
called static states and discuss some properties of these solutions. We should also reference here
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others’ results that, with the exception of the ground state, these static states are unstable under
perturbations [1, 2, 5, 8, 11, 19], which poses a problem in using the static states as a physical
model. However, in physical situations dark matter is always coupled with regular matter, which
may have stabilizing effects on the dark matter. Thus understanding the stability of these static
states in the presence of regular matter is an important open problem. It is also possible that
dark matter may not exist as a single static state at all and as such, finding other kinds of stable
configurations of wave dark matter is another important open problem. These open problems
are not addressed here but are left for future work.

2 The Spherically Symmetric Einstein-Klein-Gordon Equations

In this section, we present the form the Einstein-Klein-Gordon equations take in spherical sym-
metry. This has been surveyed in detail by the author in [17] and we refer the reader to that
paper for the derivation of the equations presented here. We also note that several other ref-
erences including, but certainly not limited to, [1–3, 5, 8, 9, 11, 12, 14, 16, 19, 20] have written the
Einstein-Klein-Gordon equations in spherical symmetry using either the metric presented here
or another form of a general spherically symmetric metric.

To begin, let (N, g) be an asymptotically Schwarzschild spacetime whose metric has signature
(− + ++). Let f : N → C be a smooth complex scalar field on the manifold N . Then the
Einstein-Klein-Gordon equations are

G = 8πµ0

(
df ⊗ df̄ + df̄ ⊗ df

Υ2
−

(
|df |2

Υ2
+ |f |2

)
g

)
(1a)

2gf = Υ2f (1b)

where G is Einstein curvature tensor and 2g is the Laplacian with respect to the metric g. The
parameter Υ is a fundamental constant of this system and its value is important in using this
system as a model of dark matter in the universe. The other parameter µ0 is not fundamental
to the system and can be completely absorbed into f if desired.

In [4], wave dark matter is modeled with a real-valued scalar field. The system (1) is the
complex version of the Einstein-Klein-Gordon equations described in [4] and the equations here
reduce to the ones in [4] by simply requiring that f is real-valued, i.e. Im(f) = 0. We use the
complex version here because, as we will see, it possesses static solutions.

We next impose spherical symmetry. We use the Newtonian-compatible metric surveyed in
[17], namely,

g = −e2V (t,r) dt2 +

(
1− 2M(t, r)

r

)−1

dr2 + r2 dσ2. (2)

for real-valued functions V and M . As surveyed in [17], the function M can be interpreted as
the mass of the system, being the Hawking mass of a metric sphere and the flat integral of the
energy density of the system. By requiring the low field limit, that is, M(t, r)� r for all t and
r, we also get that V is approximately the gravitational potential of the system. In this metric,
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the Einstein-Klein-Gordon equations produce the following set of PDEs [17].

Mr = 4πr2µ0

(
|f |2 +

(
1− 2M

r

)
|fr|2 + |p|2

Υ2

)
(3a)

Vr =

(
1− 2M

r

)−1
(
M

r2
− 4πrµ0

(
|f |2 −

(
1− 2M

r

)
|fr|2 + |p|2

Υ2

))
(3b)

ft = peV
√

1− 2M

r
(3c)

pt = eV

(
−Υ2f

(
1− 2M

r

)−1/2

+
2fr
r

√
1− 2M

r

)
+ ∂r

(
eV fr

√
1− 2M

r

)
. (3d)

The function p is defined by equation (3c). There are two other equations produced by the
Einstein-Klein-Gordon equations which are automatically satisfied by solving the system (3)
[17]. We list them here for completeness and because the first of the two equations will be used
later.

Mt =
8πr2µ0eV

Υ2

(
1− 2M

r

)3/2

Re(frp̄) (4a)

VtMt = −re2V

[(
Vrr + V 2

r +
Vr
r

)(
1− 2M

r

)2

+

(
M

r
−Mr

)(
1

r2
+
Vr
r

)(
1− 2M

r

)

− Mtt

re2V
− 3M2

t

r2e2V

(
1− 2M

r

)−1

+ 8πµ0

(
1− 2M

r

)(
|f |2 +

(
1− 2M

r

)
|fr|2 − |p|2

Υ2

)]
(4b)

We note next the important behavior of these functions at the origin and as r →∞.
We use the previously mentioned fact that M is the flat integral of the energy density to shed

light on the initial behavior of the function M near the origin, r = 0. Using the construction in
[17], let νt be the unit vector in the ∂t direction and let T denote a stress energy tensor, then the
energy density of this system is defined as µ(t, r) = T (νt, νt), and the Einstein equation yields

M(t, r) =

∫
Br

µ(t, s) dV =

∫ r

0
4πs2µ(t, s) ds (5)

Since the energy density is spherically symmetric and smooth, if the energy density is nonzero
at the central value, r = 0, at any time t, then the energy density must be an even function of
r. Moreover, since µ(t, r) is also smooth at the origin, µr(t, 0) = 0 for all t. Thus for small r, µ
is approximately constant and nonnegative. Then the above integral yields for small r that

M(t, r) =

∫ r

0
4πs2µ(t, s) dr ≈

∫ r

0
4πs2µ(t, 0) dr =

4πµ(t, 0)

3
r3 (6)

Thus the initial behavior of M near r = 0 is that of a cubic power function. In particular, this
implies that for all t

M(t, 0) = 0, Mr(t, 0) = 0, and Mrr(t, 0) = 0 (7)
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This is consistent with the fact that the metric functions, e2V and

(
1− 2M

r

)
, are also smooth

spherically symmetric functions that are nonzero at r = 0 and hence even functions of r. This
implies that, since r is an odd function, M(t, r) must also act like an odd function near r = 0.
Similarly, V (t, r) must be an even function of r, implying that

Vr(t, 0) = 0 (8)

for all t. Equation (7) implies via L’Hôpital’s rule that

lim
r→0+

M

r
= lim

r→0+

M

r2
= lim

r→0+

Mr

r
= lim

r→0+
Mrr = 0. (9)

Next, since f and p are spherically symmetric and allowed to be nonzero at r = 0, we have that
both f and p are even functions in r as well, which, for regularity at r = 0, implies that

fr(t, 0) = 0 and pr(t, 0) = 0. (10)

for all t.
Next we consider the behavior of the functions at the outer boundary. Since N is asymp-

totically Schwarzschild, there exist constants, m ≥ 0, called the total mass of the system, and
κ > 0, and a Schwarzschild metric gS given by

gS = −κ2

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2 dσ2, (11)

such that g approaches gS as r →∞. This yields the following asymptotic boundary conditions.

2gSf → Υ2f and f → 0 as r →∞ (12)

e2V → κ2

(
1− 2M

r

)
as r →∞. (13)

The first boundary condition (12) implies by equation (3a) that Mr → 0 as r → ∞ and hence
M approaches a constant value as r →∞. Given equations (2), (11), and the second boundary
condition (13), this constant will be the parameter m in (11).

Now that we have described the Einstein-Klein-Gordon equations in spherical symmetry, we
are ready to discuss the class of spherically symmetric solutions to the Einstein-Klein-Gordon
equations that yield static metrics.

3 Spherically Symmetric Static States

In the remainder of this paper, we will consider solutions of the spherically symmetric Einstein-
Klein-Gordon equations where the scalar field f is of the form

f(t, r) = eiωtF (r) (14)

where ω ∈ R and F is complex-valued. As t increases, f rotates the values of the function F (r)
through the complex plane with angular frequency ω without changing their absolute value.
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Thus, without loss of generality, we will assume that ω ≥ 0, since if ω < 0, F will simply rotate
in the opposite direction. With f of this form, we have that

fr = eiωtF ′(r) (15)

p = e−V
(

1− 2M

r

)−1/2

ft

= e−V
(

1− 2M

r

)−1/2 (
iωeiωtF (r)

)
. (16)

With a scalar field of this form, the system (3) implies that the metric is static under certain
conditions on the function F . We collect this result in the following proposition.

Proposition 3.1. Let (N, g) be a spherically symmetric asymptotically Schwarzschild spacetime
that satisfies the Einstein-Klein-Gordon equations (1) for a scalar field of the form in (14). Then
(N, g) is static if and only if F (r) = h(r)eia for h real-valued and a ∈ R constant.

Proof. By definition, a spacetime metric is static if there exists a timelike Killing vector field
and a spacelike hypersurface that is orthogonal to the Killing vector field. For the metric in
equation (2), if the metric components, V and M , do not depend on t, then ∂t is one such
Killing vector field and it is already orthogonal to the t = constant spacelike hypersurfaces.
If a spherically symmetric metric is static, then we can choose the t coordinate to be in the
direction of the timelike Killing vector field, making ∂t the timelike Killing vector field in these
coordinates, and choose the polar-areal coordinates on its orthogonal spacelike hypersurfaces,
yielding a metric of the form in (2). Then since the metric cannot change in the direction of ∂t,
the metric components must be t-independent. It remains then to show that under and only
under the given conditions on F , the metric components are t-independent.

Note that by equation (4a), Mt ≡ 0 if and only if Re(frp̄) ≡ 0. Using equation (15) and
(16), we obtain

Re(frp̄) = Re

(
eiωtF ′(r)e−V

(
1− 2M

r

)−1/2 (
−iωe−iωtF (r)

))

= e−V
(

1− 2M

r

)−1/2

Re(−iωF ′(r)F (r)) (17)

Thus Re(frp̄) ≡ 0 if and only if Re(−iωF ′(r)F (r)) ≡ 0, which is true if and only if F ′(r)F (r) is
real-valued. Now any complex-valued function F (r) can be written as

F (r) = h(r)eia(r) (18)

for real-valued functions h and a. If we write F (r) this way, then F ′(r) is as follows.

F ′(r) = h′(r)eia(r) + ih(r)a′(r)eia(r) = eia(r)
(
h′(r) + ih(r)a′(r)

)
. (19)

Then we have that
F ′(r)F (r) = h′(r)h(r) + ih(r)2a′(r). (20)
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Since h and a are both real-valued, we see that F ′(r)F (r) is real if and only if either h(r) ≡ 0
or a′(r) ≡ 0. If h(r) ≡ 0, then F (r) = h(r)eia with a ∈ R constant is trivially true. If a′(r) ≡ 0,
then a(r) is constant and the result still holds. Thus Mt ≡ 0 if and only if F (r) = h(r)eia with
h real-valued and a ∈ R constant.

It suffices from here to show that Mt ≡ 0 if and only if g is t-independent. Obviously, g
being t-independent implies Mt ≡ 0. On the other hand, assume that Mt ≡ 0. First note that,
since Mt ≡ 0, Mrt ≡ 0 as well. Moreover, since |f |2 = |F |2 and |fr|2 = |F ′|2 and F has zero
t-derivative, then |f |2 and |fr|2 both have zero t-derivatives. Differentiating (3a) with respect
to t and using the fact that |f |2, |fr|2, and M all have zero t-derivatives, we have that

Mrt = 4πr2µ0

∂t (|f |2)− (2Mt

r

)
|fr|2 + |p|2

Υ2
+

(
1− 2M

r

) ∂t

(
|fr|2

)
+ ∂t

(
|p|2
)

Υ2


0 = 4πr2µ0

(
1− 2M

r

) ∂t

(
|p|2
)

Υ2
. (21)

Thus since, M , Υ, and µ0 are all nonzero, ∂t

(
|p|2
)

= 0.

Next, since (3a) and (3b) completely determine the Einstein equation, the function V is
determined at every value of t by solving (3b) at that value of t. Since |f |2, |fr|2, |p|2, and M
never change with t, Vr never changes with t and hence the solution, V , of (3b), by uniqueness
of the solution to an ODE, will never change with t so long as V (t, 0) = constant. Since V (t, 0)
is determined to be the value that makes V satisfy (13) and since M never changes with t,
then the fact that Vr is t-independent forces V (t, 0) = constant. Thus Vt ≡ 0 and the metric is
t-independent.

Since the value of a simply adjusts the “starting position” of the values of f before they
rotate, we will, without loss of generality, set a = 0, which is the same assumption that F (r)
be real-valued. This amounts to simply choosing the hypersurface that we denote as t = 0.
To summarize, we restrict our attention to static states of the form in (14) with ω ≥ 0 and F
real-valued.

3.1 ODEs for Static States

In this section, we input our ansatz (14) with the requirement that ω ≥ 0 and F is real-
valued into the Einstein-Klein-Gordon equations (3a)-(3d). Since the metric is t-independent,
we summarize that

V = V (r), M = M(r), f(t, r) = eiωtF (r). (22)

Also note that by (14)-(16),

|f | = |F | , (23)

|fr| =
∣∣F ′∣∣ , (24)

6



A. Parry Spherically Symmetric Static States of Wave Dark Matter

|p| =

∣∣∣∣∣e−V
(

1− 2M

r

)−1/2 (
iωeiωtF

)∣∣∣∣∣
= |F |ωe−V

(
1− 2M

r

)−1/2

. (25)

Additionally, if we differentiate (16) with respect to t and (15) with respect to r, we obtain,

pt = ∂t

(
e−V

(
1− 2M

r

)−1/2 (
iωeiωtF

))

= −ω2e−V
(

1− 2M

r

)−1/2

eiωtF (26)

frr = eiωtF ′′ (27)

Then equations (3a) and (3b) become

M ′ = 4πr2µ0

[(
1 +

ω2

Υ2
e−2V

)
|F |2 +

(
1− 2M

r

)
|F ′|2

Υ2

]
(28)

V ′ =

(
1− 2M

r

)−1
{
M

r2
− 4πrµ0

[(
1− ω2

Υ2
e−2V

)
|F |2 −

(
1− 2M

r

)
|F ′|2

Υ2

]}
(29)

Equation (3c) turns into (16) becoming redundant. The last equation, (3d), becomes

−ω2e−V
(

1− 2M

r

)−1/2

eiωtF = eV

[
−Υ2

(
1− 2M

r

)−1/2

eiωtF +
2eiωtF ′

r

√
1− 2M

r

]

+ V ′eV eiωtF ′
√

1− 2M

r
+ eV eiωtF ′′

√
1− 2M

r

+ eV eiωtF ′

[
1

2

(
1− 2M

r

)−1/2(2M

r2
− 2M ′

r

)]

−ω2e−V
(

1− 2M

r

)−1/2

eiωtF = eV

{(
1− 2M

r

)−1/2
[

2eiωtF ′
(
M

r2
− 4πrµ0 |F |2

)

−Υ2eiωtF

]
+

√
1− 2M

r

(
eiωtF ′′ +

2

r
eiωtF ′

)}

−ω2F = e2V

[
2F ′

(
M

r2
− 4πrµ0 |F |2

)

−Υ2F +

(
1− 2M

r

)(
F ′′ +

2

r
F ′
)]

e2V

(
1− 2M

r

)
F ′′ = e2V

[(
Υ2 − ω2

e2V

)
F − 2F ′

(
1

r
− M

r2
− 4πrµ0 |F |2

)]
(30)
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which yields

F ′′ =

(
1− 2M

r

)−1 [(
Υ2 − ω2

e2V

)
F + 2F ′

(
M

r2
+ 4πrµ0 |F |2 −

1

r

)]
(31)

To make the system first order, we will introduce a new function H(r) = F ′(r). Then (28), (29),
and (31) become the system

M ′ = 4πr2µ0

[(
1 +

ω2

Υ2
e−2V

)
|F |2 +

(
1− 2M

r

)
|H|2

Υ2

]
(32a)

V ′ =

(
1− 2M

r

)−1
{
M

r2
− 4πrµ0

[(
1− ω2

Υ2
e−2V

)
|F |2 −

(
1− 2M

r

)
|H|2

Υ2

]}
(32b)

F ′ = H (32c)

H ′ =

(
1− 2M

r

)−1 [(
Υ2 − ω2

e2V

)
F + 2H

(
M

r2
+ 4πrµ0 |F |2 −

1

r

)]
(32d)

3.2 Boundary Conditions

We will solve the system (32) numerically, but in order to do so, we need to express how we will
deal with our boundary conditions numerically. Ideally, we would like to model the system in an
infinite spacetime, but since we are computing these solutions numerically, we must introduce an
artificial right hand boundary, say at r = rmax, to which we restrict our domain. To simulate the
fact that the spacetime is asymptotically Schwarzschild, which we detailed in (12) and (13), we
will choose rmax sufficiently large and impose the condition that the spacetime be approximately
Schwarzschild at the boundary. That is, we will impose (12) and (13) at the boundary r = rmax.

In this case, equation (13) at r = rmax becomes

e2V (rmax) ≈ κ2

(
1− 2M(rmax)

rmax

)
0 ≈ V (rmax)− 1

2
ln

(
1− 2M(rmax)

rmax

)
− lnκ (33)

For (12) at r = rmax, we require f to approximately solve the Klein-Gordon equation (1b)
in the Schwarzschild metric (11). Computing the Laplacian in the Schwarzschild metric, this
equation becomes(

1− 2m

r

)2

F ′′ +

(
1− 2m

r
+

(
1− 2m

r

)2
)
F ′

r
−
(

Υ2

(
1− 2m

r

)
− ω2

κ2

)
F = 0. (34)

For large r, this simplifies to

F ′′ +
2F ′

r
−
(

Υ2 − ω2

κ2

)
F = 0. (35)

This ODE is routinely solved and has the general solution

F =
C1

r
e
r
√

Υ2−ω2
κ2 +

C2

r
e
−r

√
Υ2−ω2

κ2 (36)
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for some constants C1, C2 ∈ R. However, we also require that F → 0 as r → ∞ so that f → 0
as well. Thus C1 = 0 and we relabel C2 as simply C. That is, at r = rmax, we require

F =
C

r
e
−r

√
Υ2−ω2

κ2 . (37)

We have no way of directly determining the correct value of C associated with a given static
solution. However, if we differentiate the above with respect to r, we obtain

F ′ = −C
r

e
−r

√
Υ2−ω2

κ2

√
Υ2 − ω2

κ2
− C

r2
e
−r

√
Υ2−ω2

κ2

= −

(√
Υ2 − ω2

κ2
+

1

r

)
F (38)

which does not depend on C. Then the condition that at r = rmax, f approximately satisfies
the Klein-Gordon equation with the Schwarzschild background metric reduces to requiring that

F ′(rmax) +

(√
Υ2 − ω2

κ2
+

1

rmax

)
F (rmax) ≈ 0. (39)

This condition imposes that F is decaying appropriately to 0. It also puts a restriction on the
possible values of ω. Since the left hand side of the above equation must be real, we have that
Υ2 − ω2

κ2
≥ 0, or equivalently, ∣∣∣ω

κ

∣∣∣ =
ω

κ
≤ Υ (40)

That is, ω/κ ∈ [0,Υ]. In our numerical calculations, we normalize this quantity and keep track

of
ω

κΥ
∈ [0, 1] instead.

Next we consider the boundary at the origin r = 0. We have already noted above that
M(0) = 0. Moreover, since fr(t, 0) = 0 for all t, H(0) = F ′(0) = e−iωtfr(t, 0) = 0. Note
that by the system (32), H(0) = 0 implies that if F (0) = 0, then F (r) = 0 for all r, since H ′(r)
and F ′(r) will never change. We are interested in non-trivial solutions to these equations so we
require that F (0) 6= 0. However, for any constants c and µ∗, if cf is a solution to the Einstein-
Klein-Gordon equations, (1), with µ0 = µ∗, then f is a solution to the Einstein-Klein-Gordon
equations with µ0 = c2µ∗. Thus, without loss of generality, we will set F (0) = 1 absorbing any
excess factors into µ0.

At this point, we have four remaining parameters to choose, namely, V (0), ω, Υ, and µ0.
By requiring (33) and (39), two of these values are determined, leaving two remaining degrees
of freedom. The parameter Υ is an as yet unknown fundamental constant, making it important
in our computations to be able to freely set Υ so that we can test different values and see how
they match the data. The parameter µ0 controls the magnitude of the energy density and so
seems a natural choice as another parameter to freely choose. However, this choice is not the
only choice that could be made. For example, one could instead freely choose Υ and ω and use
the boundary conditions to pin down V (0) and µ0 with equivalent results.

When freely choosing Υ and µ0, to compute the other two parameters, V (0) and ω, we solve
a shooting problem to satisfy the desired boundary conditions. We illustrate next in detail how
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we performed this shooting procedure. However, first, we summarize the information about the
boundary conditions.

For some choice of Υ and µ0, we require at r = 0,

F (0) = 1, H(0) = 0, M(0) = 0, V (0) = V0, (41)

and choose ω and V0 to satisfy

F ′(rmax) +

(√
Υ2 − ω2

κ2
+

1

rmax

)
F (rmax) ≈ 0, (42)

V (rmax)− 1

2
ln

(
1− 2M(rmax)

rmax

)
− lnκ ≈ 0. (43)

For simplicity in our calculations, we set κ = 1. Then we use the standard forward Euler method
to solve the system (32) with these boundary conditions.

To understand the procedure we used to solve the shooting problems mentioned above, we
first comment about what equation (31) tells us about the behavior of F in our system. We
are solving these equations in the low field limit where the metric (2) is close to Minkowski.
That is, both V and M are approximately zero. Recall that equation (31) came immediately
from equation (30), which results from substituting (14) into (3d). Letting V = M = 0 makes
equation (3d) and the first line of equation (30) reduce to

∆rF =
(
Υ2 − ω2

)
F (44)

where ∆r is the Laplacian in R3 in spherical coordinates. The one dimensional analogue to the
above equation is

Fxx = kF. (45)

The solution of this differential equation depends on the sign of k. If k > 0, then the solutions
either exponentially grow or decay. If k < 0, the solutions exhibit oscillatory behavior. In
equation (31), the analogous coefficient that will control whether the solutions exhibit oscillatory
or exponential behavior is the following, which we will denote as λ(r).

λ(r) =

(
Υ2 − ω2

e2V (r)

)
. (46)

The sign of λ(r) depends on r. While λ(r) < 0, the solution of (31) will exhibit oscillatory
behavior. On the other hand, while λ(r) > 0, the solution of (31) will exhibit exponential
growth or decay.

Since Υ and ω are constants, the sign of λ(r) is completely controlled by the exp(2V ) term.
If V is strictly increasing and starts low enough, then for small r, exp(2V ) will be small yielding
that λ(r) < 0 and the initial part of the solution will oscillate. Then as r increases, exp(2V )
will eventually be large enough that the Υ2 term dominates λ(r) making λ(r) > 0 and the end
behavior will be exponential growth or decay. Imposing boundary condition (42) will ensure
decaying end behavior instead of growth.

The two parameters that control where this change from oscillation to exponential decay
occurs are the initial value of V and the parameter ω. Larger values of ω and lower values of

10
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V (0) will increase the length of the oscillating region and push the point where it changes to
exponential decay out to larger radii. In fact, given a fixed Υ and µ0, for each value of V (0),
there is a discrete infinite set of ω values for which each ω in the set corresponds to a solution
F that has a given number of zeros (caused by a lengthening of the oscillating region) and the
appropriate end behavior.

Thus we perform our shooting problem as follows. To find a solution with say n zeros, first,
fix a choice of Υ and µ0. Then pick a value of V (0) = V0. Since we have set κ = 1, ω < Υ in
order to be able to satisfy equation (42). Then we systematically pick different values of ω in
the interval [0,Υ] until we obtain the appropriate number of zeros and satisfy (42). Finally, we
use a Newton’s method approach to find the value of V0 whose corresponding solution with n
zeros yields a potential function satisfying (43).

These solutions, now characterized by the number of zeros the resulting scalar field has, are
referred to as spherically symmetric state states of wave dark matter. A static state with no
zeros is called a ground state; with one zero, it is called a first excited state; with two, it is
called a second excited state, and so forth. There is a considerable amount known about static
states as they have been studied for decades, see [1,2,5,8,11,19] for just a few examples. In the
remaining sections, we will present some useful results about these static states.

3.3 Plots of Static States

In Figures 1 to 4, we have plotted examples of the scalar field F (r) (see Figure 1), Mass M(r)
(see Figure 2), energy density µ(r) (see Figure 3), and gravitational potential V (r) (see Figure
4) for a generic ground state and first through third excited states. We make here the following
three observations. First, in these plots, V is strictly increasing, as expected, and M approaches
a constant value as r →∞, also as we expected. Second, for each zero of the function F , there
is a zero of the energy density plot µ, a ripple in the mass profile M , and slight but rapid change
in the slope of the potential V . And finally, the energy density appears to be approximately
proportional to |F |2 = |f |2.

4 Families of Static States

We explained above that four parameters control what static solution is generated by the equa-
tions. However, since we require two conditions on the boundary, choosing only two of these
parameters will define a static state. As stated before, we choose to define Υ and µ0 and solve the
shooting problem for the parameters V0 and ω. For each n, this defines a function, Sn : R2 → R2,
which maps the pair (Υ, µ0) to the pair (V0, ω) such that the choices Υ, µ0, V0, ω yields an nth

excited state (n = 0, of course, referring to the ground state).
A natural question to ask here would be “Is there an expression for Sn for each n?” The

answer to this question is yes, at least in the low field limit. In fact, we have also found
expressions for the total mass m of the system and the half-mass radius rh, that is, the radius rh
for which M(rh) = m/2. These expressions were found by numerically computing the states for
several different values of Υ and µ0, all of which yield a state in the low-field limit. We analyzed
the resulting values and found that certain log plots between the values were linear. We have
collected in Figure 5 some of these plots for the ground state that led to this conclusion.

11
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Figure 1: Plots of static state scalar fields (specifically the function F (r) in (14)) in the ground
state and first, second, and third excited states. Note the number of nodes(zeros) of each
function.
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Figure 2: Mass profiles for a static ground state and first, second, and third excited states of
wave dark matter.
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Figure 3: Energy density profiles for a static ground state and first, second, and third excited
states of wave dark matter.
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Figure 4: Plots of the potential function, V , for a static ground state and first, second, and third
excited states of wave dark matter.
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Figure 5: Left: Log plot of the parameters ω and µ0 for a ground state and constant value
of Υ = 5. The slope of this plot is almost exactly 1/2. We get the exact same slope for
other values of Υ, thus ω(Υ, µ0) = ΥeCfrequency(Υ)

√
µ0 . Right: Log plot of the parameters

Cfrequency(Υ) and Υ for a ground state. The slope of this plot is almost exactly −1. Thus
Cfrequency(Υ) = Cfrequency/Υ, where Cfrequency is a constant. Similar plots exist for any nth

excited state.

These log plots yielded the following expressions, which we emphasize are only expected to
hold in the low field limit. Let ωn, V n

0 , mn, rnh be respectively the values of ω, V (0), m, and rh
for an nth-excited state corresponding to a choice of Υ and µ0. Then we have that

ωn(Υ, µ0) ≈ Υ exp

(
Cnfrequency

√
µ0

Υ

)
(47a)

V n
0 (Υ, µ0) ≈ Cnpotential

√
µ0

Υ
(47b)

mn(Υ, µ0) ≈ CnmassΥ−3/2µ
1/4
0 (47c)

rnh(Υ, µ0) ≈ CnradiusΥ−1/2µ
−1/4
0 (47d)

for some constants Cnfrequency, C
n
potential, C

n
mass and Cnradius which depend only on n. We have

computed these constants for the ground through fifth excited states as well as for the tenth
and twentieth excited states and have collected their values in Table 1. Note also that equations
(47a) and (47b) constitute the Sn function mentioned above.

In the wave dark matter model, Υ is a fundamental constant that should be the same
throughout the universe. In the case of constant Υ, for each n, the equations in (47) define
one-parameter families of the nth excited states, the parameter being the scaling constant µ0.
For constant Υ then, we have that these static states only differ in size where, by equations
(47c) and (47d), a larger µ0 corresponds to a more massive and more dense wave dark matter
halo.
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n Cnfrequency Cnpotential Cnmass Cnradius

0 −3.4638± 0.010 −6.7278± 0.003 4.567± 0.05 0.8462± 0.004
1 −3.2422± 0.012 −7.5411± 0.007 10.22± 0.10 2.2894± 0.009
2 −3.1566± 0.014 −7.9315± 0.009 15.81± 0.16 3.8253± 0.014
3 −3.1062± 0.015 −8.1823± 0.010 21.37± 0.22 5.3994± 0.018
4 −3.0714± 0.015 −8.3653± 0.010 26.91± 0.27 6.9860± 0.022
5 −3.0452± 0.016 −8.5086± 0.011 32.42± 0.33 8.5606± 0.026
10 −3.0076± 0.052 −9.0018± 0.037 60.32± 1.18 15.1357± 0.039
20 −2.9949± 0.077 −9.5061± 0.074 116.62± 2.57 29.6822± 0.107

Table 1: Values of the constants in the system (47) for the ground through fifth excited states as
well as the tenth and twentieth excited states. We have given them error ranges which encompass
the interval we observed in our experiments, but it is possible that values outside our ranges
here could be observed, though we don’t expect them to be so by much if the discretization of
r used in solving the ODEs is sufficiently fine. Note also that our values have less precision as
we increase n. This is because as n increases, it becomes more difficult to compute the states
with as much precision.

4.1 Scalings of Static States

Certain scalings exist for various quantities if we scale time and length in any coordinate system.
In particular, let us scale the time coordinate, t, and the standard spatial coordinates, xi, so
that

Time: t̄ = βt Distance: x̄i = αxi (48)

for some positive constants β, α ∈ R. Then velocities in the (t, x) system will scale to velocities
in the (t̄, x̄) system as follows

v̄i =
dx̄i

dt̄
=
α

β

dxi

dt
=
α

β
vi (49)

Similarly, other quantities scale as follows (velocity is included again for completeness).

Velocity: v̄ =
α

β
v Mass: m̄ =

α3

β2
m

Energy Density: µ̄ =
1

β2
µ Gravitational Potential: V̄ =

α2

β2
V

Frequency: λ̄ =
1

β
λ (50)

These scalings are routine to derive and follow directly from how the units on each of these
quantities scale with the scaling for mass being that which is required to keep the universal
gravitational constant the same from one scaled coordinate system to the other.

From the system (47), the scalings in (48) and (50), and given that the constants Cn∗ are
dimensionless, we infer how the parameters µ0 and Υ would scale under these coordinate scalings
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in order to keep (47) invariant. To do this, let c1 and c2 be such that under the coordinate scalings
in (48),

µ̄0 = c1µ0 and Ῡ = c2Υ. (51)

Since m and rh are a mass and spatial quantity respectively, equations (47c) and (47d) yield

m̄n =
α3

β2
mn

≈ α3

β2
CnmassΥ

−3/2µ
1/4
0

=
α3

β2
Cnmassc

3/2
2 Ῡ−3/2c

−1/4
1 µ̄

1/4
0

=
α3c

3/2
2

β2c
1/4
1

CnmassῩ
−3/2µ̄

1/4
0 (52)

and

r̄nh = αrnh

≈ αCnradiusΥ−1/2µ
−1/4
0

= αCnradiusc
1/2
2 Ῡ−1/2c

1/4
1 µ̄

−1/4
0

= αc
1/2
2 c

1/4
1 CnradiusῩ

−1/2µ̄
−1/4
0 (53)

Then requiring these equations to be invariant under coordinate scalings is equivalent to

α3c
3/2
2

β2c
1/4
1

= 1 and αc
1/2
2 c

1/4
1 = 1 (54)

Solving these two equations simultaneously for c1 and c2 yields

c1 =
1

β2
and c2 =

β

α2
. (55)

Thus equations (47c) and (47d) imply that µ0 and Υ scale as follows

Stress Energy Tensor Constant: µ̄0 =
1

β2
µ0 Upsilon: Ῡ =

β

α2
Υ. (56)

We observe here that µ0 scales as energy density, which is expected given that as we said before
it controls the magnitude of the energy density function defined by the stress energy tensor.

Since Υ is a fundamental constant in this system, it is appropriate to ask under what kinds
of coordinate scalings of the form in (48) is Υ invariant, that is, Ῡ = Υ. In light of (56), the
answer to this question is readily apparent, those scalings where β = α2. Under this type of
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scaling, (48), (50), and (56) become

Time: t̄ = α2t Distance: x̄ = αx

Velocity: v̄ =
1

α
v Mass: m̄ =

1

α
m

Energy Density: µ̄ =
1

α4
µ Gravitational Potential: V̄ =

1

α2
V

Frequency: λ̄ =
1

α2
λ

Stress Energy Tensor Constant: µ̄0 =
1

α4
µ0 Upsilon: Ῡ = Υ. (57)

The scalings in (57) are also consistent with keeping the remaining relations (47a) and (47b)
invariant under coordinate scalings. Showing this for (47b) is straightforward and follows from
(57) and the fact that V0 has gravitational potential units,

V̄ n
0 ≈ Cnpotential

√
µ̄0

Ῡ

α2

β2
V n

0 ≈ Cnpotential

√
β−2µ0

βα−2Υ

α2

β2
V n

0 ≈ Cnpotential
α2

β2

√
µ0

Υ

V n
0 ≈ Cnpotential

√
µ0

Υ
. (58)

We should note that the above holds even if we do not assume that β = α2. However, the
next equation does rely on the fact that β = α2. For (47a), since it is not a power function,
we approximate the equation to first order using the Taylor expansion of ex and show that
the approximate equation is invariant which implies that the original equation is approximately
invariant. This is sufficient since all of the equations in (47) are only approximations anyway.

ω̄n ≈ Ῡ exp

(
Cnfrequency

√
µ̄0

Ῡ

)
ω̄n − Ῡ ≈ Ῡ exp

(
Cnfrequency

√
µ̄0

Ῡ

)
− Ῡ

1

α2
(ωn −Υ) ≈ Ῡ + ῩCnfrequency

√
µ̄0

Ῡ
− Ῡ

= Cnfrequency
√
µ̄0

= Cnfrequency

√
µ0

α4

1

α2
(ωn −Υ) ≈ 1

α2
Cnfrequency

√
µ0

ωn −Υ ≈ Cnfrequency
√
µ0

ωn ≈ Υ + ΥCnfrequency

√
µ0

Υ

ωn ≈ Υ exp

(
Cnfrequency

√
µ0

Υ

)
(59)
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Figure 6: Left: Plot of the mass profile of a ground state with its corresponding hyperbola of
constant Υ overlayed. Any ground state mass profile that keeps the presented relationship with
this hyperbola corresponds to the same value of Υ. Right: Examples of different ground state
mass profiles corresponding to the same value of Υ. The corresponding hyperbola of constant Υ
is overlayed. Notice that all three mass profiles have the same relationship with the hyperbola.

4.2 Properties of Static State Mass Profiles

In this last section, we discuss a few additional properties of static state mass profiles that are
of particular interest to the study of wave dark matter. The first is the relationship between the
total mass m and the half-mass radius rh for any nth excited state. We observe from equations
(47c) and (47d) that the product mrh does not depend on the parameter µ0. Specifically,

mrh =
CmassCradius

Υ2
, (60)

where we have suppressed the notation of n. If Υ is constant, then, because both Cmass and
Cradius are positive for all n (see Table 1), the right hand side of this equation is some positive
constant, k, and we have that

mrh = k, (61)

which defines a hyperbola. Thus, for a given nth excited state, all of the possible mass profiles
for a constant value of Υ lie along a hyperbola. We illustrate this phenomenon in Figure 6.

Another property of interest is the initial behavior of a static state mass profile. We explained
previously that the mass function of any spherically symmetric solution to the Einstein-Klein-
Gordon equations is initially cubic and approximately equal to the value in equation (6). It is
routine to show that, for a static state, the value µ(t, 0) = µ(0) (since the metric and stress
energy tensor for a static state is independent of t) is

µ(0) = µ0

(
1 +

ω2

Υ2
e−2V0

)
. (62)

Thus for an nth excited state and small r, we have that

M(r) ≈ 4πr3µ0

3

(
1 +

ω2

Υ2
e−2V0

)
. (63)
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Figure 7: Left: Plot of the mass profile of a ground state with its corresponding initial cubic
function overlayed. Right: Close up of the picture on the right in the region of small r.

We illustrate this initial behavior in Figure 7.
We make one final note here about the stability of these static states. The ground state is

known to be stable under perturbations so long as its total mass is not too large [2, 5, 8, 11, 19].
In particular, the ground state is stable in the low field limit. The higher excited states do not
appear to be stable under perturbations, instead the agitated system either settles to a ground
state or collapses into a black hole [1, 2]. On the other hand, there has been some success in
stabilizing higher excited states using interactions with the stable ground states [2]. However,
as stated in the introduction, in physical situations dark matter is always coupled with regular
matter, which may have stabilizing effects on the dark matter. Thus understanding the stability
of these static states in the presence of regular matter is an important open problem. It is also
possible that dark matter may not exist as a single static state at all and as such, finding stable
dynamical solutions of the Einstein-Klein-Gordon equations is another important open problem.

5 Conclusion

We summarize here the results of this paper. This paper was concerned with spherically sym-
metric asymptotically Schwarzschild solutions of the Einstein-Klein-Gordon equations (1) with
a metric of the form

g = −e2V (t,r) dt2 +

(
1− 2M(t, r)

r

)−1

dr2 + r2 dσ2, (64)

where V and M are real-valued functions, and a scalar field of the form

f(t, r) = eiωtF (r), (65)

where ω ≥ 0 and F is complex-valued. We proved the following proposition which is designated
here with the same number as it appears earlier in the paper.
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Proposition 3.1 Let (N, g) be a spherically symmetric asymptotically Schwarzschild spacetime
that satisfies the Einstein-Klein-Gordon equations (1) for a scalar field of the form in (14). Then
(N, g) is static if and only if F (r) = h(r)eia for h real-valued and a ∈ R constant.

Restricting our attention, without loss of generality, to solutions where F was real-valued
and hence the metric is static by the above proposition, we next showed that for chosen values
of (Υ, µ0), there was a infinite number of solutions of this type that could be distinguished by
the number of zeros, n, the scalar field F contains. These solutions are called nth excited states
when n > 0 and ground states when n = 0. Generic examples of these static states are displayed
in Figures 1 - 4.

We also showed that the parameters defining such solutions, Υ, µ0, ω, and V0 as well as the
total mass, m, and the half-mass radius, rh, are related via the following equations

ωn(Υ, µ0) ≈ Υ exp

(
Cnfrequency

√
µ0

Υ

)
(66a)

V n
0 (Υ, µ0) ≈ Cnpotential

√
µ0

Υ
(66b)

mn(Υ, µ0) ≈ CnmassΥ−3/2µ
1/4
0 (66c)

rnh(Υ, µ0) ≈ CnradiusΥ−1/2µ
−1/4
0 (66d)

The values of the constants in these equations for various states are found in Table 1. We showed
that these relations imply important scalings when we scale the coordinate functions as in (48)
and restrict the types of scalings allowed if the parameter Υ is to be invariant (see equation
(57)).

Finally, we showed that the last two of the above four relations imply that for a constant
value of Υ, the mass profile of any nth excited state lies along a hyperbola (see Figure 6). We
also showed that the initial behavior of a static state mass profile was cubic (see Figure 7).

All of these results are useful in understanding the predictions of wave dark matter in the
case where the spacetime is static and spherically symmetric.
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