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The Mystery of the Cosmos

“There is geometry in the humming of the strings,
there is music in the spacing of the spheres.”

attributed to Pythagoras (570 - 495 BC)

“The laws of nature are but the mathematical
thoughts of God.”

Euclid (323 - 283 BC)

“The Cosmos is all that is or ever was or ever will be.
Our feeblest contemplations of the Cosmos stir us - there
is a tingling in the spine, a catch in the voice, a faint
sensation, as if a distant memory, of falling from a height.
We know we are approaching the greatest of mysteries.”

Carl Sagan (1934 - 1996)



Euclidean Geometry

Pythagoras (570 - 495 BC) and Euclid (323 - 283 BC)



The Rule of Pythagoras

~v = (dx, dy)
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y

dx
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ds

Rule of Pythagoras: ds2 = dx2 + dy2.



The Rule of Pythagoras in 3 Dimensions

~v = (dx, dy, dz)
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Using the rule of Pythagoras twice, we get

ds2 = h2 + dz2 = dx2 + dy2 + dz2.



The Rule of Pythagoras in 4 Dimensions

~v = (dx, dy, dz, dt)

y, z

x

t

ds

Similarly, following the pattern, in 4 dimensions we get

ds2 = dx2 + dy2 + dz2 + dt2.

There is nothing different about any of these 4 dimensions, unlike
space and time which are clearly different. How can we modify the
geometry to make 1 dimension different from the other 3?



Special Relativity

~v = (dx, dy, dz, dt)

y, z

x

t

ds

Special Relativity results from studying the geometry of the
Minkowski spacetime, where the lengths of vectors are defined by

ds2 = dx2 + dy2 + dz2 − dt2.

Notice that there is clearly something different about one of the
dimensions now. But are we allowed to do this? Sure, why not!



Riemannian Geometry

Carl Friedrich Gauss (1777 - 1855) and
Bernhard Riemann (1826 - 1866)



Spheres are Intrinsically 2 Dimensional

Gauss and Riemann realized that the geometry of a sphere or any
other surface may be described by looking at a collection of flat
maps of the surface, called an atlas. For example, if you want to
drive to the Grand Canyon, you might use an atlas of the US to
plan your trip. However, maps usually distort distances somewhat:
Greenland and Antarctica are not as big as they appear in
Mercator projections of the Earth, as seen on the right.



The Geometry of a Surface

Since maps typically distort distances, the shortest distance
between two points is not necessarily a straight line on the map.
The true length of a curve may be computed by integrating the
lengths of the velocity vectors to the curve. Gauss’s key insight
was realizing that all of the geometry intrinsic to the surface was
determined by knowing the length of every vector.



The Geometry of the Unit Sphere
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~v = (dφ, dθ)

dφ

dθ

ds2 = dθ2 + cos2(θ)dφ2

(φ, θ)

ds

This modified “Rule of Pythagoras” captures the geometry of the
unit sphere S2. What other geometries might there be?



Other Geometries
Well-known examples of other geometries include:

ds2 = dx2 + dy2 (Flat 2D Euclidean space)
ds2 = dx2 + sin2(x)dy2 (The sphere of radius 1)
ds2 = R2dx2 +R2 sin2(x)dy2 (The sphere of radius R)
ds2 = dx2 + sinh2(x)dy2 (Hyperbolic space)
ds2 = (dx2 + dy2)/y2 (also Hyperbolic space)

What about:

ds2 = 4dx2 + 9dy2 = (2dx)2 + (3dy)2 = dX2 + dY 2

ds2 = a dx2 + b dy2 + c dz2 + d dt2 (depends ... )

If a, b, c, d > 0, then we have 4D Euclidean space again. But if
a, b, c > 0 and d < 0 then we get the Minkowski spacetime:

ds2 = 4dx2 + 9dy2 + 16dz2 − 25dt2

= (2dx)2 + (3dy)2 + (4dz)2 − (5dt)2

= dX2 + dY 2 + dZ2 − dT 2
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The Geometry of the Minkowski Spacetime

~v = (dx, dy, dz, dt)

y, z

x

t

future timelike vectors (ds2 < 0)

past timelike vectors (ds2 < 0)

(ds =
√
|ds2|)

ds2 = dx2 + dy2 + dz2 − dt2

null vectors (ds2 = 0)

spacelike vectors (ds2 > 0)

The Minkowski spacetime has 3 types of vectors: spacelike,
timelike, and null. The geometry of the null cone naturally divides
timelike vectors into future and past components.



The Geometry of the Minkowski Spacetime

y, z

x

t

Principle: Geometric quantities correspond to physical observables.
For example, the length of your world line, which always goes in
future timelike directions, equals the time you experience.



The 1+1 Dimensional Minkowski Spacetime

~v = (dx, dt)

x

t

future timelike vectors (ds2 < 0)

past timelike vectors (ds2 < 0)

(ds =
√
|ds2|)

ds2 = dx2 − dt2

null vectors (ds2 = 0)

spacelike vectors (ds2 > 0)

Let’s remove the y and z directions for now. The null cone is now
really a null “X.”



The 1+1 Dimensional Minkowski Spacetime

~v = (dx, dt)

x

t

future timelike vectors (ds2 < 0)

past timelike vectors (ds2 < 0)

(ds =
√
|ds2|)

ds2 = dx2 − dt2

null vectors (ds2 = 0)

spacelike vectors (ds2 > 0)

What do “rotations” (which fix the origin and ds2 for all vectors)
look like in this new geometry?



Rotations (left diagram) and Boosts (right diagram)

x

t

x

y

Analogous to rotations in Euclidean space, boosts are linear
transformations of the Minkowski spacetime which fix the origin
and preserve the dot product between every pair of vectors.



Rotations (left diagram) and Boosts (right diagram)

x

t

ds2 = dx2 − dt2
(12,0)

(13,5)

(0,12)
(5,13)

(12,12)

(18,18)

v · w = vxwx − vtwt

x

y

ds2 = dx2 + dy2

v · w = vxwx + vywy

(13,0)

(12,5)

(13,13)

(7,17)

(0,13)(-5,12)

Analogous to rotations in Euclidean space, boosts are linear
transformations of the Minkowski spacetime which fix the origin
and preserve the dot product between every pair of vectors.



Relative Velocity

x

t

(12,0)

(13,5)

(0,12)
(5,13)

(12,12)

(18,18)

A B

L

A: B has velocity 5/13.
A: L has velocity 1.

B: A has velocity -5/13 (guess).
B: L has velocity ... hmmm.

Suppose A, B, and L all start at the origin and then travel in
straight lines as shown. How fast does L appear to be going
according to B?



Relative Velocity

x

t

(12,0)

(13,-5)

(0,12)
(-5,13)

(12,12)

(8,8)

A
B

L

A: B has velocity 5/13.
A: L has velocity 1.

B: A has velocity -5/13.
B: L has velocity 1.

The trick is to rotate, or more precisely boost, the coordinates to
make the answer to the problem clear. In this case, boost the
coordinate chart so that B is now going in the (0, 12) direction.



Relative Velocity

x

t

(12,0)

(13,-5)

(0,12)
(-5,13)

(12,12)

(8,8)

A
B

L

A: B has velocity 5/13.
A: L has velocity 1.

B: A has velocity -5/13.
B: L has velocity 1.

Both A and B agree that L has speed 1, even though A and B are
moving with respect to one another. The geometry of the
Minkowski spacetime requires that there be a special speed,
namely speed 1, that is observed to be the same by all observers.



Relative Velocity
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L

A: B has velocity 5/13.
A: L has velocity 1.

B: A has velocity -5/13.
B: L has velocity 1.

In 1887, the Michelson-Morley experiment determined that the
speed of light, c, was the same in every reference frame. This result
is consistent with the geometry of the Minkowski spacetime if we
simply define c = 1. Distance and time then have the same units.



The Constancy of the Speed of Light

x

t
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y

Boosts, by definition, preserve ds2. Hence, null directions must be
transformed into other null directions, which all have speed 1.
Thus, if we define c = 1, the speed of light will be observed to be
the same by all observers.



The Twin “Paradox”

y, z
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t

Principle: Geometric quantities correspond to physical observables.
For example, the length of your world line, which always goes in
future timelike directions, equals the time you experience.



The Twin “Paradox” - just the geometry of spacetime

(5,13) (13,13)

(0,26)

12

12
0

0

13

13

t

x

(0,13)

The longest distance between 2 points is a straight line! In this
example, the twin who stays on Earth experiences 26 years while
the twin who goes at velocity 5/13, then velocity −5/13,
experiences only 24 years. An astronaut going close to the speed of
light following the green curve would experience almost no time.



The Unit “Spheres” of the Minkowski Spacetime

x, y, zx, y, z

w

ds2 = dx2 + dy2 + dz2 + dw2 ds2 = dx2 + dy2 + dz2 − dt2

t

The Minkowski spacetime has, in some sense, 3 different kinds of
spheres, depending on whether the distance squared from the
origin is positive, negative, or zero, as drawn on the right. For
comparison, the unit sphere of Euclidean space is drawn on the left.



The Unit “Spheres” of the Minkowski Spacetime

x, y, zx, y, z

w

ds2 = dx2 + dy2 + dz2 + dw2 ds2 = dx2 + dy2 + dz2 − dt2

t

Just as the unit sphere in Euclidean space has constant curvature,
the blue and red hypersurfaces drawn on the right also have
constant curvature. Can you guess the geometry of each blue
hypersurface?

... drum roll please ... Hyperbolic space!
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The Unit “Spheres” of the Minkowski Spacetime
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Hyperbolic Space

x, y, zx, y, z

w

ds2 = dx2 + dy2 + dz2 + dw2 ds2 = dx2 + dy2 + dz2 − dt2

t

Hyperbolic space is the spacelike unit sphere of the Minkowski
spacetime. Because of the symmetries (both rotations and boosts)
of the Minkowski spacetime, every point and every direction of
hyperbolic space is the same. Hence, it has constant curvature.



Constant Acceleration

x

ds2 = dx2 + dy2 + dz2 − dt2

tBy symmetry, the red curve has
constant curvature, just like a
circle does in Euclidean space.
Physically, this represents
constant acceleration.

α(s) = ( 1a cosh(as),
1
a sinh(as))

α(s)

α′(s) = (cosh(as), sinh(as))

|α′(s)| = 1

Thus, s is the time
experienced by the astronaut.

For small s, we recover the Newtonian analogue:

d =
1

a
(cosh(as)− 1) ≈ 1

a

1

2
(as)2 =

1

2
as2.



Constant Acceleration

x

ds2 = dx2 + dy2 + dz2 − dt2

tBy symmetry, the red curve has
constant curvature, just like a
circle does in Euclidean space.
Physically, this represents
constant acceleration.

α(s) = ( 1a cosh(as),
1
a sinh(as))

α(s)

α′(s) = (cosh(as), sinh(as))

|α′(s)| = 1

Thus, s is the time
experienced by the astronaut.

For large s, though, the distance traveled grows exponentially!

d =
1

a
(cosh(as)− 1) ≈ 1

2a
eas



Alien Abduction

So, if you were abducted by aliens after this lecture, how far away
from Earth could they take you in your lifetime?



Alien Abduction

• The star Proxima Centauri is about 4 light years away.
• The Milky Way is about 100,000 light years in diameter.
• The Andromeda galaxy is about 2,500,000 light years away.
• The edge of the observable universe is about 45,000,000,000

light years away.



Alien Abduction
Assuming Special Relativity, nothing can accelerate past the speed
of light. So even if the aliens had a space craft that could go close
to the speed of light, they could not take you farther than 100
light years from Earth ...

in MY lifetime.

But remember the twin “paradox”? Time passes more slowly for
the accelerating twin. So how far could the aliens take you from
Earth in YOUR lifetime?

If the aliens accelerate their spacecraft much faster than
1g = 9.8m/s2, they might kill you. Let’s assume the aliens want
to keep you alive and accelerate their spacecraft at precisely 1g,
and that they can do this for as long as they like.

An interesting factoid: (1g) · (1 year) ≈ c = 1.

Thus, 1
g ≈ 1 year = 1 light year.

Plugging into our constant acceleration formula, we get ...
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Alien Abduction
d - distance traveled; s - time experienced by the travelers

d

1 light year
= cosh

(
s

1 year

)
− 1

Some sample approximate values:

s (in years) d (in light years)

0 0
1 0.5
2 3
3 9
4 25
5 75

10 10,000
15 1,500,000
20 250,000,000
25 35,000,000,000
30 5,000,000,000,000



Alien Abduction

So, if you were abducted by aliens after this lecture, how far away
from Earth could they take you in your lifetime?

Practically anywhere, if you eat right and exercise!

25 years to accelerate, 25 years to decelerate, and then you would
be at rest, 72 billion light years from Earth!
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Space Exploration and Time Travel

Meanwhile, 72 billion years have passed on the Earth.

In effect, a spaceship which can accelerate at 1g for as long as you
like is both a tool for space exploration and a time machine. If
such spaceships exist someday, space explorers might head out in
various directions and agree to meet back at Earth, 1 million or 1
billion years in the future.
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General Relativity

Everything we’ve discussed so far is Special Relativity, based on the
flat geometry of the Minkowski spacetime

ds2 = dx2 + dy2 + dz2 − dt2,

which came from changing a sign in the rule of Pythagoras.

What about other spacetime metrics, like

ds2 = f(x, y, z, t)(dx2 + dy2 + dz2)− h(x, y, z, t)dt2,

for some functions f and h?

What happens when we remove the assumption that the spacetime
metric is flat?



General Relativity

Principle: Geometric quantities correspond to physical observables.
What does the curvature of a spacetime correspond to? Einstein’s
great idea, which he called his happiest thought, can be summed
up in 3 words:

“Matter curves spacetime.”

That is, the curvature of spacetime corresponds to matter density.

Tomorrow we’ll explore how matter curves spacetime in more
detail, and explore the question of dark matter in the universe. For
now, let’s review the successes of general relativity.
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Successes of General Relativity: Gravity

The Earth goes around the Sun because the mass of the Sun
curves spacetime, not because of some mysterious 1/r2 force law
assumed as an axiom without any explanation as to what the
mechanism for gravity might be.



Successes of General Relativity: The Orbit of Mercury

Newtonian physics predicts a precession of 1.5436◦ per century,
not 1.5556◦ per century, observed since Verrier in 1859. In 1915,
Einstein showed that General Relativity gets it right.



Successes of General Relativity: Black Holes

Artist’s rendition of a black hole. Einstein was surprised when
Schwarzschild found an exact solution to the highly nonlinear
Einstein vacuum equations in 1915. Einstein spent the rest of his
life believing that black holes, while existing in his theory, did not
actually exist in nature. The idea seemed too radical at the time.



Successes of General Relativity: Black Holes

The supermassive black hole Sagittarius A* (4 million solar
masses) at the center of the Milky Way Galaxy. The first black
hole ever observed, Cygnus X - 1, was discovered in 1970. Today it
is believed that most large galaxies have supermassive black holes
at their centers.



Successes of General Relativity: Gravitational Lensing

General Relativity predicts twice the bending angle for light that
Newtonian physics predicts and agrees with observations, as
observed by Eddington in 1919, on an island off the west coast of
Africa during a solar eclipse.



Successes of General Relativity: Gravitational Lensing

After Eddington, Einstein becomes a celebrity, still the only
scientist to receive a ticker tape parade in NYC, as he did in 1921.
Still, it’s not like he won the Super Bowl or anything ...



Successes of General Relativity: The Big Bang



Successes of General Relativity: The Big Bang

Big Bang cosmologies predicted by General Relativity were
discovered in 1922 by Alexander Friedmann (left, who died in
1925) and independently in 1927 by George Lemaitre (middle),
years before Edwin Hubble’s (right) landmark discovery of the
expanding universe in 1929.



Successes of General Relativity: The Accelerating
Expansion of the Universe
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The Mass of the Universe

70% Dark Energy
(the cosmological constant of General Relativity used to
explain the observed accelerating expansion of the
universe)

25% Dark Matter

5% Regular Baryonic Matter
(Gas, Dust, Planets, Stars, etc., composed of particles
described by the Standard Model of Particle Physics
and Quantum Field Theory)

Which theory best describes Dark Matter?



Big Questions

There is roughly five times more dark matter in the universe than
regular baryonic matter represented by the periodic table.

Also, most of the mass of galaxies is dark matter.

1. What is the nature of dark matter?

2. Does dark matter have something to do with spiral structure in
galaxies?



The Puzzle of the Spirals

“Much as the discovery of these strange forms may
be calculated to excite our curiosity, and to awaken an
intense desire to learn something of the laws which give
order to these wonderful systems, as yet, I think, we have
no fair ground even for plausible conjecture.”

Lord Rosse (1850)

“A beginning has been made by Jeans and other
mathematicians on the dynamical problems involved in
the structure of the spirals.”

Curtis (1919)

“Incidentally, if you are looking for a good problem...”

Feynman (1963)



The Puzzle of the Spirals
“The old puzzle of the spiral arms of galaxies

continues to taunt theorists. The more they manage to
unravel it, the more obstinate seems the remaining
dynamics. Right now, this sense of frustration seems
greatest in just that part of the subject which advanced
most impressively during the past decade - the idea of
Lindblad and Lin that the grand bisymmetric spiral
patterns, as in M51 and M81, are basically compression
waves felt most intensely by the gas in the disks of those
galaxies. Recent observations leave little doubt that such
spiral “density waves” exist and indeed are fairly
common, but no one still seems to know why.

To confound matters, not even the N -body
experiments conducted on several large computers since
the late 1960s have yet yielded any decently long-lived
regular spirals.”

Toomre (1977)



Spiral Galaxy M81



Spiral Galaxy M74



Spiral Galaxy NGC1365



Spiral Galaxy NGC4622



Spiral Galaxy M51, the Whirlpool Galaxy



Spiral Galaxies 2MASX J00482185-2507365



Spiral Galaxy NGC3314



Spiral Galaxies ARP274



Elliptical Galaxies

Figure : Elliptical galaxies contain ellipsoidal shaped collections of stars in
mostly radial orbits. Two examples are M87 (left) and NGC1132 (right).



Galaxy Cluster MS1054-0321



The Bullet Cluster



                     SPIRALS 

Figure : From the Dark Matter Awareness Week presentation.
Presentation review at arXiv:1102.1184v1 by Paolo Salucci, Christiane
Frigerio Martins, and Andrea Lapi.



What about Dark Matter and Spiral Galaxies?

Tomorrow, in Lander Auditorium at 4:50pm, the three main ideas
of my talk will be:

Idea 1: Natural geometric axioms motivate studying the
Einstein-Klein-Gordon equations with a cosmological constant. Is
the scalar field of the Klein-Gordon equation dark matter?

Idea 2: Wave types of equations, such as the Klein-Gordon
equation, naturally form density waves in their matter densities.

Idea 3: Density waves in dark matter, through gravity, naturally
form density waves in the regular baryonic matter. Does this
explain the observed spiral density waves in spiral galaxies?



Spiral Galaxy Simulation #1

NGC1300 on the left, simulation on the right.



Spiral Galaxy Simulation #2

NGC4314 on the left, simulation on the right.



Spiral Galaxy Simulation #3

NGC3310 on the left, simulation on the right.



Spiral Galaxy Simulation #4

NGC488 on the left, simulation on the right.


