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Abstract

The positive mass theorem states that a complete asymptotically flat manifold of
nonnegative scalar curvature has nonnegative mass and that equality is achieved only
for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower
bound for the mass when black holes are present. More precisely, this lower bound
is given in terms of the area of an outermost minimal hypersurface, and equality is
achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first
proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a
single black hole (see [HI]). In 1999, Bray extended this result to the general case of
multiple black holes using a different technique (see [Br]). In this article, we extend
the technique of [Br] to dimensions less than eight. Part of the argument is contained
in a companion article by Lee [L]. The equality case of the theorem requires the added
assumption that the manifold be spin.

1. Introduction

The Penrose conjecture is a longstanding conjecture in general relativity which pro-
vides a lower bound for the mass of an asymptotically flat spacelike slice of spacetime,
in terms of the area of the black holes in the spacelike slice. Penrose originally for-
mulated the conjecture as a test for the far more ambitious idea of cosmic censorship
(see [P]). In the case where the asymptotically flat spacelike slice is time-symmetric,
the Penrose conjecture reduces to a statement in Riemannian geometry, which we
call the Riemannian Penrose inequality. In this article, we restrict our attention to
the Riemannian Penrose inequality. For more background on the general Penrose
conjecture, as well as some physical motivation, see [Br, Section 1] and references
cited therein.

The Riemannian Penrose inequality was first proved in three dimensions in 1997
by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999,
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Bray extended this result to the general case of multiple black holes using a different
technique (see [Br]). Before we state this theorem, let us review some definitions.

Definition
Let n ≥ 3. A Riemannian manifold (Mn, g) is said to be asymptotically flat∗ if there
is a compact set K ⊂ M such that M � K is a disjoint union of ends, Ek , such that
each end is diffeomorphic to Rn � B1(0), and in each of these coordinate charts, the
metric gij satisfies

gij = δij + O(|x|−p),

gij,k = O(|x|−p−1),

gij,kl = O(|x|−p−2),

Rg = O(|x|−q),

for some p > (n−2)/2 and some q > n, where the commas denote partial derivatives
in the coordinate chart, and Rg is the scalar curvature of g.

In this case, in each end Ek , the limit

m(Ek, g) = 1

2(n − 1)ωn−1
lim

σ→∞

∫
Sσ

(gij,i − gii,j )νj dμ

exists (see, e.g., [S, Section 4]), where ωn−1 is the area of the standard unit (n − 1)-
sphere, Sσ is the coordinate sphere in Ek of radius σ , ν is its outward unit normal, and
dμ is the Euclidean area element on Sσ . We call the quantity m(Ek, g), first considered
by Arnowitt, Deser, and Misner (see, e.g., [ADM]), the ADM mass of the end (Ek, g),
or when the context is clear, we simply call it the mass, m(g). R. Bartnik showed that
the ADM mass is a Riemannian invariant, independent of choice of asymptotically
flat coordinates (see [B, Section 4]).

The Riemannian Penrose inequality may be thought of as a refinement of the celebrated
positive mass theorem when black holes are present. Indeed, we need to use the positive
mass theorem for our proof.

THEOREM 1.1 ((Riemannian) positive mass theorem)
Let (Mn, g) be a complete asymptotically flat manifold with nonnegative scalar cur-
vature. If n < 8 or if M is spin, then the mass of each end is nonnegative. Moreover,
if any of the ends has zero mass, then (Mn, g) is isometric to Euclidean space.

∗Note that there are various inequivalent definitions of asymptotic flatness in the literature, but they are all similar
in spirit. This one is taken from [S, Section 4].
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The (n < 8)-case was proved by R. Schoen and S.-T. Yau using minimal surface
techniques (see [SY]; see also [S, Section 4]), and later E. Witten proved the spin case
using a Bochner-type argument (see [Wi]; see also [B]).

Now, fix a particular end of Mn. Define S to be the collection of hypersurfaces
that are smooth compact boundaries of open sets in M containing all of the other ends.
Then each hypersurface in S defines a meaningful outside and inside.

Definition
A horizon in (Mn, g) is a minimal hypersurface inS . A horizon � is outer-minimizing∗

if its area minimizes area among all hypersurfaces in S enclosing �.

Definition
The (Riemannian) Schwarzschild manifold of dimension n and mass m is Rn � {0}
equipped with the metric

gij (x) =
(

1 + m

2
|x|2−n

)4/(n−2)
δij .

Given a mass m, we also define the Schwarzschild radius of the mass m to be

Rsc(m) =
(m

2

)1/(n−2)
.

Note that in a Schwarzschild manifold, the coordinate sphere of radius Rsc(m) is the
unique outer-minimizing horizon, and its area A satisfies the equation

m = 1

2

( A

ωn−1

)(n−2)/(n−1)
.

We can now state the main result of [Br, Theorem 1].

THEOREM 1.2 (Riemannian Penrose inequality in three dimensions)
Let (M3, g) be a complete asymptotically flat 3-manifold with nonnegative scalar
curvature. Fix one end. Let m be the mass of that end, and let A be the area of an
outer-minimizing horizon (with one or more components). Then

m ≥
√

A

16π

with equality if and only if the part of (M, g) outside the horizon is isometric to a
Riemannian Schwarzschild manifold outside its unique outer-minimizing horizon.

∗Note that outermost implies outer-minimizing.
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Even though the original motivation from general relativity may have been specific to
three dimensions, because of string theory there is a great deal of interest in higher-
dimensional black holes. More importantly, from a purely geometric perspective, there
appears to be nothing inherently three-dimensional about the Riemannian Penrose
inequality, so it is natural to wonder whether the result holds in higher dimensions.
The goal of this article is to prove the following generalization.

THEOREM 1.3 (Riemannian Penrose inequality in dimensions less than eight)
Let (Mn, g) be a complete asymptotically flat manifold with nonnegative scalar cur-
vature, where n < 8. Fix one end. Let m be the mass of that end, and let A be the area
of an outer-minimizing horizon (with one or more components). Let ωn−1 be the area
of the standard unit (n − 1)-sphere. Then

m ≥ 1

2

( A

ωn−1

)(n−2)/(n−1)
.

Furthermore, if we also assume that M is spin, then equality occurs if and only if
the part of (M, g) outside the horizon is isometric to a Riemannian Schwarzschild
manifold outside its unique outer-minimizing horizon.

Remark. We conjecture that the last statement, the “equality case,” holds without the
spin assumption. See Theorem 2.8 and Sections 6 and 7 for details on why the spin
assumption appears.∗

Our proof is limited to dimensions less than eight for the same reason that Schoen
and Yau’s proof of the positive mass theorem is limited; we need to use regularity of
minimal hypersurfaces.

The geometry inside the horizon plays no role at all in the proof of the theorem.
Accordingly, our objective is to prove the following theorem.

THEOREM 1.4
Let (Mn, g) be a complete one-ended asymptotically flat manifold with boundary,
where n < 8. If (M, g) has nonnegative scalar curvature, and if the boundary is an
outer-minimizing horizon (with one or more components) with total area A, then

m ≥ 1

2

( A

ωn−1

)(n−2)/(n−1)
.

Furthermore, if we also assume that M is spin, then equality occurs if and only
if (M, g) is isometric to a Riemannian Schwarzschild manifold outside its unique
outer-minimizing horizon.

∗Sections 6 and 7 are independent of Sections 3, 4, and 5.
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We prove this theorem using Bray’s conformal flow method in [Br]. One might wonder
whether Huisken and Ilmanen’s inverse mean curvature flow method in [HI] could
also be used for this purpose. Unfortunately, since the Gauss-Bonnet theorem lies at
the heart of that method, it would require major new insights to adapt it to higher
dimensions. Note that use of the Gauss-Bonnet theorem is also the reason why [HI]
does not give the optimal result for multiple black holes.

2. Overview of proof

The vast majority of Bray’s proof of the Riemannian Penrose inequality in dimension
three applies to dimensions less than eight (see [Br]). In this section, we review the
main features of the proof and describe the parts that require modification. Since a
large portion of our proof is actually contained in [Br], we try to maintain consistent
notation. The main technical tool that we employ is the conformal flow.

Definition
Let M be a manifold with a distinguished end. Let gt be a family of metrics on M ,
and let �(t) be a family of hypersurfaces in S such that gt (x) is Lipschitz in t , C1 in
x, and smooth in x outside �(t). We say that (M, gt , �(t)) is a conformal flow if and
only if the following conditions hold for each t :
� (M, gt ) outside �(t) is a complete asymptotically flat manifold with boundary,

and it has nonnegative scalar curvature;
� �(t) is an outer-minimizing horizon in (M, gt );
� d

dt
gt = (4/(n − 2))νtgt , where νt (x) = 0 inside �(t), and outside �(t), νt is

the unique solution to the Dirichlet problem

⎧⎨
⎩

�gt
νt (x) = 0 outside �(t),

νt (x) = 0 at �(t),
limx→∞ νt (x) = −1.

The formulation of the conformal flow in [Br] is slightly different but defines the same
flow. Instead of using the last item in the above definition, we could set gt = u

4/(n−2)
t g0

and demand that

d

dt
ut = vt ,

where vt (x) = 0 inside �(t), and outside �(t), vt is the unique solution to the Dirichlet
problem

⎧⎨
⎩

�g0vt (x) = 0 outside �(t),
vt (x) = 0 at �(t),
limx→∞ vt (x) = −e−t .
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The fact that these two formulations are equivalent follows from the following simple
lemma (see [Br, Appendix A]), which we use repeatedly.

LEMMA 2.1
If g1 and g2 are smooth metrics and φ is a smooth function such that

g2 = φ4/(n−2)g1,

then for any smooth function f ,

�g1 (f φ) = φ(n+2)/(n−2)�g2f + f �g1φ.

THEOREM 2.2
Given initial data (Mn, g0, �(0)) satisfying the first two properties of the conformal
flow described above, with n < 8, there exists a conformal flow (M, gt , �(t)) for all
t ≥ 0. Moreover,
� for all t2 > t1 ≥ 0, �(t2) encloses �(t1) without touching it;
� �(t) can “jump” at most countably many times; at these jump times, we write

�−(t) and �+(t) to denote the hypersurface “before” and “after” it jumps,
respectively.∗

The proof of this theorem in [Br, Theorem 2] is unchanged in higher dimensions, as
long as n < 8. The basic idea behind the proof is to use a discrete time approximation
and then take the limit as the length of the discrete time intervals approaches zero. The
(n < 8)-hypothesis is required in the proof in order to find smooth outermost minimal
area enclosures. The only other place that this dimensional restriction is used again is
when we invoke the positive mass theorem.

To prove our main theorem (Theorem 1.4), we use the hypotheses of the theorem
as initial data for the conformal flow and prove that the conformal flow has the
following properties:
� the area of �(t) in (M, gt ) is constant in t ; call it A;
� the mass of (M, gt ), which we call m(t), is nonincreasing;
� with the right choice of end coordinates, the metric gt outside �(t) converges

to a Schwarzschild metric;
� the area of the horizon in this Schwarzschild manifold is greater than or equal

to A.

∗See [Br, Section 4] for a precise statement. With the definition of the conformal flow given above, at a jump time,
�(t) could lie somewhere between �−(t) and �+(t). However, in the construction of the conformal flow in [Br,
Section 4], �(t) is the outermost horizon in (M, gt ) containing �(0), and consequently, we have �(t) = �+(t)
for t > 0.
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Once we have established these properties, the main theorem (Theorem 1.4)
follows immediately.∗

LEMMA 2.3
The area of �(t) in (M, gt ) is constant in t .

The proof of this lemma in [Br, Section 5] is unchanged in higher dimensions. The basic
idea behind the proof is that the rate of change of the area |�(t)|gt

has a contribution
from changing �(t) while leaving gt fixed and a contribution from changing gt while
leaving �(t) fixed. The first contribution is zero because �(t) is minimal, and the
second contribution is zero because the metric is not changing at �(t). (Specifically,
d

dt
gt = (4/(n − 2))νtgt = 0 at �(t).) However, the proof is more subtle than this

because �(t) can jump (see [Br, Section 5] for details).
In order to simplify the rest of our arguments, we use a tool called harmonic

flatness.

Definition
A Riemannian manifold (Mn, g) is said to be harmonically flat at infinity if there is a
compact set K ⊂ M such that M �K is the disjoint union of ends, Ek , such that each
end is diffeomorphic to Rn � Brk

(0), and in each of these coordinate charts, there is a
(Euclidean) harmonic function U such that

gij (x) = U(x)4/(n−2)δij .

In other words, each end is conformally flat with a harmonic conformal factor.

Note that a harmonically flat end necessarily has zero scalar curvature. Expanding U
in spherical harmonics in a particular end Ek , we see that

U(x) = a + b|x|2−n + O(|x|1−n)

for some constants a and b. Clearly, a manifold that is harmonically flat at infinity is
asymptotically flat.† A simple computation shows the following.

LEMMA 2.4
In the situation described above, the mass of the end Ek is equal to 2ab.

∗It follows except for the case of equality, which requires an additional simple argument.
†However, when a �= 1, it is necessary to change the distinguished coordinate chart.
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A short argument of Schoen and Yau [SY] (see also [S, Section 4], [Br, Section 2])
implies the following lemma.

LEMMA 2.5
In order to prove our main theorem (Theorem 1.4, excluding the equality case), we
may assume, without loss of generality, that (Mn, g) is harmonically flat at infinity.

From now on, we always work in the situation of initial data that is harmonically flat
at infinity, and then evolved by the conformal flow. From Lemma 2.1, it is clear that
the conformal flow preserves harmonic flatness outside �(t).

We now consider a third formulation of the conformal flow. By the harmonic
flatness assumption, we know that (g0)ij (x) = U0(x)4/(n−2)δij for some harmonic
function U0 on the exterior region Rn � BRh for some Rh. (We adopt the short-
hand notation BR = BR(0) and SR = SR(0).) We choose end coordinates so that
limx→∞ U0(x) = 1, and consequently, we are not allowed to choose the constant Rh

arbitrarily. Now, extend U0 to a positive function on all of M , and define the metric
gflat by

g0 = U4/(n−2)
0 gflat.

Note that for |x| > Rh, (gflat)ij (x) = δij . We can now reformulate the conformal flow
by setting

gt = U4/(n−2)
t gflat

and demanding that

d

dt
Ut = Vt ,

where Vt (x) = 0 inside �(t), and outside �(t), Vt is the unique solution to the
Dirichlet problem∗

⎧⎪⎨
⎪⎩

�gflatVt − (�gflatU0

U0

)
Vt = 0 outside �(t),

Vt (x) = 0 at �(t),
limx→∞ Vt (x) = −e−t .

Note that in the region outside �(t) with |x| > Rh, both Ut and Vt are (Euclidean)
harmonic functions. We summarize the relationships between the three formulations

∗We know that there is a unique solution because this formulation is equivalent to the previous ones.
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of the conformal flow:

Ut = utU0,

Vt = vtU0,

νt = vt

ut

= Vt

Ut

.

LEMMA 2.6
The mass, m(t), is nonincreasing.

The proof of this lemma in [Br, Sections 6, 7] is also unchanged in higher dimensions.
However, the main idea used in the proof is central to this article, so we summarize
the basic argument.

For each time t , consider the two-ended manifold (M̄�(t), ḡt ) obtained by reflecting
the manifold (M, gt ) through �(t). Let ωt be the gt -harmonic function that approaches
1 at one end and 0 at the other end. We can use ωt to conformally close the 0-end
by considering the metric g̃t = (ωt )4/(n−2)ḡt on M̄�(t). The result is a new one-ended
manifold (M̃�(t) = M̄�(t) ∪ {pt}, g̃t ) with nonnegative scalar curvature.∗ Similarly, if
t is a jump time, then we can construct (M̃�±(t), g̃

±
t ) by first reflecting through �±(t).

Lemma 2.6 follows from the following key lemma.

LEMMA 2.7
Let m̃(t) be the mass of (M̃�(t), g̃t ). If t is not a jump time, then

d

dt
m(t) = −2m̃(t).

If t is a jump time, let m̃±(t) be the mass of (M̃�±(t), g̃
±
t ). Then

d

dt± m(t) = −2m̃±(t),

where d

dt± m(t) denotes the right and left side limits of d

dt
m(t).

Lemma 2.6 almost follows immediately from this lemma because the positive mass
theorem should tell us that m̃(t) ≥ 0 (and that m̃±(t) ≥ 0). However, there is a
technical point to deal with here: Since the metric g̃t is not smooth along �(t), where
the gluing took place, the standard version of the positive mass theorem does not
immediately apply. Instead, we apply the following extension of the positive mass

∗One can show that the singularity at pt is removeable.
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theorem. The statement has been culled from the work of Bray [Br, Section 6],
P. Miao [M], and Y. Shi and L.-F. Tam [ST, Section 3], with some added precision.

THEOREM 2.8
Suppose that n < 8, or suppose that M is spin. Let K (“inside”) be a compact subset
of a manifold M such that M � K (“outside”) is diffeomorphic to an exterior region
of Rn, and ∂K = � is a smooth hypersurface of M . Let g be an asymptotically flat
metric on M which is smooth away from � and is C2 up to � from each side. Assume
that g has nonnegative scalar curvature away from �, and assume that Hout = Hin,
where Hout (resp., Hin) is the mean curvature of � as computed by the outside (resp.,
inside) metric. Then the mass of g is nonnegative.

Furthermore, if we also assume that M is spin, then the mass of g is zero if and
only if (M, g) is Euclidean space, or more precisely, there exists a bijective coordinate
chart∗ M −→ Rn such that gij (x) = δij .

Note that (M̃�(t), g̃t ) satisfies the hypotheses of Theorem 2.8 since �(t) is minimal in
(M, gt ). Thus m̃(t) ≥ 0 (and, similarly, m̃±(t) ≥ 0), proving Lemma 2.6.

Remark. For the (n < 8)-case, the first paragraph of Theorem 2.8 appears in [M]
(following [Br]), and the proof does not use spinors. Unfortunately, the “equality
case” was not established by [M]. On the other hand, [ST] used spinors to prove all of
Theorem 2.8, including the equality case, under the assumption that M is spin.

Remark. We conjecture that the equality case of Theorem 2.8 holds without the spin
assumption. This would allow us to remove the spin assumption from the equality
case of Theorem 1.4 (see Sections 6 and 7 for details).

Proof of Lemma 2.7
For ease of notation, let us assume that t is not a jump time. (The proof for jump
times is the same but with ± superscripts everywhere.) By symmetry, we know that
the function ωt used in the construction of g̃t must be (1/2)(1 − νt ) on one end (and
(1/2)(1 + νt ) on the end to be closed up). Therefore, in the one end of M̃�(t), for
|x| > Rh,

(g̃t )ij (x) =
[1

2

(
1 − νt (x)

)]4/(n−2)
(gt )ij (x)

=
[1

2

(
1 − νt (x)

)
Ut (x)

]4/(n−2)
δij

=
[1

2

(
Ut (x) − Vt (x)

)]4/(n−2)
δij .

∗These coordinates might be only C1,1 across �, but they are smooth elsewhere.



RIEMANNIAN PENROSE INEQUALITY IN HIGHER DIMENSIONS 91

We now compute m̃(t) by expanding (1/2)(Ut (x) − Vt (x)). For |x| > Rh, Ut (x) is
harmonic, and thus we can expand it as

Ut (x) = A(t) + B(t)|x|2−n + O(|x|1−n).

Therefore

Vt (x) = A′(t) + B ′(t)|x|2−n + O(|x|1−n).

We know that A(0) = 1 and A′(t) = limx→∞ Vt (x) = −e−t , so we can write

Ut (x) = e−t + 1

2
etm(t)|x|2−n + O(|x|1−n),

Vt (x) = −e−t + 1

2
et

(
m(t) + m′(t)

)|x|2−n + O(|x|1−n),

1

2

(
Ut (x) − Vt (x)

) = e−t − 1

4
etm′(t)|x|2−n + O(|x|1−n).

Thus m̃(t) = −(1/2)m′(t). �

Therefore, in order to prove Theorem 1.4, the only part of [Br] that needs to be modified
is the part that deals with the convergence to Schwarzschild. The basic idea here is that
since m(t) is nonincreasing and bounded below by zero (by positive mass theorem),
we might hope that its derivative, −2m̃(t), converges to zero. Indeed, that turns out
to be the case (see Lemma 3.1). The equality case of the positive mass theorem states
that the only complete asymptotically flat manifold of nonnegative scalar curvature
and zero mass is Euclidean space. Therefore we might also hope that since m̃(t) is
converging to zero, g̃t must converge to the flat metric at infinity in some sense. In
order to establish this fact, we need a strengthened version of the equality case of the
positive mass theorem (see Theorem 3.4), which is proved in a separate article (see [L,
Theorem 1.4]). Then it is not hard to see that (with the right choice of end coordinates)
gt must converge to a Schwarzschild metric outside �(t).∗

In order to make this basic argument work, we need to control �(t). (Specifically,
we need Lemma 3.3.) In [Br], this control was obtained using curvature estimates by
way of the Gauss-Bonnet theorem, together with a Harnack-type inequality from [BI]
which is applicable only in three dimensions. It is this part of the proof that needs to
be completely reworked for application to higher dimensions. Even though our new

∗This is a refined version of the fact that the only asymptotically flat manifolds that are scalar-flat and conformal
to Euclidean R

n
�{0} are Schwarzschild manifolds.
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proof is more general, it is actually more elementary and straightforward than the
original proof. This content appears in Section 5 of this article.

Section 3 of this article serves as a replacement for [Br, Sections 8 – 12], although
there is a fair amount of overlap. We summarize the differences. First, using the three-
dimensional curvature estimates described above, it was proved in [Br] that �(t)
eventually encloses any bounded region, and consequently, one can then assume that
M is an exterior domain of R3. It turns out that this simplification is not actually
needed for our proof, but it means that we have to be a bit more careful than in [Br].
Second, the strengthened version of the equality case of the positive mass theorem
(Theorem 3.4) mentioned above was proved in [Br, Corollary 8] using spinors. We
need a different proof here since higher-dimensional manifolds need not be spin; the
proof is given in [L, Theorem 1.4]. Third, with the benefit of hindsight, we are able to
simplify and streamline many aspects of the original proof.

3. Convergence to Schwarzschild

As mentioned earlier, we want to show that m̃(t) converges to zero as t → ∞.

LEMMA 3.1
We have

lim
t→∞

m̃(t) = 0.

Proof
We have the following.

CLAIM

The quantity e2t (m(t) + m′(t)) is nondecreasing in t .

Proof
Recall that for t2 > t1, �(t2) encloses �(t1). By the maximum principle and the
definition of vt , it is evident that etvt (x) is nondecreasing in t for any fixed x. Therefore
etVt (x) is also nondecreasing in t for any fixed x. Recall from the proof of Lemma
2.7 that

etVt (x) = −1 + 1

2
e2t

(
m(t) + m′(t)

)|x|2−n + O(|x|1−n).

The claim follows. �

For now, assume that m(t) is smooth.
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CLAIM

We have

m̃′(t) ≤ m(0).

Proof
Differentiating the monotone quantity from the previous claim,

0 ≤ d

dt

[
e2t

(
m(t) + m′(t)

)] = e2t
(
m′′(t) + 3m′(t) + 2m(t)

)
.

Since m′(t) = −2m̃(t) ≤ 0, we have

0 ≤ m′′(t) + 2m(t) ≤ −2m̃′(t) + 2m(0),

proving the claim. �

Since m̃(t) is a nonnegative function with finite integral and derivative bounded above,
it follows that limt→∞ m̃(t) = 0. Of course, m(t) is not necessarily smooth, but it is a
simple exercise to show that the result still holds. �

Since m(t) is nonincreasing and bounded below by zero, it must have a limit.

LEMMA 3.2
Let M = limt→∞ m(t). Then M > 0.

We postpone the proof of this lemma until the next section so as not to interrupt the
flow of the main argument.

Let r0 < (1/2)Rsc(M), and choose a diffeomorphism Rn � Br0
∼= M � K . That

is, we choose coordinates in Rn � Br0 for the end. Recall that since we chose the
normalization limx→∞ U0 = 1, we cannot say that U0 is harmonic in Rn �Br0 without
losing generality. We can say only that U0 is harmonic in Rn � BRh for some possibly
large Rh.

We want to talk about convergence of our Riemannian manifold as t → ∞,
but we see that with respect to a fixed coordinate system at infinity, �(t) runs off to
infinity. Consequently, the relevant part of gt (the part outside �(t)) disappears in the
limit. Therefore we need to change our choice of coordinates as t changes. One way
to do this is to introduce a one-parameter group of diffeomorphisms. Choose a smooth
vector field X on M such that

X = 2

n − 2
r

∂

∂r
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on Rn �Br0 , where r = |x| is the radial coordinate on Rn �Br0 . (We extend X inside
K so that it is smooth.) Let �t be the one-parameter group of diffeomorphisms of M

generated by X.

Definition
Given our conformal flow (M, gt , �(t)), we define the normalized conformal flow
(M, Gt, �

∗(t)) by

Gt = �∗
t gt ,

�∗(t) = �−1
t

(
�(t)

)
.

Define new functions

Ut (x) = etUt

(
�t (x)

)
,

Vt (x) = etVt

(
�t (x)

)
,

and a new metric

(Gflat)t = e−4t/(n−2)�∗
t gflat.

Note that Gt = U
4/(n−2)
t (Gflat)t . Also, note that Vt (x) = 0 inside �∗(t), and outside

�∗(t), Vt is the unique solution to the Dirichlet problem
⎧⎪⎨
⎪⎩

�(Gflat)t Vt − (�(Gflat)t U0

U0

)
Vt = 0 outside �∗(t),

Vt (x) = 0 at �∗(t),
limx→∞ Vt (x) = −1.

Differentiating the definition of Ut , we see that

d

dt
Ut = Vt + Ut + XUt.

For all t > t0 = ((n − 2)/4) log(Rh

r0
) and |x| > r0, we see that ((Gflat)t )ij (x) = δij

and

d

dt
Ut = Vt + Ut + 2

n − 2
r

∂

∂r
Ut . (1)

Since we are concerned with what happens for large t , from now on we always assume
that t > t0.
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Let Wt = (1/2)(Ut − Vt ) outside of �∗(t). Now, define

G̃t = W
4/(n−2)
t (Gflat)t

on the exterior of �∗(t). Observe that G̃t is isometric to g̃t ; consequently, it has mass
equal to m̃(t). Note that for t > t0 and x outside �∗(t) with |x| > r0,

d

dt
Ut = 2

[
Ut − Wt + 1

n − 2
r

∂

∂r
Ut

]
. (2)

As mentioned earlier, in order to make this argument work, we need to obtain
control on �(t). We postpone the proof of this lemma so as not to interrupt the flow
of the main argument.

LEMMA 3.3
There exists some Rmax > 0 such that �∗(t) is always enclosed by the coordinate
sphere of radius Rmax.

As mentioned earlier, we need to use a strengthened version of the equality case of
the positive mass theorem. Essentially, we want to say that a sequence of asymp-
totically flat manifolds of nonnegative scalar curvature becomes flatter as the mass
approaches zero. The proof of this theorem is the subject of a separate article (see
[L, Theorem 1.4]).

THEOREM 3.4
For all n ∈ N, α > 1, and ε > 0, there exists δ > 0 with the following property.

Let Mn be a manifold on which the positive mass theorem holds, and let g be
a complete asymptotically flat metric of nonnegative scalar curvature on M , with
coordinates in some end satisfying

gij (x) = U (x)4/(n−2)δij

for |x| > R, for some positive harmonic function U on Rn�B̄R approaching 1 at
infinity.

If m(g) < δRn−2, then for all |x| ≥ αR, |U (x) − 1| < ε
( R

|x|
)n−2

.

Now, observe that (G̃t )ij (x) = Wt (x)4/(n−2)δij in Rn � BRmax , Wt is harmonic on
Rn � BRmax , and limt→∞ m̃(t) = 0. Also, observe that since G̃t is isometric to g̃t , it
is a limit of metrics that extend to complete metrics of nonnegative scalar curvature
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(see [M]). In short, we may apply Theorem 3.4 to G̃t in order to conclude that
limt→∞ Wt (x) = 1 uniformly for |x| > 2Rmax.

LEMMA 3.5
The following limits hold uniformly over all |x| ≥ 4Rmax:

lim
t→∞

Ut (x) = 1 + M

2
|x|2−n,

lim
t→∞

Vt (x) = −1 + M

2
|x|2−n,

lim
t→∞

Wt (x) = 1.

Proof
Let

Ūt (x) = Ut (x) −
(

1 + m(t)

2
|x|2−n

)
,

and let

W̄t (x) = Wt (x) −
(

1 + m̃(t)

2
|x|2−n

)
.

Therefore, by equation (2) and Lemma 2.7, we know that for x ∈ Rn �Br0 and outside
�∗(t),

d

dt
Ūt = 2

[
Ūt − W̄t + 1

n − 2
r

∂

∂r
Ūt

]
. (3)

Let ε > 0. By Theorem 3.4 and the discussion following it, the third equality in
the statement of the lemma follows immediately. In other words, we know that for
large enough t , m̃(t) is small enough so that

sup
x∈S2Rmax

|Wt (x) − 1| < ε.

So

sup
x∈S2Rmax

|W̄t (x)| < ε + m̃(t)

2
(2Rmax)2−n < 2ε

for large enough t . Since W̄t is harmonic and has no constant or |x|2−n-terms in its
expansion, it follows from the maximum principle and a gradient estimate that for all
|x| > 4Rmax,

|W̄t (x)| < Cε|x|1−n
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for some constant C independent of ε. Analyzing equation (3), we conclude that for
large enough t ,

|Ūt (x)| < 3Cε|x|1−n.

The first equation in the statement of the lemma now follows from the definition of
Ūt and the fact that limt→∞ m(t) = M . The second equation in the statement of the
lemma follows from the other two. �

LEMMA 3.6
For X ⊂ Rn, ε > 0, let (X)ε denote the ε-neighborhood of X, that is, the set of points
that are distance less than ε away from X. For all ε > 0, there exists some large t

such that

�∗(t) ⊂ (SRsc(M))ε,

where SRsc(M) is the sphere of radius Rsc(M) = (M/2)1/(n−2) in Rn.∗

Proof
Using maximum principle arguments and Lemma 3.3, one can prove uniform upper
and lower bounds on Ut (x) on Rn � Br0 .

Since the area of �∗(t) with respect to Gt is constant, and since there is a uniform
lower bound on Ut (x), we have a uniform upper bound on the Euclidean area of
�∗(t) ∩ (Rn � Br0 ). Therefore we can show that for some sequence ti , the part of
�∗(ti) in Rn � Br0 weakly converges to some �∞. But moreover, using the uniform
bounds on Ut (x), one can argue the stronger statement that �∗(ti) converges to �∞ in
Hausdorff distance (see [Br, Section 12, Appendix E] for details; one can also argue
directly using Proposition 5.1).

Since the Vt ’s are harmonic and uniformly bounded, we can choose a subsequence
such that Vti converges uniformly on compact subsets of the exterior of �∞ in Rn�Br0 .
Since the limit must be a harmonic function, it follows from Lemma 3.5 that the limit
is V∞(x) = −1 + (M/2)|x|2−n. More precisely, given ε > 0, for large enough i, we
know that �ti ∩ (Rn �Br0 (0)) ⊂ (�∞)ε and that |Vti (x)−V∞(x)| < ε for all |x| > r0

outside (�∞)ε . Our goal is to show that �∞ is just the sphere of radius Rsc(M), and
then the result follows from the Hausdorff convergence.

Suppose that part of �∞ lies inside the sphere of radius Rsc(M). Then we can find
some ti and some point x0 such that x0 is outside �∗(ti), and yet Vti (x0) > 0, which
is a contradiction.

We now come to the critical part of the proof. Suppose that part of �∞ lies
outside the sphere of radius Rsc(M). Then for some x0 ∈ �∞ and some r > 0, the

∗Actually, it is necessary only to show that �∗(t) lies within the sphere of radius Rsc(M) + ε.
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ball B2r (x0) lies completely outside the sphere of radius Rsc(M). The basic intuitive
argument is as follows. We know that Vti is zero at �∗(ti), but in Br (x0) we know that
V∞ is significantly smaller than zero. The only way this can happen is if the gradient
of Vti is blowing up. In fact, we show that it blows up badly enough that the energy
of Vti blows up, which is a contradiction since we have a bound on energy (described
below).

Consider the unique harmonic function f that approaches −1 at infinity and is
zero at the sphere SRmax . Since �∗(ti) is contained in SRmax , we can deduce from the
energy-minimizing property of harmonic functions that the energy of Vti in the exterior
of �∗(ti) is less than the energy of f in the exterior of SRmax , namely, (n−2)ωn−1R

n−2
max .

Let � be the region outside �∗(ti), let Lz = {x ∈ Br (x0) |Vti (x) = z}, and let dAz

be the induced measure on Lz. (Note that we suppress the dependence on i in the
notation.) Then by the coarea formula and the Hölder inequality,

(n − 2)ωn−1R
n−2
max ≥

∫
�

|∇Vti |2 dV

≥
∫

�∩Br (x0)
|∇Vti |2 dV

=
∫ 0

−1

( ∫
Lz

|∇Vti | dAz

)
dz

≥
∫ 0

−1
|Lz|2

( ∫
Lz

|∇Vti |−1 dAz

)−1
dz.

Let μ(z) = |{x ∈ Br (x0) |Vti (x) > z}|. Then μ′(z) = ∫
Lz

|∇Vti |−1 dAz, and we have

(n − 2)ωn−1R
n−2
max ≥

∫ 0

−1
|Lz|2μ′(z)−1 dz. (4)

On the other hand, we know that for some nonzero constant c < 0, we have
V∞(x) < 2c in Br (x0). Now, let ε > 0, and choose i large enough so that Vti (x) <

c < 0 for all x ∈ Br (x0) lying outside (�∞)ε . Therefore

{
x ∈ Br (x0)

∣∣Vti (x) > c
} ⊂ (�∞)ε ∩ Br (x0),

and it follows that

lim
i→∞

μ(c) = 0. (5)

Since μ(c) = ∫ 0
c

μ′(z) dz, we can choose i large enough so that μ′(z) <
√

μ(c) on a
set of measure at least −c/2. We also know that for 0 > z > c, Lz ⊂ (�∞)ε ∩Br (x0),
and consequently, these Lz’s are Hausdorff converging to �∞ ∩ Br (x0). In particular,
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for 0 > z > c, |Lz| is uniformly bounded below by some constant α. Plugging this
into our energy bound (4), we see that

(n − 2)ωn−1R
n−2
max ≥

∫ 0

−c

|Lz|2μ′(z)−1 dz ≥ −c

2
α2μ(c)−1/2,

which contradicts equation (5). �

The main theorem (Theorem 1.4, excluding the equality case) follows easily from
Lemma 3.6. Let ε > 0. Since �∗(t) is outer-minimizing with respect to Gt , we see
that A is less than or equal to the area of the sphere of radius Rsc(M) + ε with respect
to Gt . Also, the argument in Lemma 3.5 shows that Ut converges to 1 + (M/2)|x|2−n

uniformly on SRsc(M)+ε . So for large enough t , we have

A ≤ |SRsc(M)+ε|Gt

=
∫

SRsc(M)+ε

U
2(n−1)/(n−2)
t dμ

≤
∫

SRsc(M)+ε

(
1 + M

2
|x|2−n + ε

)2(n−1)/(n−2)
dμ,

which converges to ωn−1(2M)(n−1)/(n−2) as ε → 0, proving our main theorem (Theo-
rem 1.4).

The rest of the article deals with the proofs that were skipped, namely, the proofs
of Lemma 3.2, Lemma 3.3 (the primary technical lemma of this article), and the
equality case of Theorem 1.4.

4. Proof of Lemma 3.2

Suppose that M = 0. We want to argue that this is not possible. We do this by
following the same argument we gave in the (M �= 0)-case. We can no longer choose
r0 < (1/2)Rsc(M), but we can still choose some small r0 > 0. All of the arguments
are valid up until we reach the proof of Lemma 3.6. In the proof of Lemma 3.6, we
argued that for some sequence of ti’s, �∗(ti) ∩ (Rn � Br0 ) Hausdorff converges to
some �∞. A priori, �∞ could be empty. However, the following lemma shows that,
for a judicious choice of r0 and ti’s, �∞ is nonempty.

LEMMA 4.1
Suppose that M = 0. Let R be any constant such that r0 < R < (A/ωn−1)1/(n−1).
There exists an unbounded sequence of times ti such that �∗(ti) always contains a
point x with |x| > R.

A more general version of this fact is given in [Br, Section 9].
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Proof
Suppose, to the contrary, that there exists some t̃ > t0 such that for all t > t̃ ,
�∗(t) is contained in SR , the sphere of radius R. Choose R′ between R and
(A/ωn−1)1/(n−1). Since the Ut ’s are harmonic and uniformly bounded, we know
that some subsequence converges uniformly on compact subsets of Rn � BR , and
by Lemma 3.5 and the fact that M = 0, we know that the limit function is 1. In
particular, we see that limt→∞ Ut (x) = 1 uniformly on SR′ . Therefore, as t → ∞,
|SR′ |Gt

= ∫
SR′ Ut (x)2(n−1)/(n−2) dμ → ωn−1(C ′)n−1 < A. This contradicts the fact that

|SR′ |Gt
≥ A. �

So as long as we take r0 < (1/2)(A/ωn−1)1/(n−1) and restrict our attention to times in
the sequence described by Lemma 4.1, we know that �∞ is nonempty. Furthermore,
for some x0 ∈ �∞ and some r > 0, B2r (x0) lies completely outside the sphere of
radius r0. The energy argument given in Lemma 3.6 now gives us a contradiction. �

5. Proof of Lemma 3.3

Here, we introduce a technical tool that allows us to locally control the area of �(t).
We describe this tool in the language of integral currents, but this is not actually
necessary for the application in this article.

Definition
For any γ ≥ 1, an integral current S in Rn is said to be γ -almost area-minimizing if,
for any ball B with B ∩ spt ∂S = ∅ and any integral current T with ∂T = ∂(S�B),
|S�B| ≤ γ |T |, where the absolute value signs denote the area.∗

Note that a 1-almost area minimizer is an area minimizer. It is well known that if S is an
m-dimensional minimal submanifold of Rn, then for any x ∈ S and 0 < r < d(x, ∂S),

|S ∩ Br (x)| ≥ αmrm,

where αm = ωm−1/m is the volume of the unit ball in Rm. This lower bound on area is
a consequence of monotonicity (see [A]). The following result is possibly well known
to experts, but we include its proof for the sake of completeness.

PROPOSITION 5.1
Let γ ≥ 1, and let S be an m-dimensional γ -almost area-minimizing integral current
in Rn. Let x ∈ spt S, and let 0 < r < d(x, spt ∂S). Then

|S�Br (x)| ≥ γ 1−mαmrm.

∗In geometric measure theory, the correct term to use here is “mass” rather than “area.” We avoid the term “mass”
here for obvious reasons. The notation S�B denotes the restriction of S to B, which is just S ∩ B when S is a
submanifold.
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Proof
Let F (r) = |S�Br (x)|. Since F is monotonically increasing, F ′(r) exists for almost
all r , and by the slicing theorem,

F ′(r) ≥ ∣∣∂(
S�Br (x)

)∣∣.
Let G(r) be the infimum of all areas bounding ∂(S�Br (x)). By the sharp∗ isoperimetric
inequality (see [Al]),

∣∣∂(
S�Br (x)

)∣∣ ≥ mα1/m
m G(r)(m−1)/m.

Finally, by assumption we know that

G(r) ≥ 1

γ
F (r).

Putting the last three inequalities together, we find that

F ′(r) ≥ mα1/m
m

(F (r)

γ

)(m−1)/m

.

Thus

d

dr

(
F (r)1/m

) ≥ α1/m
m γ (1−m)/m.

The result now follows from integrating this inequality. �

An equivalent formulation of Lemma 3.3 is the following.

LEMMA 5.2
There exists some Rmax > 0 such that �(t) is always enclosed by the coordinate
sphere of radius Rmaxe

2t/(n−2).

Proof
First, choose Rmax large enough so that �(1) is contained in the coordinate sphere of
radius Rmax. Next, we choose Rmax large enough so that the following claim holds.

CLAIM

Let R(t) = Rmaxe
2t/(n−2). Choose any T > 0. Suppose that �(t) is contained in the

sphere of radius R(t) for all t ∈ [0, T ]. Then �(T + 1) is contained in the sphere of
radius R(T + 1).

∗Using a nonsharp constant in the isoperimetric inequality would simply have the effect of attaining a worse
constant in the statement of our proposition.
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Clearly, if we can choose Rmax large enough so that the claim is true, then we have
proved the lemma.

Proof
We know that for some constant C, 1/C < U0(x) < 1 + C|x|2−n for all |x| > Rh. In
all of the computations that follow, assume that |x| > Rh. That is, we are interested
only in the “harmonic part” of the end. Let s < T . Since �(s) is enclosed by the
sphere of R(s), the maximum principle tells us that for all |x| > R(s), vs(x) is smaller
than the unique g0-harmonic function that is zero at the sphere of radius R(s) and
approaches −e−s at infinity. Explicitly,

vs(x) ≤ 1

U0(x)
e−s

((R(s)

|x|
)n−2

− 1

)
.

Consequently,

Vs(x) ≤ e−s

((R(s)

|x|
)n−2

− 1

)
for |x| ≥ R(s),

while

Vs(x) ≤ 0 for |x| < R(s).

Therefore, for |x| ≥ R(T ),

UT +1(x) ≤ 1 + C|x|2−n +
∫ T

0
e−s

((R(s)

|x|
)n−2

− 1

)
ds

= 1 + C|x|2−n +
[
es

(Rmax

|x|
)n−2

+ e−s
]T

0

= 1 + C|x|2−n +
[
(eT − 1)

(Rmax

|x|
)n−2

+ e−T − 1
]

≤ CR(T )2−n +
[
eT

( Rmax

R(T )

)n−2
+ e−T

]

= Ce−2T + 2e−T

≤ (2 + C)e−T .

On the other hand, since vs(x) ≥ −e−s , we know that

uT +1(x) ≥ 1 +
∫ T +1

0
−e−s ds = e−(T +1).
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Therefore

UT +1(x) ≥ 1

C
e−(T +1).

Now, suppose that �(T + 1) contains a point p with |x| > R(T + 1). We will
show that we can choose Rmax so that the area of |�(T + 1)|gT +1 is bigger than A,
which is a contradiction. Consider the coordinate ball B of radius (1/3)R(T ) around
p. For n < 8, this ball B lies outside the sphere of radius R(T ). Using the bounds
above, we see that for x ∈ B,

e−(T +1) ≤ UT +1(x) ≤ (2 + C)e−T .

From this we can conclude, straight from the definitions, that �(T + 1) is γ -almost
area minimizing in B with respect to the Euclidean metric, where

γ = (2e + Ce)2(n−1)/(n−2).

So by Proposition 5.1, �(T + 1) has Euclidean area greater than
αn−1γ

2−n(R(T )/3)n−1. Therefore

|�(T + 1)|gT +1 ≥ (e−(T +1))2(n−1)/(n−2)αn−1γ
2−n

(R(T )

3

)n−1

= e−2(n−1)/(n−2)αn−1γ
2−n

(Rmax

3

)n−1
,

which is just some constant times Rn−1
max . We just need to choose Rmax large enough so

that this number is larger than A. �

Thus Lemma 5.2 is proved. �

Thus Lemma 3.3 is proved. �

6. The equality case of the Penrose inequality

Consider (M, g) satisfying the hypotheses of Theorem 1.4, consider the added
hypothesis that M is spin, and assume that

m = 1

2

( A

ωn−1

)(n−2)/(n−1)
.

Our goal is to prove that (M, g) is isometric to a Riemannian Schwarzschild manifold
outside its unique outer-minimizing horizon.

As in the proof of the Penrose inequality, by Theorem 2.2 there exists a conformal
flow that has (M, g0 = g, �(0) = ∂M) as initial data. By monotonicity of m(t)
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(Lemma 2.6) and the Penrose inequality (Theorem 1.4), m(t) must be constant.∗ Then
Lemma 2.7 implies that m̃(0) = 0. Since M̃ is spin, we may apply the equality
case of Theorem 2.8 to conclude that (M̃�, g̃) is Euclidean space. That is, there are
coordinates on M̃ ∼= Rn such that g̃ij (x) = δij .

Briefly, recall the construction of (M̃�, g̃). We doubled (M, g) through � to obtain
(M̄�, ḡ), and then we set g̃ = ω4/(n−2)ḡ, where ω is the unique ḡ-harmonic function
approaching 1 at infinity, and 0 at the “other” infinity (which gets compactified by the
conformal change). Without loss of generality, assume that the compactified point of
M̃ ∼= Rn is 0. Define U = ω−1. By Lemma 2.1, we know that U is a (Euclidean)
harmonic function on Rn � {0}.† Since ḡ = U4/(n−2)g̃ has an asymptotically flat end
corresponding to the point 0 ∈ M̃ ∼= Rn, it follows that limx→0 |x|n−2U(x) = C

for some constant C. Thus U(x) − C|x|2−n is a harmonic function with a removable
singularity at the origin. Since limx→∞ U (x) = limx→∞ ω−1(x) = 1, the maximum
principle implies that U(x) − C|x|2−n is identically 1 on all of Rn � {0}. Hence
gij (x) = U(x)4/(n−2)δij is a Riemannian Schwarzschild metric. Moreover, there is
only one horizon in a Riemannian Schwarzschild manifold, so that is where � must
be.

7. Further directions

We conjecture that the spin assumption in the equality case of Theorem 1.4 can be
removed. Reviewing the proof of the equality case in Section 6, it is clear that the
problem reduces to that of removing the spin assumption from the equality case of
the extension of the positive mass theorem articulated in Theorem 2.8. The original
nonspin proof of the equality case of the standard positive mass theorem (see [SY])
utilized a perturbation of the metric (involving Ricci curvature and conformal defor-
mation) to show that the manifold was Euclidean. This technique does not immediately
generalize to the setup of Theorem 2.8, in which the metric is singular. However, the
authors hope that the technique can still be adapted.

If one can prove that the positive mass theorem holds in arbitrary dimensions,
this leads to the natural question of whether Theorem 1.4 can be extended to arbitrary
dimensions. Even given the validity of positive mass theorem in arbitrary dimensions,
there are a few sticking points to extending the proof in this article to higher dimen-
sions. None of these sticking points seems fatal. Although the conformal flow has been
proved to exist only for dimensions less than eight (Theorem 2.2), it is reasonable to
think that the conformal flow exists for arbitrary dimensions if we allow �(t) to be a
singular hypersurface rather than a smooth one. More precisely, we must allow �(t)
to be an integral current with a codimension seven singular set. Once one establishes

∗Lemmas 2.6 and 2.7 still hold without the assumption of harmonic flatness.
†Technically, Lemma 2.1 is not valid at �, but one can see that U is harmonic across � by showing that it
minimizes energy.



RIEMANNIAN PENROSE INEQUALITY IN HIGHER DIMENSIONS 105

such an existence result, the essential problem is to show that Theorem 2.8 holds
for � with this type of singularity. Or in other words, it is already known that if
one doubles a manifold of nonnegative scalar curvature through a smooth minimal
hypersurface, then the result has nonnegative scalar curvature in some weak sense that
is useful for applications; the problem is to prove that an analogous result holds when
the smooth minimal hypersurface is replaced by a singular minimizing hypersurface.
This problem is related to the more general problem of formulating weak notions of
nonnegative scalar curvature.

Finally, it would be interesting to understand whether the conformal flow can
be used to prove a version of the Penrose inequality for asymptotically hyperbolic
spaces. There are already some known versions of the positive mass theorem for
asymptotically hyperbolic spaces, but a Penrose inequality for such spaces remains
conjectural (see [W]). We note that A. Neves has recently identified an important issue
in the inverse mean curvature flow approach to this problem, which highlights some
of the subtleties that arise in the asymptotically hyperbolic setting (see [N]).
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