I will survey different approaches to an invariant of singularities called log canonical threshold. It appears in many situations related to integrals of different flavors: usual integrals on \mathbb{R}^{n} or \mathbb{C}^{n}, p-adic integrals, or more recently, with motivic integrals. I will describe the classical case having to do with complex powers in the work of Bernstein, Gelfand and Atiyah, emphasizing the connection with the Bernstein polynomial. I will then describe briefly the description via p-adic integrals, due to Igusa, as well as a "motivic" version, involving spaces of arcs.

In the last part of the talk I will discuss some conjectural connections between the log canonical threshold, and an invariant which appears in tight closure theory, the F-pure threshold. This time there is no integration theory around, and the story has very much a positive characteristic flavor. Despite the fact that much of this part is still conjectural, one can see a different connection with the Bernstein polynomial.

The talk will be elementary and will not assume familiarity with any of the concepts mentioned above. However, here are a few references:
(1) The classical part of the story, involving complex powers and p-adic zeta functions, is beautifully covered in:

Jun-ichi Igusa, An Introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14. American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000.
(2) For the connection between spaces of arcs and the log canonical threshold (and other invariants, as well):

Lawrence Ein, Rob Lazarsfeld, and Mircea Mustaţǎ, Contact loci in arcs spaces, math.AG/0303268.
(3) The speculative part concerning the relation between the log canonical threshold and the F-pure threshold is based on work in progress with Shunsuke Takagi and Kei-ichi Watanabe. For the definition and basic properties of the F-pure threshold, see

Shunsuke Takagi and Kei-ichi Watanebe, On F-pure thresholds, math.AC/0312486.

