
Finiteness theorems for quadratic forms

The classical “Four Squares Theorem” of Lagrange (1770) asserts that any positive integer can be
expressed as the sum of four squares—that is, the quadratic form x2 + y2 + z2 + t2 represents all (positive)
integers. When does a general (positive definite) quadratic form represent all (positive) integers? This
question was first posed, and addressed in a systematic way, by Ramanujan in his classic 1916 paper [10].
In this paper, Ramanujan discovered and wrote down 54 more quaternary (four-variable) quadratic forms
representing all integers! His list was as follows:

[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [1, 1, 1, 5], [1, 1, 1, 6], [1, 1, 1, 7],
[1, 1, 2, 2], [1, 1, 2, 3], [1, 1, 2, 4], [1, 1, 2, 5], [1, 1, 2, 6], [1, 1, 2, 7], [1, 1, 2, 8],
[1, 1, 2, 9], [1, 1, 2, 10], [1, 1, 2, 11], [1, 1, 2, 12], [1, 1, 2, 13], [1, 1, 2, 14], [1, 1, 3, 3],
[1, 1, 3, 4], [1, 1, 3, 5], [1, 1, 3, 6], [1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2, 4], [1, 2, 2, 5],
[1, 2, 2, 6], [1, 2, 2, 7], [1, 2, 3, 3], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7],
[1, 2, 3, 8], [1, 2, 3, 9], [1, 2, 3, 10], [1, 2, 4, 4], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7],
[1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 4, 11], [1, 2, 4, 12], [1, 2, 4, 13], [1, 2, 4, 14],
[1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 5, 9], [1, 2, 5, 10]

where we have used [a, b, c, d] as shorthand for the diagonal form ax2 + by2 + cz2 +dt2. In fact, the above list
was later shown to contain every diagonal quaternary quadratic form representing all integers. (“diagonal”
means having no cross terms)

Ramanujan’s article was the starting point for a huge amount of work on the subject by numerous
authors. There were papers proving Ramanujan’s assertions—a project completed by Dickson [4]—as well as
papers attempting to extend Ramanujan’s list, such as those by Pall and by Halmos [6]. The most notable
accomplishment on the latter topic was the 1950 Ph.D. thesis of Willerding [13], who found, with proof, 168
quaternary integer-matrix forms representing all integers. (An integer-matrix quadratic form is one whose
cross-terms all have even coefficients, or, equivalently, whose corresponding matrix has integer entries.) At
the time, Willerding’s list was thought to be complete.

Surprisingly, the real progress on the question of enumerating universal forms—i.e., forms represent-
ing all positive integers—did not come until very recently, when Conway and Schneeberger (1993) proved a
very remarkable theorem. They showed that: an integer-matrix positive definite quadratic form represents
all positive integers if and only if it represents all positive integers up to 15.

In this talk, we will describe a simple proof of Conway-Schneeberger’s “Fifteen Theorem”, and we
will also discuss how the theorem generalizes, leading to numerous such “finiteness theorems for quadratic
forms”. In particular, we will consider the questions: When does a quadratic form represent all odd integers?
When does it represent all primes? Both these questions turn out to have some very surprising answers.

Finally, we will state and consider the ultimate variant of Conway-Schneeberger’s Fifteen Theorem,
namely their fundamental “290 conjecture”.

The main ingredients in the proofs will be the language of lattices, the notion of genus, and (for the
generalizations) the basic language of theta series and modular forms. For a beautiful introduction to these
subjects, see Conway’s little book [3], and also Conway’s and Hanke’s recent survey articles [2] and [7]. The
other references given below are also themed around the topics we will discuss.
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