The critical set goes to a set of measure zero.

Proposition. Suppose S is an r-dimensional linear subspace of \mathbf{R}^n and $\mathbf{b} \in \mathbf{R}^n$. Then for any R > 0 and any $\epsilon > 0$ we have

$$\mathcal{L}^n(\{\mathbf{y} \in \mathbf{B_b}(R) : \mathbf{dist}(\mathbf{y}, \mathbf{b} + S) \le \epsilon\}) \le 2^n R^r \epsilon^{n-r}.$$

Proof. Translating by $-\mathbf{b}$ if necessary we may assume that $\mathbf{b} = \mathbf{0}$. Rotating S if necessary we may assume that $S = \mathbf{R}^r \times \{\mathbf{0}\}$ where we identify \mathbf{R}^n with $\mathbf{R}^r \times \mathbf{R}^{n-r}$ and where we make use of the fact that

$$\mathcal{L}^n(L[A]) = |\det L|\mathcal{L}^n(A)$$
 for any Lebesgue measurable subset of \mathbf{R}^n .

Finally, we observe that

$$\mathcal{L}^{n}(\{(\mathbf{y}, \mathbf{z}) \in \mathbf{R}^{r} \times \mathbf{R}^{n-r} : |(\mathbf{y}, \mathbf{z})| \leq R \text{ and } |\mathbf{z}| \leq \epsilon\})$$

$$\leq \mathcal{L}^{n}(\{(\mathbf{y}, \mathbf{z}) \in \mathbf{R}^{r} \times \mathbf{R}^{n-r} : |\mathbf{y}| \leq R \text{ and } |\mathbf{z}| \leq \epsilon\})$$

$$< 2^{n} R^{r} \epsilon^{n-r}$$

by Tonelli's Theorem. \Box

Corollary. Suppose

- (1) U is an open subset of \mathbf{R}^n and $f: U \to \mathbf{R}^n$ is continuously differentiable;
- (2) $\mathbf{a} \in A \subset U$ and A is convex;
- (3) $M = \sup\{||\partial f(\mathbf{x})|| : x \in A\} < \infty;$
- (4) $\epsilon = \sup\{||\partial f(\mathbf{x}) \partial f(\mathbf{a})|| : x \in A\} < \infty$; and
- (5) $r = \operatorname{\mathbf{dim}} \operatorname{\mathbf{rng}} \partial f(\mathbf{a})$. Then
- (6) $\mathcal{L}^n(\operatorname{cl} f[A]) = 2^n(\operatorname{diam} A)^n M^r \epsilon^{n-r}.$

Proof. Let S be the range of $\partial f(\mathbf{a})$ and let $\mathbf{b} = f(\mathbf{a})$. We will show that

$$f[A] \subset \{ \mathbf{y} \in \mathbf{B}_{\mathbf{b}}(M \operatorname{diam} A) : \operatorname{dist}(\mathbf{y}, \mathbf{b} + S) \leq \epsilon \operatorname{diam} A \}$$

and invoke the previous Proposition. By the Fundamental Theorem of Calculus we have

(7)
$$f(\mathbf{x}) = \mathbf{b} + \int_0^1 \partial f(\mathbf{a})(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))(\mathbf{x} - \mathbf{a}) dt$$

for any $\mathbf{x} \in A$ from which it follows that

$$f[A] \subset \mathbf{B_b}(M\mathbf{diam}\,A).$$

We may rewrite (6) as

$$f(\mathbf{x}) = \mathbf{b} + \partial f(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \int_0^1 [\partial f(\mathbf{a})(\mathbf{a} + t(\mathbf{x} - \mathbf{a})) - \partial f(\mathbf{a})(\mathbf{a})](\mathbf{x} - \mathbf{a}) dt$$

for any $\mathbf{x} \in A$; it follows that

$$|(f(\mathbf{x}) - \mathbf{b}) \bullet \mathbf{w}| < \epsilon \operatorname{diam} A|\mathbf{w}|$$

for any $\mathbf{x} \in A$ and any $\mathbf{w} \in S^{\perp}$ which implies that the distance from $f(\mathbf{x})$ to S does not exceed $\epsilon \operatorname{\mathbf{diam}} A$. \square

Standard Cubical Subdivision. Let

$$C = \{ \mathbf{x} \in \mathbf{R}^n : 0 \le x_i < 1 \text{ for } j = 1, \dots, n \}.$$

For each integer m let

$$\mathcal{C}_m = \{2^{-m}(\mathbf{z} + C) : \mathbf{z} \in \mathbf{Z}^n\}.$$

Note that

$$\operatorname{diam} C = \sqrt{n}2^{-m}$$
 whenever $C \in \mathcal{C}_m$.

Theorem. Suppose U is an open subset of \mathbb{R}^n ,

$$f: U \to \mathbf{R}^n$$

continuously differentiable and

$$A = \{ \mathbf{x} \in U : \operatorname{\mathbf{dim}} \operatorname{\mathbf{rng}} \partial f(\mathbf{x}) < n \}.$$

Then

$$\mathcal{L}^n(f[A]) = 0.$$

Proof. For each k = 1, 2, 3, ... let

$$A_k = \{ \mathbf{x} \in U \cap \mathbf{B}_k(\mathbf{0}) : \operatorname{\mathbf{dim}} \operatorname{\mathbf{rng}} \partial f(\mathbf{x}) < n \text{ and } \operatorname{\mathbf{dist}} (\mathbf{x}, \mathbf{R}^n \sim A) \ge \frac{1}{k} \}$$

and note that A_k is compact. Since $A = \bigcup_{k=1}^{\infty} A_k$ it will suffice to show that $\mathcal{L}^n(f[A_k]) = 0$ for each k.

So let k be a positive integer. Choose an open set G such that $A_k \subset G$ and $\operatorname{cl} G$ is a compact subset of U. Then $M = \max\{||\partial f(\mathbf{x})|| : \mathbf{x} \in \operatorname{cl} G\} < \infty$.

Suppose $0 < \epsilon \le M$. Let \mathcal{U} be the family of those open balls $\mathbf{U_a}(s)$ which are subsets of G and are such that $\mathbf{a} \in A_k$ and

$$||\partial f(\mathbf{x}) - \partial f(\mathbf{a})|| \le \epsilon \text{ whenever } \mathbf{x} \in \mathbf{U}_{\mathbf{a}}(s);$$

Evidently, \mathcal{U} is a open covering of A_k ; let ρ be its Lebesgue number. Next choose a positive integer N such that $\sqrt{n}2^{-M} < \rho$. Let \mathcal{D} be the family of those $C \in \mathcal{C}_N$ such that $C \cap A_k \neq \emptyset$. By the preceding Corollary,

$$\mathcal{L}^n(f[C]) \leq 2^n (\operatorname{diam} C)^n M^{n-1} \epsilon = (2\sqrt{n})^n M^{n-1} \epsilon \mathcal{L}^n(C)$$

for any $C \in \mathcal{D}$. Thus

$$\mathcal{L}^{n}(f[A_{k}]) \leq \sum_{C \in \mathcal{D}} \mathcal{L}^{n}(f[C])$$

$$\leq \sum_{C \in \mathcal{D}} (2\sqrt{n})^{n} M^{n-1} \epsilon \mathcal{L}^{n}(C)$$

$$= (2\sqrt{n})^{n} M^{n-1} \epsilon \mathcal{L}^{n}(\bigcup \mathcal{D})$$

$$\leq (2\sqrt{n})^{n} M^{n-1} \epsilon \mathcal{L}^{n}(G).$$

Owing to the arbitrariness of ϵ we may conclude that $\mathcal{L}^n(f[A_k]) = 0$.