
1. Uniform convergence.

Suppose X is a set and (Y, σ) is a metric space. We let

B(X,Y )

be the set of bounded functions from X to Y ; that is, f ∈ B(X,Y ) if f : X → Y
and diamrng f < ∞. For each f, g ∈ B(X,Y ) we set

Σ(f, g) = sup{σ(f(x), g(x)) : x ∈ X}.

Proposition 1.1. Σ is metric on B(X,Y ).

Proof. Suppose f, g ∈ B(X,Y ) and a ∈ X. Then

σ(f(x), g(x)) ≤ σ(f(x), f(a)) + σ(f(a), g(a)) + σ(g(a), g(x))

≤ diamrng f + σ(f(a), g(a)) + diamrng g

for any x ∈ X. Thus Σ(f, g) < ∞. It is evident that Σ(g, f) = Σ(f, g) and that if
Σ(f, g) = 0 then f = g.

Suppose f, g, h ∈ B(X,Y ). Then

σ(f(x), h(x)) ≤ σ(f(x), g(x)) + σ(g(x), h(x)) ≤ Σ(f, g) + Σ(g, h)

for any x ∈ X from which we conclude that Σ(f, g) ≤ Σ(f, g) + Σ(g, h). □

Example 1.1. Suppose Y is a vector space normed by |·| and σ is the corresponding
metric. Note that

B(X,Y )

is then the set of functions f : X → Y such that

sup{|f(x)| : x ∈ A} < ∞.

We set

||f || = sup{|f(x)| : x ∈ X} whenever f ∈ B(X,Y )

and note that

Σ(f, g) = ||f − g|| whenever f, g ∈ B(A, Y ).

Obviously,

||f || = 0 ⇔ f = 0 whenever f ∈ B(X,Y ).

If c ∈ R and f ∈ B(X,Y ) we have

||cf || = {|(cf)(x)| : x ∈ X} = {|c||f(x)| : x ∈ X} = |c|{|f(x)| : c ∈ X} = |c|||f ||.
Moreover,

||f + g|| = sup{|f(x) + g(x)| : x ∈ X} ≤ ||f ||+ ||g||
whenever f, g ∈ B(X,Y ). In particular, B(X,Y ) is a linear subspace of Y X . Thus
B(X,Y ) is a normed vector space with respect to || · ||.

Proposition 1.2. Σ is complete if σ is complete.

Proof. Suppose f is a Cauchy sequence in B(X,Y ) with respect to Σ. Then, for
each x ∈ X, N ∋ ν 7→ fν(x) is a Cauchy sequence in Y and so, as σ is complete,
converges to some g(x).

We now show that limν→∞ Σ(fν , g) = 0. Suppose 0 < η < ϵ < ∞0. Let N ∈ N
be such that

µ, ν ∈ N and µ, ν ≥ N ⇒ Σ(fµ, fν) < η.
1



2

Then for any x ∈ X and any µ, ν ∈ N with µ, ν ≥ N we have

σ(fµ(x), g(x)) ≤ σ(fµ(x), fν(x)) + σ(fν(x), g(x))

≤ Σ(fµ, fν) + σ(fν(x), g(x))

< η + σ(fν(x), g(x)).

Letting ν → ∞ we find that if µ ≥ N then

σ(fµ(x), g(x)) ≤ η for any x ∈ X

which implies Σ(fµ, g) ≤ η < ϵ. That is, fν → g as ν → ∞ with respect to Σ, as
desired. □

Now suppose X is a topological space. Let

C(X,Y ) = {f ∈ B(X,Y ) : f is continuous}.

Theorem 1.1. C(X,Y ) is a closed subset of B(X,Y ).

Remark 1.1. It follows that C(X,Y ) is complete with respect to the metric on it
induced by Σ provided Y is complete.

Proof. Suppose g ∈ cl C(X,Y ).
Suppose a ∈ X and let ϵ > 0. Since g ∈ cl C(X,Y ) we there is f ∈ Ug(ϵ/3)∩ F .

Since f is continuous at a there is an open subset U of X such that

x ∈ U ⇒ σ(f(x), f(a)) ≤ ϵ/3.

Then

σ(g(x), g(a)) ≤ σ(g(x), f(x)) + σ(f(x), f(a)) + σ(f(a), g(a))

≤ Σ(f, g) + ϵ/3 + Σ(f, g)

≤ ϵ.

So g is continuous and, therefore, C(X,Y ) is a closed subset of B(X,Y ). □
Remark 1.2. Suppose X is compact and let

K(X,Y ) = {f ∈ Y X : f is continuous}.
Then

K(X,Y ) ⊂ B(X,Y ).

If Y is complete then K(X,Y ) is also complete by virtue of the preceding Theorem.
In particular, if Y is a Banach space so is K(X,Y ).

Remark 1.3. For each ν ∈ N let fν(x) = xν , 0 ≤ x ≤ 1. Evidently,

lim
ν→∞

fν(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Thus the pointwise limit is not continuous and, therefore, the convergence is not
uniform. Indeed, if µ, ν ∈ N and ν > µ then

(fµ − fν)(x) = xµ(1− xν−µ) → 1 as n → ∞
which implies that

lim
ν→∞

||fµ − fν || = 1 for any µ ∈ N.


