
Inscribing triangles to compute area.

0.1. Proposition. Suppose k, l ∈ L
¯
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Proof. For each λ ∈ Λ(p,m) let λ̂ ∈ Λ(m−p,m) be such that rng λ̂ = {1, . . . ,m} ∼
rng λ and let s
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□

0.2. Definition. Whenever p is a positive integer and a0, a1, . . . , ap ∈ R
¯
n we let

[a0, a1, . . . , ap] = {
p∑

i=0

ciai : 0 ≤ ci ≤ 1, i = 0, 1, . . . , p, and

p∑
i=0

ci = 1}

and call this set the p-simplex spanned by a0, a1, . . . , ap.

0.3. Proposition. Suppose U is a convex open subset of Rm,

f : U →R m,

f is continuously differentiable,

a0, a1, . . . am ∈ U,

S = [a0, a1, . . . , am]

and
Sf = [f(a0), f(a1), . . . , f(am)].

Then∣∣∣Jmf(a)||S||m − ||Sf ||m
∣∣∣ ≤ ( m∑

p=1

(
m
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)
||∂f(a)||m−pϵp

)
|a1 − a0| · · · |am − a0|

where
ϵ = sup{||∂f(x)− ∂f(a)|| : x ∈ S}.

Proof. Set

r(a, x) =

∫ 1

0

∂f((1− t)a+ tx)− ∂f(a) dt, a, x ∈ U.

Note that

f(x) = f(a) + ∂f(a)(x− a) + r(a, x)(x− a), a, x ∈ U.
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Now apply the previous Proposition. □
0.4. Theorem. Suppose U is a convex open subset of Rm,

f : U →R n

f is continuously differentiable and K is a compact subset of U which is the union
of a finite family of nonoverlapping m-simplices.

Then for any θ > 0 and ϵ > 0 there is δ > 0 such that∣∣ ∫
K

Jmf(x) dx−
∑
S∈S

||Sf ||m
∣∣ < ϵ

whenever S is a family of nonoverlapping m-simplices with union K satisfying

diamS < ϵ and
||S||m

diamSm
> θ

and where, for each S ∈ S, Sf = [f(a0), f(a1), . . . , f(am)] if S = [a0, a1, . . . , am]

Proof. Combine the above with the fact that ∂f is uniformly continuous on K. □

0.5. An example illustrating why the hypotheses in the previous Theorem are
necessary. Let

f :R 2 →R 3

be such that
f(θ, z) = U(θ) + ze

¯3
, (θ, z) ∈R 2,

where for θ ∈R we have set

U(θ) = (0, cos θ, sin θ) ∈R 3.

For 0 < h < π and k > 0 let Th,k be the triangle with vertices

f(−h, 0), f(0, k), f(h, 0).

The square of twice the area Th,k is

|(f(−h, 0)− f(0, k)) ∧ (f(h, 0)− f(0, k))|2

= |U(h) ∧ U(−h) + (U(h)− U(−h)) ∧ ke
¯3
|2

= |U(h) ∧ U(−h)|2 + k2|U(h)− U(−h)|2.
Thus the twice the area of Th,k tends to |U(h)∧U(−h)| as k ↓ 0 and so the ratio of
the area of Tk,h to the area of the triangle with vertices (−h, 0), (0, k), (h, 0) tends
to infinity as k ↓ 0.

For a triangle T in R2 we let Tf be the triangle in R3 whose vertices are the
image under f of the vertices of T . If we were to define the area of f [(−π, π)×(0, 1)]
in a fashion similar to the way the length of a curve is typically defined we get the
wrong answer because

sup{
∑
T∈T

|Tf | : T is a finite nonoverlapping family of triangles in [−π, π]× [0, 1]} = ∞.

This situation is not remedied by requiring the diameters of the inscribed triangles
to be small. The problem occurs when the ratio of the square of the diameter of a
triangle is large compared to the area of the triangle.


