Inscribing triangles to compute area.

0.1. Proposition. Suppose $k, l \in \underline{L}\left({ }^{R} m,{ }^{R} n\right)$ and $v_{1}, \ldots, v_{m} \in{ }^{R} m$. Then

$$
\left(\mid \bigwedge_{m} k+l\right)\left(v_{1} \wedge \cdots \wedge v_{m}\right)-\left(\bigwedge_{m} l\right)\left(v_{1} \wedge \cdots \wedge v_{m}\right)\left|\leq \sum_{p=1}^{m}\binom{m}{p}\right|\left|l \|^{m-p}\right||k|^{p}\left|v_{1}\right| \cdots\left|v_{m}\right|
$$

Proof. For each $\lambda \in \Lambda(p, m)$ let $\hat{\lambda} \in \Lambda(m-p, m)$ be such that $\mathbf{r n g} \hat{\lambda}=\{1, \ldots, m\} \sim$ $\boldsymbol{r n g} \lambda$ and let $\underline{\mathrm{s}}(\lambda) \in\{ \pm 1\}$ be such that

$$
v_{1} \wedge \cdots \wedge v_{m}=\underline{\mathrm{s}}(\lambda) v_{\lambda} \wedge v_{\hat{\lambda}}
$$

We have

$$
\begin{aligned}
\left(\bigwedge_{m} k+l\right)\left(v_{1} \wedge \cdots \wedge v_{m}\right)= & \sum_{p=0}^{m} \sum_{\lambda \in \Lambda(p, m)} \underline{\mathrm{s}}(\lambda)\left(\bigwedge_{m-p} l\right)\left(v_{\lambda}\right) \wedge\left(\bigwedge_{p} k\right)\left(v_{\hat{\lambda}}\right) \\
= & \left(\bigwedge_{m} l\right)\left(v_{1} \wedge \cdots \wedge v_{m}\right) \\
& +\sum_{p=1}^{m} \sum_{\lambda \in \Lambda(p, m)} \underline{\mathrm{s}}(\lambda)\left(\bigwedge_{m-p} l\right)\left(v_{\lambda}\right) \wedge\left(\bigwedge_{p} k\right)\left(v_{\hat{\lambda}}\right) .
\end{aligned}
$$

0.2. Definition. Whenever p is a positive integer and $a_{0}, a_{1}, \ldots, a_{p} \in \underline{\mathrm{R}}^{n}$ we let

$$
\left[a_{0}, a_{1}, \ldots, a_{p}\right]=\left\{\sum_{i=0}^{p} c_{i} a_{i}: 0 \leq c_{i} \leq 1, i=0,1, \ldots, p, \text { and } \sum_{i=0}^{p} c_{i}=1\right\}
$$

and call this set the p-simplex spanned by $a_{0}, a_{1}, \ldots, a_{p}$.
0.3. Proposition. Suppose U is a convex open subset of ${ }^{R} m$,

$$
f: U \rightarrow^{R} m
$$

f is continuously differentiable,

$$
\begin{gathered}
a_{0}, a_{1}, \ldots a_{m} \in U \\
S=\left[a_{0}, a_{1}, \ldots, a_{m}\right]
\end{gathered}
$$

and

$$
S_{f}=\left[f\left(a_{0}\right), f\left(a_{1}\right), \ldots, f\left(a_{m}\right)\right]
$$

Then

$$
\left|J_{m} f(a)\left\|\left.S\right|_{m}-\right\| S_{f} \|_{m}\right| \leq\left(\sum_{p=1}^{m}\binom{m}{p} \|\left.\partial f(a)\right|^{m-p} \epsilon^{p}\right)\left|a_{1}-a_{0}\right| \cdots\left|a_{m}-a_{0}\right|
$$

where

$$
\epsilon=\sup \{\|\partial f(x)-\partial f(a)\|: x \in S\}
$$

Proof. Set

$$
r(a, x)=\int_{0}^{1} \partial f((1-t) a+t x)-\partial f(a) d t, \quad a, x \in U
$$

Note that

$$
f(x)=f(a)+\partial f(a)(x-a)+r(a, x)(x-a), \quad a, x \in U
$$

Now apply the previous Proposition.
0.4. Theorem. Suppose U is a convex open subset of ${ }^{R} m$,

$$
f: U \rightarrow^{R} n
$$

f is continuously differentiable and K is a compact subset of U which is the union of a finite family of nonoverlapping m-simplices.

Then for any $\theta>0$ and $\epsilon>0$ there is $\delta>0$ such that

$$
\left|\int_{K} J_{m} f(x) d x-\sum_{S \in \mathcal{S}}\right|\left|S_{f} \|_{m}\right|<\epsilon
$$

whenever \mathcal{S} is a family of nonoverlapping m-simplices with union K satisfying

$$
\operatorname{diam} S<\epsilon \quad \text { and } \quad \frac{\|S\|_{m}}{\operatorname{diam} S^{m}}>\theta
$$

and where, for each $S \in \mathcal{S}, S_{f}=\left[f\left(a_{0}\right), f\left(a_{1}\right), \ldots, f\left(a_{m}\right)\right]$ if $S=\left[a_{0}, a_{1}, \ldots, a_{m}\right]$
Proof. Combine the above with the fact that ∂f is uniformly continuous on K.
0.5. An example illustrating why the hypotheses in the previous Theorem are necessary. Let

$$
f:{ }^{R} 2 \rightarrow^{R} 3
$$

be such that

$$
f(\theta, z)=U(\theta)+z \underline{\mathrm{e}}_{3}, \quad(\theta, z) \in^{R} 2
$$

where for $\theta \in^{R}$ we have set

$$
U(\theta)=(0, \cos \theta, \sin \theta) \in^{R} 3
$$

For $0<h<\pi$ and $k>0$ let $T_{h, k}$ be the triangle with vertices

$$
f(-h, 0), f(0, k), f(h, 0)
$$

The square of twice the area $T_{h, k}$ is

$$
\begin{aligned}
\mid(f(-h, 0)-f(0, k)) & \left.\wedge(f(h, 0)-f(0, k))\right|^{2} \\
& =\left|U(h) \wedge U(-h)+(U(h)-U(-h)) \wedge k \underline{e}_{3}\right|^{2} \\
& =|U(h) \wedge U(-h)|^{2}+k^{2}|U(h)-U(-h)|^{2}
\end{aligned}
$$

Thus the twice the area of $T_{h, k}$ tends to $|U(h) \wedge U(-h)|$ as $k \downarrow 0$ and so the ratio of the area of $T_{k, h}$ to the area of the triangle with vertices $(-h, 0),(0, k),(h, 0)$ tends to infinity as $k \downarrow 0$.

For a triangle T in ${ }^{R} 2$ we let T_{f} be the triangle in ${ }^{R} 3$ whose vertices are the image under f of the vertices of T. If we were to define the area of $f[(-\pi, \pi) \times(0,1)]$ in a fashion similar to the way the length of a curve is typically defined we get the wrong answer because
$\sup \left\{\sum_{T \in \mathcal{T}}\left|T_{f}\right|: \mathcal{T}\right.$ is a finite nonoverlapping family of triangles in $\left.[-\pi, \pi] \times[0,1]\right\}=\infty$.
This situation is not remedied by requiring the diameters of the inscribed triangles to be small. The problem occurs when the ratio of the square of the diameter of a triangle is large compared to the area of the triangle.

