
1. Topological spaces

Definition 1.1. We say a family of sets T is a topology if

(i) ∪U ∈ T whenever U ⊂ T ;
(ii) ∩F ∈ T whenever F ⊂ T and F is finite and nonempty.

Note that if T is a topology then ∅ = ∪∅ ∈ T since ∅ ⊂ T .

Definition 1.2. Let X be a set. A family T of sets is a topology for X if T is a
topology and X = ∪T .

Remark 1.1. Suppose T is a topology for the set X. Since T ⊂ T and X = ∪T
we have X ∈ T . Moreover, if U ∈ T then U ⊂ ∪T ⊂ X.

Definition 1.3. A topological space is an ordered pair (X, T ) such that X is a
set and T is a topology for X; in this context the members of T are called open
sets and a subset F of X such that X ∼ F is open is called closed.

It follows directly from the DeMorgan laws that the intersection of a nonempty
family of closed sets is closed and that the union of a finite family of closed sets is
closed.

Note that ϕ and X are always open and closed.
One often says “X is a topological space” so mean that there is T such that

(X, T ) is a topological space.

Definition 1.4. Whenever a ∈ Rn and r is a positive real number we let

Ua(r) = {x ∈ Rn : |x− a| < r} and Ba(r) = {x ∈ Rn : |x− a| ≤ r}

and call these sets the open ball with center a and radius r and the closed
ball with center a and radius r, respectively. We say a subset U of Rn is open
if for each a ∈ U there is ϵ > 0 such that

(1) Ua(ϵ) ⊂ U.

Theorem 1.1. The family of open sets is a topology for Rn.

Proof. Suppose a ∈ Rn; then for any ϵ > 0 we have Ua(ϵ) ⊂ Rn so Rn is open.
Thus the union of the family of open sets is Rn.

Suppose U is a family of open subsets of Rn and a ∈
∪
U ; then for some U ∈ U

we have a ∈ U . Since U is open there is ϵ > 0 such that Ua(ϵ) ⊂ U ; since U ⊂
∪
U

we infer that Ua(ϵ) ⊂
∪

U . Thus
∪

U is open.
Suppose F is a finite family of open subsets of Rn and a ∈

∩
F . For each U ∈ F

let ρ(U) = sup{ϵ : Ua(ϵ) ⊂ U} and note that 0 < ρ(U) ≤ ∞ since U is open. Let
σ = min{ρ(U) : U ∈ F}. Since F is finite we have 0 < σ ≤ ∞. Choose ϵ such that
0 < ϵ < σ. Then

Ua(ϵ) ⊂ U whenever U ∈ F

so that Ua(ϵ) ⊂
∩
F . Thus

∩
F is open. □

Exercise 1.1. Show that Ua(r) is open and Ba(r) is closed whenever a ∈ Rn and
r is a positive real number.
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1.1. Let us fix a topological space X.

Definition 1.5. Suppose A ⊂ X. We let the interior of A be the set of those
points a such that a ∈ U ⊂ A for some open set U . We let the closure of A be
the set of those points a such that A ∩ U ̸= ∅ whenever U is open and a ∈ U .

We will use the abbreviations

intA, clA

for the interior of A and the closure of A, respectively

Theorem 1.2. Suppose A ⊂ X. We have

intA ⊂ A and A ⊂ clA.

Proof. This follows directly from the definitions. □
.

Theorem 1.3. Suppose A ⊂ X. We have

X ∼ clA = int (X ∼ A) and X ∼ intA = cl (X ∼ A).

Proof. Suppose a ∈ X.
We have a ∈ X ∼ clA iff there is an open set U such that a ∈ U and A∩U = ∅

iff there is an open set U such that a ∈ U and U ⊂ X ∼ A iff a ∈ int (X ∼ A).
We have a ∈ X ∼ intA iff U ̸⊂ A whenever U is an open set and a ∈ U iff

U ∩ (X ∼ A) ̸= ∅ whenever U is an open set iff x ∈ cl (X ∼ A). □
Corollary 1.1. Suppose A ⊂ X. Then

intA = X ∼ cl (X ∼ A) and clA = X ∼ int (X ∼ A).

Proof. Replace A by X ∼ A in the preceding Theorem. □

Definition 1.6. Suppose A ⊂ X. We let the boundary of A be the set of those
points a such that if A∩U ̸= ∅ and U ∼ A ̸= ∅ whenever U is open and a ∈ U . We
will use the abbreviation

bdryA

for the boundary of A

Theorem 1.4. Suppose A ⊂ X. Then

bdryA = clA ∩ cl (X ∼ A).

Proof. This is an immediate consequence of the definition of boundary. □
Corollary 1.2. Suppose A ⊂ X. Then

bdryA = bdry (X ∼ A).

Proof. This follows directly from the previous Theorem since X ∼ (X ∼ A) =
A. □

Theorem 1.5. Suppose A ⊂ X. Then

intA =
∪

{U : U is an open set and U ⊂ A}

and
clA =

∩
{F : F is a closed set and A ⊂ F}.
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Proof. The first of these statements is a direct consequence of the definition of
intA. To prove the second, we apply the result just proved to int (X ∼ A) to
obtain

X ∼ clA = int (X ∼ A)

=
∪

{U : U is an open set and U ⊂ X ∼ A}

=
∪

{U : U is an open set and A ⊂ X ∼ U}

= X ∼
∩

{X ∼ U is an open set and A ⊂ X ∼ U}

= X ∼
∩

{F : F is a closed set and A ⊂ F}.

□

Corollary 1.3. Suppose A ⊂ X. Then intA is open, clA is closed and bdryA is
closed.

Proof. That the interior of A is open is an immediate consequence of the definition
of open set. That the closure of A is closed follows from the fact that the intersection
of a nonempty family of closed sets is closed as does the fact that the boundary of
A is closed. □

Theorem 1.6. Suppose A is a subset of X. Then

{intA,bdryA, int (X ∼ A)}
is a partition of X and

{intA,bdryA}
is a partition of clA.

Proof. Let A = {intA, int (X ∼ A)}. Since the interiors of A and X ∼ A are
subsets of A and X ∼ A, respectively, we find that A is disjointed. Moreover,

X ∼
∪

A = (X ∼ intA) ∩ (X ∼ int (X ∼ A)) = cl (X ∼ A) ∩ clA = bdryA.

Thus the first assertion is proved.
To prove the second, we have only to note that X ∼ int (X ∼ A) = clA. □

Definition 1.7. Suppose A is a subset of X and a ∈ X. We say A is a neigh-
borhood of a if a is an interior point of A. We say a is an isolated point of A
if

A ∩ U = {a}
for some open set U . We say a is an accumulation point for A if

A ∩ (U ∼ {a}) ̸= ∅
for each open subset U of X such that a ∈ U . We let

isoA = {a ∈ X : a is an isolated point of A}
and we let

accA = {a ∈ X : a is an accumulation point for A}.

Theorem 1.7. Suppose A is a nonempty subset of R. If A has an upper bound
then supA ∈ clA and if A has a lower bound then inf A ∈ clA.



4

Proof. Suppose A has an upper bound. Then −∞ < supA < ∞. Let U be an
open subset of R such that supA ∈ U . We need to show that U ∩ A ̸= ∅. Since U
is open there is ϵ > 0 such that (a− ϵ, a+ ϵ) ⊂ U . By a previous Theorem there is
a ∈ A such that supA < a+ ϵ. Thus, as a ≤ supA we have

a ∈ (supA− ϵ, supA) ⊂ (supA− ϵ, supA+ ϵ) ⊂ U

so that a ∈ U and, therefore, U ∩A ̸= ∅, as desired.
We leave the proof of the second assertion of the Theorem to the reader. □

Theorem 1.8. Suppose A is a subset of X. Then accA is closed and

{isoA,accA}

is a partition of clA.

Proof. This is a direct consequence of the definitions. □

1.2. Relative topologies. We suppose throughout this subsections that (X, T )
is a topological space and A ⊂ X.

Definition 1.8. We let

TA = {A ∩ U : U ∈ T }.
One easily verifies that TA is a topology for A which we call the relative topology
for A. We say a subset B of A is open relative to A if B ∈ TA. We say a subset
B of A is closed relative to A if A ∼ B is relatively open.

Proposition 1.1. Suppose B ⊂ A. Then B is open relative to A if and only
B = A ∩ U for some open subset U of X and B is closed relative to A if and only
if B = A ∩ F for some closed subset F of X.

Proof. The first of these assertions is just a repetition of the definition of relative
openness.

Suppose B is closed relative to A. Then A ∼ B is open relative to A so there is
an open subset U of X such that A ∼ B = A ∩ U . Now

B = A ∼ (A ∼ B) = A ∼ (A ∩ U) = A ∩ (X ∼ U)

so if F = X ∼ U then F is a closed subset of X and B = A ∩ F .
Suppose F is a closed subset of X and B = X ∩ F . Then

A ∼ B = A ∼ (X ∩ F ) = X ∩ (X ∼ F

so, as X ∼ F is open, A ∼ B is relatively open. □

1.3. Connectedness. Suppose X is topological space.

Theorem 1.9. Suppose A ⊂ X. The following are equivalent.

(i) If E and F are open subsets of X, A∩E ∩F is empty and A ⊂ E ∪F then
either A ⊂ E or A ⊂ F .

(ii) If G and H are relatively open subsets of A, G ∩ H = ∅ and A = G ∪ H
then either A ⊂ G or A ⊂ H.

(iii) If E and F are closed subsets of X, A ∩ E ∩ F is empty and A ⊂ E ∪ F
then either A ⊂ E or A ⊂ F .

(iv) If G and H are relatively closed subsets of A, G ∩H = ∅ and A = G ∪H
then either A ⊂ G or A ⊂ H.
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Proof. That (i) is equivalent to (ii) is an immediate consequence of the definition
of relatively open subsets of A. That (iii) is equivalent to (iv) is an immediate
consequence of the characterization of relatively closed sets given in Proposition
1.1. Finally, by considering complements relative to A one immediately infers that
G,H satisfy (ii) if and only if G,H satisfy (iii). □
Definition 1.9. We say the subset A of X is connected if any of the equivalent
conditions in the previous Theorem hold.

Proposition 1.2. The subset A is connected if and only if A is connected with
respective to the relative topology for A.

Proof. This follows directly from Theorem 1.9. □
Theorem 1.10. Suppose A is a connected subset of X and

A ⊂ B ⊂ clA.

Then B is connected.

Proof. Suppose E and F are closed sets, B∩E ∩F is empty and B ⊂ E ∪F . Since
A is connected and A ⊂ B, either A ⊂ E in which case clA ⊂ E because E is closed
or A ⊂ F in which case clA ⊂ F because F is closed. Thus B is connected. □

Theorem 1.11. Suppose A is a nonempty family of connected subsets of X and
∩A ̸= ∅. Then ∪A is connected.

Proof. Suppose E and F are open sets, (∪A) ∩ E ∩ F is empty and ∪A ⊂ E ∪ F .
Choose a member a of ∩A. Then either (i) a ∈ E and a ̸∈ F or (ii) a ̸∈ E and
a ∈ F .

Suppose (i) holds. Let A be a member of A. As A is connected, either A ⊂ E
or or A ⊂ F . Since a ∈ A we must have A ⊂ E. Thus ∪A ⊂ E.

In a similar fashion one shows that ∪A ⊂ F if (ii) holds.
Thus ∪A is connected. □

Definition 1.10. Suppose A is a subset of X and a ∈ A. We let

cmp (A, a) =
∪

{C : C is a connected subset of A and a ∈ C}.

We call this set the connected component of a in A. Obviously, if C is a
connected subset of A and a ∈ C then

C ⊂ cmp (A, a).

Theorem 1.12. Suppose A is a subset of X. For any a ∈ A we have

(i) a ∈ cmp (A, a);
(ii) cmp (A, a) is a connected subset of X;
(iii) cmp (A, a) = A ∩ cl (cmp (A, a)).

Moreover, {cmp (A, a) : a ∈ A} is a partition of A.

Proof. Suppose a ∈ A.
It follows directly from the definition that {a} is connected so that a ∈ cmp (A, a)

so (i) holds. Statement (ii) follows from the preceding Theorem. By a straightfor-
ward argument which we leave to the reader one may use statements (i) and (ii) as
well as a previous Theorem to infer that {cmp (A, a) : a ∈ A} is a partition of A.
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It is trivial that cmp (A, a) is a subset of A ∩ cl (cmp (A, a)). Suppose b ∈
A ∩ cl (cmp (A, a)). Then statement (ii) and the preceding Theorem imply that
cmp (A, a) ∪ {b} is connected. Since this set contains {a} by (i) it follows that it
is a subset of cmp (A, a) so b ∈ cmp (A, a). □

Theorem 1.13. Suppose A is a subset of R. Then A is connected if and only if A
is an interval.

Proof. Suppose A is connected. Were A not an interval there would be x, z ∈ A
and y ∈ R ∼ A such that x < y < z. Let E = (−∞, y) and let F = (y,∞). Then
E and F are open, A ∩ E ∩ F is empty and A ⊂ E ∪ F but A ̸⊂ E and A ̸⊂ F so
A would not be connected.

On the other hand, suppose A is an interval but that, contrary to the Theorem,
A is not connected. Then there would be open sets E and F such that A ⊂ E ∪ F
and A∩E ∩F = ∅ as well as points x in A∩E and z in A∩F . Since A∩E ∩F is
empty we have x ̸= z. Thus

x < z or z < x.

Suppose x < z. Let

T = {t : t ∈ A ∩ E and t < z}.

Then x ∈ T so T ̸= ∅ and z is an upper bound for T ; letting y = supT we find
that x ≤ y ≤ z. Since A is an interval we have y ∈ A. Thus either (i) y ∈ E or (ii)
y ∈ F .

Suppose (i) holds. Since E is open there is ϵ > 0 such that (y − ϵ, y + ϵ) ⊂ E.
Let w = min{z, y + ϵ}; since z ∈ F we have y < z so y < w ≤ z. Since A is an
interval we have [y, w) ⊂ A; but this implies [y, w) ⊂ T which is impossible.

Suppose (ii) holds. Since F is open there is η > 0 such that (y − η, y + η) ⊂ F .
Let w = max{x, y − η}; since x ∈ E we have x < y so x ≤ w < y. Since A is an
interval we have (w, x] ⊂ A; but this implies (w, x] ⊂ T which is impossible.

In a similar fashion one handles the case x > z. □

1.4. Compactness.

Definition 1.11. Suppose K ⊂ X. We say K is compact if whenever U is a
family of open subsets of X such that

K ⊂
∪

U

there is a finite subfamily F of U such that

K ⊂
∪

F .

A family U as above is called and open covering of K.

Proposition 1.3. Suppose K ⊂ X. Then K is compact if and only if K is compact
with respect to the relative topology for K.

Proof. Suppose K is compact and V is a family of relatively open subsets of K such
that K = ∪V. Let

U = {U : U is an open subset of X and K ∩ U ∈ V}.
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If V ∈ V then V = A ∩ U for some open set U ; this implies ∪V ⊂ U so K ⊂ U .
Since I is compact there is a finite subfamily F of U such that K ⊂ F . Let

G = {K ∩ U : U ∈ F}.
Then G is a finite subfamily of V and K = ∪G so K is relatively compact.

Suppose K is relatively compact and U is an open covering of K. Let

V = {K ∩ U : U ∈ U}.
The V is a family of relatively open sets whose union equals K so, as K is relatively
compact, there is a finite subfamily G of V such that K = ∪G. For each G ∈ G let

u(G) = {U : U is open and G = K ∩ U}
and note that u(G) is nonempty. Let c be a choice function for {u(G) : G ∈ G}
and let F be the range of c. Then F is a finite subfamily of U and K ⊂ ∪F so K
is compact. □

Definition 1.12. We say X Hausdorff if whenever a and b are distinct points of
X there are open sets U and V such that a ∈ U , b ∈ V and U ∩ V = ∅.
Theorem 1.14. Suppose X is Hausdorff and K is a compact subset of X. Then
K is closed.

Proof. We may assume K is nonempty. Suppose y ∈ X ∼ K. Let U be the family
of those open sets U corresponding to which there is an open subset V of X such
that y ∈ V and U ∩ V = ∅. Our hypothesis that X is Hausdorff directly implies
that U is an open covering of K. Since K is compact and nonempty there is a finite
subfamily F of U such that K ⊂

∪
F . By the definition of U there is for each U ∈ F

an open set v(U) such that y ∈ v(U) and U ∩ v(U) = ∅. Thus
∩
{v(U) : U ∈ F}

is an open set containing y and disjoint from K. That is, y is an interior point of
X ∼ K. We conclude that X ∼ K is open so K is closed. □

Theorem 1.15. Suppose K is compact, F ⊂ K and F is closed. Then F is
compact.

Proof. Suppose U is an open covering of F . Then V = {X ∼ F} ∪ U is an open
covering of K. As K is compact, there is a finite subfamily F of V such that
K ⊂

∪
V. Let F = V ∼ {X ∼ K}. Evidently, F is a finite subfamily of U and

F ⊂ ∪F . □

Definition 1.13. A family Z of sets has the finite intersection property if∩
F ̸= ∅ whenever F is a nonempty finite subfamily of Z.

Theorem 1.16. Suppose F is a closed subset of X. Then F is compact if and
only if ∩Z ̸= ∅ whenever Z is a nonempty family of closed subsets of F with the
finite intersection property.

Proof. Suppose F is compact and Z is a nonempty family of closed subsets of F
with the finite intersection property. Were it the case that

∩
Z = ∅ we could set

U = {X ∼ Z : Z ∈ Z} obtaining an open covering of F . Since F is compact there
would be a finite family F of Z such that F ⊂

∪
{X ∼ Z : Z ∈ F}. But then∩

F = X ∼
∪

{X ∼ Z : Z ∈ F} ⊂ X ∼ F,
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which implies
∩

F = ∅, contradicting that Z has the finite intersection property.
On the other hand, suppose that ∩Z ̸= ∅ whenever Z is a nonempty family of

closed subsets of F with the finite intersection property. Let U be a nonempty open
covering of F . Then Z = {F ∼ U : U ∈ U} is a family of closed subsets of F and
∩Z = ∅. Thus there is a finite subfamily F of U such that

∩
{F ∼ Z : Z ∈ F} = ∅

which implies F ⊂
∪
F . Thus F is compact. □

Theorem 1.17. Suppose a, b ∈ R and a < b. Then [a, b] is compact.

Proof. Let U be an open covering of [a, b]. Let

T = {t ∈ (a, b] : there is a finite subfamily F of U such that [a, t) ⊂ ∪F}.
Since a ∈ [a, b] there is U ∈ U such that a ∈ U . Since U is open there is ϵ > 0 such
that (a− ϵ, a+ ϵ) ⊂ U . Thus a < min{a+ ϵ, b} ∈ T . Also, b is an upper bound for
T . So if we let u = supT we find that a < u ≤ b.

Since u ∈ [a, b] there is V ∈ U such that u ∈ V . Since V is open there is η > 0
such that (u − η, u + η) ⊂ V . Since a < u there is t ∈ (u − η, u] ∩ T . Thus there
is a finite subfamily G of U such that [a, t) ⊂ ∪G. Let F = G ∪ {V }. Then F is a
finite subfamily of U and [a, u + η) ⊂ ∪F . Were it the case that u < b we would
have u < v = min{u + η, b} ≤ b which would imply v ∈ T which is incompatible
with u being an upper bound for T . Thus u = b and [a, b] ⊂ F , as desired. □

1.5. Continuity.

Definition 1.14. Suppose X and Y are topological spaces, A ⊂ X and

f : A → Y.

We say f is continuous if for each open subset V of Y such that there is an open
subset U of X such that

f−1[V ] = U ∩A.

We leave as an exercise for the reader the straightforward verification of the fact
that f is continuous if and only if for each closed subset F of Y there is a closed
subset E of X such that

f−1[F ] = A ∩ E.

Theorem 1.18. Suppose X and Y are topological spaces, A ⊂ X and

f : A → Y.

Then f is continuous if and only if f is continuous with respect to the relative
topology for A.

Proof. This is an immediate consequence of the definitions. □

Theorem 1.19. Suppose X, Y and Z are topological spaces, A ⊂ X, B ⊂ Y and

f : A → Y, and g : B → Z

are continuous. Then
g ◦ f : A ∩ f−1[B] → Z

is continuous.

Proof. Straightforward exercise for the reader. □
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Theorem 1.20. Suppose X and Y are topological spaces, A ⊂ X and

f : A → Y.

is continuous. Then

(i) if A is connected then f [A] is connected;
(ii) if A is compact then f [A] is compact.

Proof. We prove (i) and leave the proof of (ii) as an exercise for the reader. We
give two proofs of (i). Proof One. Suppose E and F are open subsets of Y such

that f [A] ⊂ E ∪F and f [A]∩E ∩F = ∅. We need to show that either (i) f [A] ⊂ E
or (ii) f [A] ⊂ F .

Since f is continuous there are open subsets U and V of X such that f−1[U ] =
A ∩ E and f−1[V ] = A ∩ F . Now

A ⊂ f−1[f [A]] ⊂ f−1[E ∪ F ] = f−1[E] ∪ f−1[F ] = (A ∩ U) ∪ (A ∪ V ) ⊂ U ∪ V

and, keeping in mind that A ⊂ f−1(Z) for any set Z,

A∩U∩V = (A∩U)∩(A∩V ) = f−1[E]∩f−1[F ] = f−1[E∩F ] = f−1[f [A]∩E∩F ] = ∅.

Since A is connected we have either A ⊂ U in which case (i) holds or A ⊂ V in
which case (ii) holds. Proof Two. Let T be the topology for X and let U be the

topology for Y . We leave as a straightforward exercise for the reader the proof of
the statement that that

f is (A, TA)− (f [A],Uf [A]) continuous.

Suppose that G and H are Uf [A]-open, f [A] = G∪H and G∩H = ∅. Then f−1[G]

and f−1[H] are TA-open, f−1[G] ∪ f−1[H] = f−1[G ∪ H] ⊂ f−1[f [A]] = A and
f−1[G] ∩ f−1[H] = f−1[G ∩ H] = f−1[∅] = ∅. Since A is TA connected we have
either (i) A ⊂ f−1[G] in which case f [A] ⊂ f [f−1[G]] = G or A ⊂ f−1[H] in which
case f [A] ⊂ f [f−1[H]] = H. Thus f [A] is connected.

□

1.6. Limits. We suppose throughout this section that X and Y are topological
spaces, A ⊂ X and

f : A → Y.

Definition 1.15. Suppose a ∈ accA and b ∈ Y . We say f(x) has b as a limit
as x approaches a and write

lim
x→a

f(x) = b

if for each open subset V of Y such that b ∈ V there is an open subset U of X such
that a ∈ U and A ∩ (U ∼ {a}) ⊂ f−1[V ].

If a ∈ A we say f is continuous at a if either a ∈ isoA or a ∈ accA and
limx→a f(x) = f(a).

Exercise 1.2. Suppose a ∈ accA. Show that

{b ∈ Y : lim
x→a

f(x) = b}

is a closed subset of Y .
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Theorem 1.21. Suppose Y is Hausdorff, a ∈ accA and

lim
x→a

f(x) = bi ∈ Y, i = 1, 2.

Then
b1 = b2.

Proof. Suppose, contrary to the Theorem, b1 ̸= b2. For each i = 1, 2 let Vi be an
open subset of Y such that bi ∈ Vi and V1 ∩ V2 = ∅. Then for each i = 1, 2 there is
an open subset Ui of X such that a ∈ Ui and

A ∩ (Ui ∼ {a}) ⊂ f−1[Vi].

Since a ∈ accA we have

∅ ̸= A ∩ ((U1 ∩ U2) ∼ {a})
= (A ∩ (U1 ∼ {a})) ∩ (A ∩ (U2 ∼ {a}))
⊂ f−1[V1] ∩ f−1[V2]

= f−1[V1 ∩ V2]

= ∅.
□

Theorem 1.22. Suppose A ⊂ Rn, a ∈ accA,

f : A → Rm
and b ∈ Rm.

The following are equivalent.

(i) limx→a f(x) = b.
(ii) For each ϵ > 0 there is δ > 0 such that

x ∈ A ∼ {a} and |x− a| < δ ⇒ |f(x)− b| < ϵ.

Proof. Suppose (i) holds and ϵ > 0. Let V = Ub(ϵ). Since V is an open subset of
R there is an open subset U of R such that a ∈ U and A ∩ (U ∼ {a}) ⊂ f−1[V ];
thus

x ∈ A ∩ (U ∼ {a}) ⇒ f(x) ∈ V.

Since a ∈ U and U is open there is δ > 0 such that Ua(δ) ⊂ U . If x ∈ A ∼ {a}
and |x− a| < δ then x ∈ A ∩ (U ∼ {a}) so f(x) ∈ V so |f(x)− b| < ϵ.

Suppose (ii) holds, V is an open subset of R and b ∈ V . Since V is open there
is ϵ > 0 such that Ub(ϵ) ⊂ V . Let δ > 0 be such that

x ∈ A ∼ {a} and |x− a| < δ ⇒ |f(x)− b| < ϵ.

Let U = Ua(δ). If x ∈ A ∩ (U ∼ {a}) then x ∈ A ∼ {a} and |x − a| < δ so
|f(x)− b| < ϵ so f(x) ∈ V . Thus A ∩ (U ∼ {a}) ⊂ f−1[V ] so (i) holds. □

Theorem 1.23. f is continuous if and only if f is continuous at a for each a ∈
A ∩ accA.

Proof. Straightforward exercise for the reader. □

The following Theorem is extremely useful.
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Theorem 1.24. Suppose a ∈ accA, b ∈ Y , B ⊂ Y , b ∈ intB, Z is a topological
space, g : B → Z,

lim
x→a

f(x) = b and g is continuous at b.

Then dmn (g ◦ f) = A ∩ f−1[B], a is an accumulation point for dmn (g ◦ f) and
lim
x→a

g ◦ f(x) = g(b).

Proof. Exercise for the reader. □


