1. The Theorems of Fubini and Tonelli.

Suppose $n, m \in \mathbb{N}^{+}$and $0<m<n$. We identify \mathbb{R}^{n} with $\mathbb{R}^{m} \times \mathbb{R}^{n-m}$ in the natural way.

For each function f with domain \mathbb{R}^{n} and each $x \in \mathbb{R}^{m}$ we let

$$
\mathbf{s}_{x}(f)=\left\{(y, f(x, y)): y \in \mathbb{R}^{n-m}\right\}
$$

thus $\mathbf{s}_{x}(f)$ is a function with domain \mathbb{R}^{n-m} such that

$$
\mathbf{s}_{x}(f)(y)=f(x, y) \quad \text { whenever } y \in \mathbb{R}^{n-m}
$$

Lemma 1.1. Suppose $f \in \mathcal{F}_{n}^{+}$and

$$
F(x)=\mathbf{l}_{n-m}\left(\mathbf{s}_{x}(f) \quad \text { for } x \in \mathbb{R}^{m}\right.
$$

Then

$$
\mathbf{l}_{m}(F) \leq \mathbf{l}_{n}(f)
$$

Proof. Suppose $s \in S_{n, \uparrow}^{+}$and $f \leq \sup s$. Let S be the sequence in \mathcal{F}_{m}^{+}such that, for each $\nu \in \mathbb{N}, S_{\nu}(x)=I_{n-m}^{+}\left(\mathbf{s}_{x}\left(s_{\nu}\right)\right)$ for $x \in \mathbb{R}^{m}$. Then $S \in S_{n-m, \uparrow}^{+}$and $F \leq \sup S$. It follows that

$$
\mathbf{l}_{m}(F) \leq I_{m, \uparrow}^{+} S=I_{n, \uparrow}^{+}(s) ;
$$

the Lemma follows.
Theorem 1.1. Fubini's Theorem. Suppose $f \in \mathbf{L e b}_{n}$,

$$
X=\left\{x \in \mathbb{R}^{m}: \mathbf{s}_{x}(f) \in \mathbf{L e b}_{n-m}\right\}
$$

and

$$
F: \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

is such that

$$
F(x)=\mathbf{L}_{n-m}\left(\mathbf{s}_{x}(f)\right) \quad \text { whenever } x \in X
$$

Then $\mathcal{L}^{m}\left(\mathbb{R}^{m} \sim X\right)=0, F \in \mathbf{L e b}_{m}$ and

$$
\mathbf{L}_{n}(f)=\mathbf{L}_{m}(F)
$$

Proof. Part One Choose sequences ϵ and η in $(0, \infty)$ such that $\lim _{\nu \rightarrow \infty} \epsilon_{\nu}=0$ and $\sum_{\nu=1}^{\infty} \eta_{\nu}<\infty$.

Next, choose a sequence s in \mathcal{S}_{n} such that $\mathbf{l}_{n}\left(\left|f-s_{\nu}\right|\right) \leq \epsilon_{\nu} \eta_{\nu}$ for $\nu \in \mathbb{N}$.
For each $\nu \in \mathbb{N}$ let $S_{\nu} \in \S m$ be such that

$$
S_{\nu}(x)=\mathbf{L}_{n-m}\left(\mathbf{s}_{x}\left(s_{\nu}\right)\right) \quad \text { for } x \in \mathbb{R}^{m}
$$

For each $\nu \in \mathbb{N}$ let

$$
j_{\nu}(x)=\mathbf{l}_{n-m}\left(\left|\mathbf{s}_{x}(f)-\mathbf{s}_{x}\left(s_{\nu}\right)\right|\right) \quad \text { for } x \in \mathbb{R}^{m}
$$

thus $j_{\nu} \in \mathcal{F}_{m}^{+}$.
For each $\nu \in \mathbb{N}$ let

$$
E_{\nu}=\left\{x \in \mathbb{R}^{m}: j_{\nu}(x) \leq \epsilon_{\nu}\right\}
$$

let

$$
D=\cup_{N=0}^{\infty} \cap \cap_{\nu=N}^{\infty} E_{\nu}
$$

Part Two $D \subset X$.
Suppose $x \in D$. Choose a positive integer N such that $x \in \bigcap_{\nu=N}^{\infty} E_{\nu}$. Then for any $\nu \in \mathbb{N}$ with $\nu \geq N$ we have $\mathbf{l}_{n-m}\left(\left|\mathbf{s}_{x}(f)-\mathbf{s}_{x}\left(s_{\nu}\right)\right|\right)=j_{\nu}(x) \leq \epsilon_{\nu}$ which implies $\mathbf{s}_{x}(f) \in \mathbf{L e b}_{n-m}$.

2
Part Three $\mathcal{L}^{n}\left(\mathbb{R}^{n} \sim X\right)=0$.
For each $\nu \in \mathbb{N}$ we use the Lemma to estimate

$$
\mathcal{L}^{n}\left(\mathbb{R}^{m} \sim E_{\nu}\right)=\mathbf{l}_{m}\left(1_{\mathbb{R}^{m} \sim E_{\nu}}\right) \leq \frac{1}{\epsilon_{\nu}} \mathbf{l}_{n-m}\left(j_{\nu}\right) \leq \frac{1}{\epsilon_{\nu}} \mathbf{l}_{n}\left(\left|f-s_{\nu}\right|\right) \leq \eta_{\nu}
$$

Consequently,

$$
\begin{aligned}
\mathcal{L}^{m}\left(\mathbb{R}^{n} \sim D\right) & =\mathcal{L}^{m}\left(\bigcap_{N=0}^{\infty} \bigcup_{\nu=N}^{\infty} \mathbb{R}^{m} \sim E_{\nu}\right) \\
& \leq \inf _{N} \mathcal{L}^{m}\left(\bigcup_{\nu=N}^{\infty} \mathbb{R}^{m} \sim E_{\nu}\right) \\
& \leq \inf _{N} \sum_{\nu=N}^{\infty} \mathcal{L}^{m}\left(\mathbb{R}^{m} \sim E_{\nu}\right) \\
& \leq \inf _{N} \sum_{\nu=N}^{\infty} \eta_{\nu} \\
& =0
\end{aligned}
$$

Since $D \subset X$ we have $\mathbb{R}^{m} \sim X \subset \mathbb{R}^{m} \sim D$ so $\mathcal{L}^{m}\left(\mathbb{R}^{m} \sim X\right)=0$.
Part Four. Suppose $\nu \in \mathbb{N}$. For $x \in X$ we have

$$
\begin{align*}
\left|F(x)-S_{\nu}(x)\right| & =\left|\mathbf{L}_{n-m}\left(\mathbf{s}_{x}(f)\right)-\mathbf{L}_{n-m}\left(\mathbf{s}_{x}\left(s_{\nu}\right)\right)\right| \\
& \left.=\mid \mathbf{L}_{n-m}\left(\mathbf{s}_{x}(f)\right)-\mathbf{s}_{x}\left(s_{\nu}\right)\right) \mid \\
& \leq \mathbf{l}_{n-m}\left(\left|\mathbf{s}_{x}(f)-\mathbf{s}_{x}\left(s_{\nu}\right)\right|\right) \tag{1}\\
& \leq \mathbf{l}_{n-m}\left(\left|\mathbf{s}_{x}\left(f-s_{\nu}\right)\right|\right)
\end{align*}
$$

from the Lemma we infer that

$$
\mathbf{l}_{m}\left(\left|F-S_{\nu}\right|\right)=\mathbf{l}_{m}\left(1_{X}\left|F-S_{\nu}\right|\right) \leq \mathbf{l}_{n}\left(\left|f-s_{\nu}\right|\right)
$$

Owing to the arbitrariness of ν we conclude that $F \in \mathbf{L e b}_{m}$.
Part Five. Suppose $\nu \in \mathbb{N}$. Since we have

$$
\begin{aligned}
\left|\mathbf{L}_{m}(F)-\mathbf{L}_{n}(f)\right| & \leq\left|\mathbf{L}_{m}(F)-\mathbf{L}_{m}\left(S_{\nu}\right)\right|\left|\mathbf{L}_{n}(f)-\mathbf{L}_{n}\left(s_{\nu}\right)\right| \\
& =\left|\mathbf{L}_{m}\left(F-S_{\nu}\right)\right|+\left|\mathbf{L}_{n}\left(f-s_{\nu}\right)\right| \\
& \leq \mathbf{l}_{m}\left(\left|F-S_{\nu}\right|\right)+\mathbf{l}_{m}\left(\left|f-s_{\nu}\right|\right) \\
& \leq 2 \mathbf{l}_{m}\left(\left|f-s_{\nu}\right|\right)
\end{aligned}
$$

letting $\nu \rightarrow \infty$ we infer that $\mathbf{L}_{m}(F)=\mathbf{L}_{n}(f)$, as desired.
Theorem 1.2. Tonelli's Theorem. Suppose $f \in \mathbf{L e b}_{n}^{+}$,

$$
X=\left\{x \in \mathbb{R}^{m}: \mathbf{s}_{x}(f) \in \mathbf{L e b}_{n-m}^{+}\right\}
$$

and

$$
F: \mathbb{R}^{m} \rightarrow[0, \infty]
$$

is such that

$$
F(x)=\mathbf{l}_{n-m}\left(\mathbf{s}_{x}(f)\right) \quad \text { whenever } x \in X
$$

Then $\mathcal{L}^{m}\left(\mathbb{R}^{m} \sim X\right)=0, F \in \mathbf{L e b}_{m}^{+}$and

$$
\mathbf{l}_{n}(f)=\mathbf{l}_{m}(F)
$$

Proof. Choose a nondecreasing sequence g in $\mathcal{F}_{n}^{+} \cap \operatorname{Leb}_{n}$ such that $f=\sup _{\nu} g_{\nu}$. For each $\nu \in \mathbb{N}$ let

$$
X_{\nu}=\left\{x \in \mathbb{R}^{m}: \mathbf{s}_{x}\left(g_{\nu}\right) \in \mathbf{L e b}_{n-m}\right\}
$$

Then

$$
X \subset \cap_{\nu=0}^{\infty} X_{\nu}
$$

so $\mathcal{L}^{m}\left(\mathbb{R}^{m} \sim X\right)=0$ by Fubini's Theorem. The remaining assertions follow by applying combining Fubini's Theorem with f there replaced by $g_{\nu}, \nu \in \mathbb{N}$ and invoking the Monotone Convergence Theorem.

