Tangency.

Let X be a normed vector space.
0.1. Definition. Suppose $v \in X$ and $C \subset X$. We say C is a cone with vertex v if

$$
x \in C \sim\{v\} \text { and } t \geq 0 \Rightarrow v+t(x-v) \in C
$$

Note that the empty set is a cone with vertex v and that $v \in C$ if $C \sim\{v\} \neq \emptyset$.
0.2. Proposition. Suppose $v \in X$ and \mathcal{C} is a nonempty family of cones with vertex v. Then $\cup \mathcal{C}$ is a cone with vertex v.
Proof. This is immediate.
0.3. Proposition. Suppose $v \in X$ and C is a cone with vertex v. Then the closure of C is a cone with vertex v.
Proof. Exercise.
0.4. Definition. Suppose $A \subset X, a \in \operatorname{acc} A$. For each $\delta>0$ we let

$$
\boldsymbol{\operatorname { T a n }}_{a}(A, \delta)=\mathbf{c l}\left\{t(x-a): t \geq 0, \text { and } x \in(A \sim\{a\}) \cap \mathbf{B}_{a}(\delta)\right\}
$$

Note that. by virtue of the previous Proposition, $\operatorname{Tan}_{a}(A, \delta)$ is a closed cone with vertex 0 .

We let

$$
\operatorname{Tan}_{a}(A)=\bigcap_{\delta>0} \operatorname{Tan}_{a}(A, \delta)
$$

and we let

$$
\operatorname{Nor}_{a}(A)=\left\{\omega \in X^{*}: \omega(v) \leq 0 \text { whenever } v \in \boldsymbol{\operatorname { T a n }}_{a}(A)\right\}
$$

Note that $\operatorname{Tan}_{a}(A)$ and $\operatorname{Nor}_{a}(A)$ are closed cones in X and X^{*}, respectively, by virtue of the first Proposition above..

In case X is an inner product space we will also let

$$
\operatorname{Nor}_{a}(A)=\left\{w \in X: v \bullet w \leq 0 \text { whenever } v \in \boldsymbol{\operatorname { T a n }}_{a}(A)\right\}
$$

and rely on the context to resolve the ambiguity.
0.5. Theorem. Suppose X is finite dimensional, $A \subset X, a \in \operatorname{acc} A$. Then $\operatorname{Tan}_{a}(A) \neq \emptyset$. Moreover, for each $\epsilon>0$ there exists $\delta>0$ such that

$$
\mathbf{c l} A \cap \underline{\mathrm{~B}}_{a}(\delta) \subset a+\left\{v \in X: \operatorname{dist}\left(v, \operatorname{Tan}_{a}(A)\right) \leq \epsilon|v|\right\}
$$

Proof. Let $K=\{u \in X:|u|=1\}$ and note that K is compact because X is finite dimensional. Let $L=K \cap \operatorname{Tan}_{a}(A)$ and, for each $\delta>0$, let $T_{\delta}=K \cap \operatorname{Tan}_{a}(A, \delta)$. Then $\left\{T_{\delta}: \delta>0\right\}$ is a nonempty nested family of closed subsets of the compact set K whose nonempty intersection is L. Moreover, if U is an open set containing L then there is $\delta>0$ such that $T_{\delta} \subset U$.

Now suppose $\epsilon>0$. Let

$$
U=\left\{v \in X \sim\{0\}: \operatorname{dist}\left(v, \operatorname{Tan}_{a}(A)\right)<\epsilon|v|\right\}
$$

and note that U is open. Since $L \subset U$ and U is open there is $\delta>0$ such that $T_{\delta} \subset U$.
0.6. Proposition. Suppose $A \subset X, a \in \operatorname{acc} A$ and $v \in X \sim\{0\}$. The following are equivalent.
(i) $v \in \operatorname{Tan}_{a}(A)$.
(ii) For each $\epsilon>0$ and $\delta>0$ there are $s>0$ and $x \in(A \sim\{a\}) \cap \underline{\mathrm{B}}_{a}(\delta)$ such that

$$
|(x-a)-s v| \leq \epsilon|x-a|
$$

Proof. Suppose $v \in \operatorname{Tan}_{a}(A), \epsilon>0$ and $\delta>0$. Let η be such that $0<\eta<1$ and $\frac{1}{1-\eta} \leq \epsilon$. Since v is a member of the closure of $\operatorname{Tan}_{a}(A, \delta)$ there are $x \in(A \sim$ $\{a\}) \cap \underline{\mathrm{B}}_{a}(\delta)$ and $t \geq 0$ such that $|t(x-a)-v| \leq \eta|v|$. This implies $|t| x-a|-|v|| \leq \eta|v|$ so that $t|x-a| \geq(1-\eta)|v|$. In particular, $t|x-a|>0$. Let $s=\frac{1}{t}$. Then

$$
|(x-a)-s v|=\frac{1}{t}|t(x-a)-v| \leq \frac{|x-a|}{(1-\eta)|v|} \eta|v| \leq \epsilon|x-a|
$$

so (ii) holds.
On the other hand, suppose (ii) holds, let $\delta>0$ and let $\rho>0$. Let ζ be such that $0<\zeta<1$ and $\frac{\zeta|v|}{1-\zeta} \leq \rho$. Let $s>0$ and $x \in(A \sim\{a\}) \cap \underline{\mathrm{B}}_{a}(\delta)$ such that $|(x-a)-s v| \leq \zeta|x-a|$. Then $||x-a|-s| v||\leq \zeta| x-a|$ so $s|v| \geq(1-\zeta)|x-a|$. Set $t=\frac{1}{s}$. Then

$$
|t(x-a)-v|=\frac{1}{s}|(x-a)-s v| \leq \frac{|v|}{(1-\zeta)|x-a|} \zeta|x-a| \leq \rho .
$$

Owing to the arbitrariness of ρ we infer that $v \in \operatorname{Tan}_{a}(A, \delta)$. Owing to the arbitrariness of δ we infer that (i) holds.
0.7. Theorem. Suppose X and Y are normed spaces, $A \subset X, a \in \operatorname{int} A, f: A \rightarrow Y$ and f is differentiable at a. Then

$$
\operatorname{rng} \partial f(a) \sim\{0\} \subset \operatorname{Tan}_{f(a)}(f[A])
$$

Proof. Suppose $v \in X$ and $w=\partial f(a)(v) \neq 0$. Let $\epsilon>0$ and choose η such that $0<|v| \eta<|w|$ and $\frac{\eta}{|w|-\eta|v|} \leq \epsilon|v|$. Choose $\delta>0$ such that

$$
x \in A \cap \underline{\mathrm{~B}}_{a}(\delta) \Rightarrow|f(x)-f(a)-\partial f(a)(x-a)| \leq \eta|x-a|
$$

If $t>0$ and $t|v| \leq \delta$ we have $|f(a+t v)-f(a)-t w| \leq \eta t|v|$ so $|f(a+t v)-f(a)| \geq$ $t(|w|-\eta|v|)$. Consequently,
$|f(a+t v)-f(a)-t w| \leq \frac{t \eta|v|}{|f(a+t v)-f(a)|}|f(a+t v)-f(a)| \leq \frac{\eta|v|}{|w|-\eta|v|}|f(a+t v)-f(a)| \leq \epsilon|f(a+t v)-f(a)|$.
The Theorem now follows from a previous Proposition.
0.8. Theorem. Suppose X and Y are normed spaces, X is finite dimensional, A is an open subset of X, f is differentiable at each point of A and $b \in \operatorname{rng} f$.

Suppose, additionally, that
(i) $\operatorname{ker} \partial f(a)=\{0\}$ whenever $a \in A$ and $f(a)=b$;
(ii) there is $s>0$ such that $f^{-1}\left[\underline{\mathrm{~B}}_{b}(s)\right]$ is a compact subset of A.

Then $b \in \operatorname{acc} \mathbf{r n g} f,\{a \in A: f(a)=b\}$ is finite and

$$
\begin{equation*}
\operatorname{Tan}_{b}(\mathbf{r n g} f)=\bigcup\{\mathbf{r n g} \partial f(a): a \in A \text { and } f(a)=b\} \tag{1}
\end{equation*}
$$

Proof. We have already shown that the right hand side of (1) is a subset of the left hand side. So suppose $w \in \operatorname{Tan}_{b}(\operatorname{rng} f),|w|=1$ and $\epsilon>0$. We will obtain $a \in A$ and $v \in X$ such that $f(a)=b$ and $|w-\partial f(a)(v)| \leq \epsilon$. This will show that w is a point of the closure of the range of $\partial f(a)$. Since X is finite dimensional, the range of $\partial f(a)$ is closed so the proof will be complete.

Let $K=\{a \in A: f(a)=b\}$. K is closed relative to A because f is continuous. Since K is a subset of the compact set $f^{-1}\left[\underline{\mathrm{~B}}_{b}(s)\right]$ we infer that K is compact. For each $a \in K$ choose m_{a}, M_{a} such that $0<m_{a} \leq M_{a}<\infty$ and

$$
m_{a}|v|<|\partial f(a)(v)|<M_{a}|v| \quad \text { whenever } v \in X \sim\{0\}
$$

this is possible because X is finite dimensional and $\operatorname{ker} \partial f(a)=\{0\}$. For any $a, x \in A$ we have

$$
\|f(x)-f(a)|-|\partial f(a)(x-a) \| \leq|f(x)-f(a)-\partial f(a)(x-a)| ;
$$

it follows that for each $a \in K$ there is $\rho_{a}>0$ such that $\underline{\mathrm{B}}_{a}\left(\rho_{a}\right) \subset X$ and

$$
m_{a}|x-a| \leq|f(x)-f(a)| \leq M_{a}|x-a| \quad \text { whenever } x \in \underline{\mathrm{~B}}_{\rho_{a}}(a)
$$

In particular, $f(x) \neq f(a)$ for any $a \in K$ and any $x \in \underline{\mathrm{~B}}_{a}\left(\rho_{a}\right)$. As K is compact, we infer that that K is finite. Let $\rho>0$ be such that $\rho<\rho_{a}$ for $a \in K$ and

$$
\begin{equation*}
\frac{1}{m_{a}} \frac{|f(x)-f(a)-\partial f(a)(x-a)|}{|x-a|} \leq \frac{\epsilon}{2} \quad \text { whenever } x \in \underline{\mathrm{~B}}_{a}(\rho) \tag{2}
\end{equation*}
$$

Let $F_{\sigma}=f^{-1}\left[\underline{\mathrm{~B}}_{b}(\sigma)\right]$ for $0<\sigma \leq s$ and note that F_{σ} is closed relative to A because f is continuous. Now $\left\{F_{\sigma}: 0<\sigma \leq s\right\}$ is a nested family of closed subsets of the compact set F_{s} with intersection K. It follows that there is σ such that $0<\sigma \leq s$ and $F_{\sigma} \subset \cup\left\{\underline{\mathrm{B}}_{a}(\rho): a \in A\right\}$. Since $w \in \operatorname{Tan}_{b}(\mathbf{r n g} f)$ we may choose $y \in \operatorname{rng} f \cap\left(F_{\sigma} \sim\{b\}\right)$ such that

$$
\left|\frac{1}{|y-b|}(y-b)-w\right| \leq \frac{\epsilon}{2}
$$

Let $a \in A$ and $x \in \mathrm{~B}_{b}\left(\rho_{a}\right)$ be such that $y=f(x)$. Then

$$
\begin{aligned}
\left|w-\partial f(a)\left(\frac{1}{|y-b|}(x-a)\right)\right| & =\left|w-\frac{1}{|y-b|}(y-b)+\frac{1}{|f(x)-f(a)|} f(x)-f(a)-\partial f(a)(x-a)\right| \\
& \left.\leq\left|w-\frac{1}{|y-b|}(y-b)\right|+\frac{|f(x)-f(a)-\partial f(a)(x-a)|}{|x-a|} \frac{|x-a|}{|f(x)-f(a)|} \right\rvert\, \\
& \leq \epsilon
\end{aligned}
$$

0.9. Theorem. Suppose X and Y are finite dimensional normed spaces, $A \subset X$, $a \in \operatorname{int} A$,

$$
f: A \rightarrow Y
$$

and f is continuous at a. Then f is differentiable at a if and only if
$\boldsymbol{\operatorname { T a n }}_{(a, f(a))}(f)$
is a linear function from X to Y in which case

$$
\operatorname{Tan}_{(a, f(a))}(f)=\partial f(a)
$$

Proof. Suppose f is differentiable at a. Let $F(x)=(x, f(x))$ for $x \in A$; note that F is differentiable at a and that $\partial F(a)(v)=(v, \partial f(a))$ whenever $v \in X$.. We may apply the previous Theorem with b and f there replaced by (a, b) and F, respectively, to deduce that $\operatorname{Tan}_{(a, f(a))}(f)=\partial f(a)$.

On the other hand, suppose that $L=\operatorname{Tan}_{(a, f(a))}(f)$ is a linear function from X to Y. Keeping in mind that all norms on a finite dimensional vector space are equivalent, we may suppose $|(x, y)|=|x|+|y|$ for $(x, y) \in X \times Y$. We may suppose without loss of generality that $a=0$ and $f(a)=0$.

Let $\epsilon>0$ and choose $\eta>0$ such that $\eta(1+\|L\|)<1, \frac{1+(1+\|L\|) \eta}{1-(1+\|L\|) \eta} \leq 2$ and

$$
(1+\|L\|) 3 \eta \leq \epsilon .
$$

Choose $\zeta>0$ such that if $(x, y) \in f \cap \underline{\mathrm{~B}}_{0}(\zeta)$ then

$$
\operatorname{dist}((x, y), L)<\eta|(x, y)|
$$

Finally, using the fact that f is continuous at 0 , choose $\delta>0$ such that if $x \in \underline{\mathrm{~B}}_{0}(\delta)$ then $x \in A$ and $|(x, f(x))| \leq \zeta$.

Suppose $x \in \underline{\mathrm{~B}}_{0}(\delta)$ and let $y=f(x)$. Then $(x, y) \in f \cap \underline{\mathrm{~B}}_{0}(\zeta)$ so

$$
\operatorname{dist}((x, y), L)<\eta|(x, y)| .
$$

We may choose $v \in X$ such that $|(x, y)-(v, L(v))|<\eta(x, y)$ so $|x-v|+|y-L(v)| \leq$ $|x|+|y|$. Thus
$|y| \leq|y-L(v)|+|L(v-x)|+|L(x)| \leq(1+||L||)(|x-v|+|y-L(v)|)+||L|||x| \leq(1+||L||) \eta(|x|+|y|)+||L|||x|$
so

$$
(1-(1+||L||) \eta)|y| \leq(1+(1+||L||) \eta)|x|
$$

so $|y| \leq 2|x|$. It follows that
$|y-L(x)| \leq|y-L(v)|+||L|||x-v| \leq(1+||L||) \eta(|x|+|y|) \leq(1+||L||) 3 \eta|x| \leq \epsilon|x|$.
Thus f is differentiable at $a=0$ and its differential is L.
0.10. Theorem. Suppose X is a normed vector space, U is an open subset of X,

$$
f: U \rightarrow \mathbf{R}
$$

$a \in \operatorname{acc} A$ and f is differentiable at a.
If $f(x) \leq f(a)$ for $x \in A$ then $\partial f(a) \in \operatorname{Nor}_{a}(A)$.
If $f(x) \geq f(a)$ for $x \in A$ then $-\partial f(a) \in \operatorname{Nor}_{a}(A)$.
Proof. Exercise.

Now suppose X is an inner product space. In this case, as we indicated before, we set

$$
\operatorname{Nor}_{a}(A)=\left\{w \in X: v \bullet w \leq 0 \text { whenever } v \in \boldsymbol{\operatorname { T a n }}_{a}(A)\right\}
$$

Note the the polarity of the inner product carries the present normal cone to the former normal cone.
0.11. Definition. The gradient. Suppose $A \subset X, f: A \rightarrow \mathbf{R}$, and f is differentiable at a. We let

$$
\nabla f(a)
$$

the gradient of f at a, be the counter image of $\partial f(a)$ under the polarity of the inner product; that is, $\nabla f(a)$ is the unique vector in X satisfying

$$
\partial f(a)(v)=v \bullet \nabla f(a), \quad v \in X
$$

In this situation the conclusion of the previous Theorem becomes If $f(x) \leq f(a)$ for $x \in A$ then $\nabla f(a) \in \operatorname{Nor}_{a}(A)$.
If $f(x) \geq f(a)$ for $x \in A$ then $-\nabla f(a) \in \operatorname{Nor}_{a}(A)$.

