
Tangency.

Let X be a normed vector space.

0.1. Definition. Suppose v ∈ X and C ⊂ X. We say C is a cone with vertex v
if

x ∈ C ∼ {v} and t ≥ 0 ⇒ v + t(x− v) ∈ C.

Note that the empty set is a cone with vertex v and that v ∈ C if C ∼ {v} ≠ ∅.

0.2. Proposition. Suppose v ∈ X and C is a nonempty family of cones with vertex
v. Then ∪C is a cone with vertex v.

Proof. This is immediate. □
0.3. Proposition. Suppose v ∈ X and C is a cone with vertex v. Then the closure
of C is a cone with vertex v.

Proof. Exercise. □
0.4. Definition. Suppose A ⊂ X, a ∈ accA. For each δ > 0 we let

Tana(A, δ) = cl {t(x− a) : t ≥ 0, and x ∈ (A ∼ {a}) ∩Ba(δ)}.
Note that. by virtue of the previous Proposition, Tan

¯ a(A, δ) is a closed cone with
vertex 0.

We let
Tan
¯ a(A) =

∩
δ>0

Tan
¯ a(A, δ)

and we let

Nora(A) = {ω ∈ X∗ : ω(v) ≤ 0 whenever v ∈ Tana(A)}.
Note that Tana(A) and Nora(A) are closed cones in X and X∗, respectively, by
virtue of the first Proposition above..

In case X is an inner product space we will also let

Nora(A) = {w ∈ X : v • w ≤ 0 whenever v ∈ Tana(A)}
and rely on the context to resolve the ambiguity.

0.5. Theorem. Suppose X is finite dimensional, A ⊂ X, a ∈ accA. Then
Tan
¯ a(A) ̸= ∅. Moreover, for each ϵ > 0 there exists δ > 0 such that

clA ∩ B
¯a(δ) ⊂ a+ {v ∈ X : dist

¯
(v,Tan

¯ a(A)) ≤ ϵ|v|}

Proof. Let K = {u ∈ X : |u| = 1} and note that K is compact because X is finite
dimensional. Let L = K ∩ Tan

¯ a(A) and, for each δ > 0, let Tδ = K ∩ Tan
¯ a(A, δ).

Then {Tδ : δ > 0} is a nonempty nested family of closed subsets of the compact set
K whose nonempty intersection is L. Moreover, if U is an open set containing L
then there is δ > 0 such that Tδ ⊂ U .

Now suppose ϵ > 0. Let

U = {v ∈ X ∼ {0} : dist
¯

(v,Tan
¯ a(A)) < ϵ|v|}

and note that U is open. Since L ⊂ U and U is open there is δ > 0 such that
Tδ ⊂ U . □
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0.6. Proposition. Suppose A ⊂ X, a ∈ accA and v ∈ X ∼ {0}. The following are
equivalent.

(i) v ∈ Tan
¯ a(A).

(ii) For each ϵ > 0 and δ > 0 there are s > 0 and x ∈ (A ∼ {a}) ∩ B
¯a(δ) such

that

|(x− a)− sv| ≤ ϵ|x− a|.

Proof. Suppose v ∈ Tan
¯ a(A), ϵ > 0 and δ > 0. Let η be such that 0 < η < 1

and 1
1−η ≤ ϵ. Since v is a member of the closure of Tan

¯ a(A, δ) there are x ∈ (A ∼
{a})∩B

¯a(δ) and t ≥ 0 such that |t(x−a)−v| ≤ η|v|. This implies
∣∣t|x−a|−|v|

∣∣ ≤ η|v|
so that t|x− a| ≥ (1− η)|v|. In particular, t|x− a| > 0. Let s = 1

t . Then∣∣(x− a)− sv
∣∣ = 1

t
|t(x− a)− v| ≤ |x− a|

(1− η)|v|
η|v| ≤ ϵ|x− a|

so (ii) holds.
On the other hand, suppose (ii) holds, let δ > 0 and let ρ > 0. Let ζ be such

that 0 < ζ < 1 and ζ|v|
1−ζ ≤ ρ. Let s > 0 and x ∈ (A ∼ {a}) ∩ B

¯a(δ) such that

|(x − a) − sv| ≤ ζ|x − a|. Then
∣∣|x − a| − s|v|

∣∣ ≤ ζ|x− a| so s|v| ≥ (1− ζ)|x − a|.
Set t = 1

s . Then

|t(x− a)− v| = 1

s
|(x− a)− sv| ≤ |v|

(1− ζ)|x− a|
ζ|x− a| ≤ ρ.

Owing to the arbitrariness of ρ we infer that v ∈ Tan
¯ a(A, δ). Owing to the arbi-

trariness of δ we infer that (i) holds.

0.7. Theorem. Suppose X and Y are normed spaces, A ⊂ X, a ∈ intA, f : A → Y
and f is differentiable at a. Then

rng ∂f(a) ∼ {0} ⊂ Tan
¯ f(a)(f [A]).

Proof. Suppose v ∈ X and w = ∂f(a)(v) ̸= 0. Let ϵ > 0 and choose η such that
0 < |v|η < |w| and η

|w|−η|v| ≤ ϵ|v|. Choose δ > 0 such that

x ∈ A ∩ B
¯a(δ) ⇒ |f(x)− f(a)− ∂f(a)(x− a)| ≤ η|x− a|.

If t > 0 and t|v| ≤ δ we have |f(a+ tv)− f(a)− tw| ≤ ηt|v| so |f(a+ tv)− f(a)| ≥
t(|w| − η|v|). Consequently,

|f(a+tv)−f(a)−tw| ≤ tη|v|
|f(a+ tv)− f(a)|

|f(a+tv)−f(a)| ≤ η|v|
|w| − η|v|

|f(a+tv)−f(a)| ≤ ϵ|f(a+tv)−f(a)|.

The Theorem now follows from a previous Proposition. □

0.8. Theorem. Suppose X and Y are normed spaces, X is finite dimensional, A is
an open subset of X, f is differentiable at each point of A and b ∈ rng f .

Suppose, additionally, that

(i) ker ∂f(a) = {0} whenever a ∈ A and f(a) = b;

(ii) there is s > 0 such that f−1[B
¯b(s)] is a compact subset of A.
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Then b ∈ acc rng f , {a ∈ A : f(a) = b} is finite and

(1) Tan
¯ b(rng f) =

∪
{rng ∂f(a) : a ∈ A and f(a) = b}.

Proof. We have already shown that the right hand side of (1) is a subset of the left
hand side. So suppose w ∈ Tan

¯ b(rng f), |w| = 1 and ϵ > 0. We will obtain a ∈ A
and v ∈ X such that f(a) = b and |w − ∂f(a)(v)| ≤ ϵ. This will show that w is a
point of the closure of the range of ∂f(a). Since X is finite dimensional, the range
of ∂f(a) is closed so the proof will be complete.

Let K = {a ∈ A : f(a) = b}. K is closed relative to A because f is continuous.
Since K is a subset of the compact set f−1[B

¯b(s)] we infer that K is compact. For
each a ∈ K choose ma,Ma such that 0 < ma ≤ Ma < ∞ and

ma|v| < |∂f(a)(v)| < Ma|v| whenever v ∈ X ∼ {0};

this is possible because X is finite dimensional and ker ∂f(a) = {0}. For any
a, x ∈ A we have

||f(x)− f(a)| − |∂f(a)(x− a)|| ≤ |f(x)− f(a)− ∂f(a)(x− a)|;

it follows that for each a ∈ K there is ρa > 0 such that B
¯a(ρa) ⊂ X and

ma|x− a| ≤ |f(x)− f(a)| ≤ Ma|x− a| whenever x ∈ B
¯ρa

(a).

In particular, f(x) ̸= f(a) for any a ∈ K and any x ∈ B
¯a(ρa). As K is compact,

we infer that that K is finite. Let ρ > 0 be such that ρ < ρa for a ∈ K and

(2)
1

ma

|f(x)− f(a)− ∂f(a)(x− a)|
|x− a|

≤ ϵ

2
whenever x ∈ B

¯a(ρ).

Let Fσ = f−1[B
¯b(σ)] for 0 < σ ≤ s and note that Fσ is closed relative to A

because f is continuous. Now {Fσ : 0 < σ ≤ s} is a nested family of closed subsets
of the compact set Fs with intersection K. It follows that there is σ such that
0 < σ ≤ s and Fσ ⊂ ∪{B

¯a(ρ) : a ∈ A}. Since w ∈ Tan
¯ b(rng f) we may choose

y ∈ rng f ∩ (Fσ ∼ {b}) such that∣∣∣ 1

|y − b|
(y − b)− w

∣∣∣ ≤ ϵ

2
.

Let a ∈ A and x ∈ B
¯b(ρa) be such that y = f(x). Then∣∣∣w − ∂f(a)

( 1

|y − b|
(x− a)

)∣∣∣ = ∣∣∣w − 1

|y − b|
(y − b) +

1

|f(x)− f(a)|
f(x)− f(a)− ∂f(a)(x− a)

∣∣∣
≤

∣∣∣w − 1

|y − b|
(y − b)

∣∣∣+ |f(x)− f(a)− ∂f(a)(x− a)|
|x− a|

|x− a|
|f(x)− f(a)|

∣∣∣
≤ ϵ.

□

0.9. Theorem. Suppose X and Y are finite dimensional normed spaces, A ⊂ X,
a ∈ intA,

f : A → Y

and f is continuous at a. Then f is differentiable at a if and only if

Tan(a,f(a))(f)
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is a linear function from X to Y in which case

Tan(a,f(a))(f) = ∂f(a).

Proof. Suppose f is differentiable at a. Let F (x) = (x, f(x)) for x ∈ A; note that
F is differentiable at a and that ∂F (a)(v) = (v, ∂f(a)) whenever v ∈ X.. We
may apply the previous Theorem with b and f there replaced by (a, b) and F ,
respectively, to deduce that Tan

¯ (a,f(a))(f) = ∂f(a).

On the other hand, suppose that L = Tan(a,f(a))(f) is a linear function from
X to Y . Keeping in mind that all norms on a finite dimensional vector space are
equivalent, we may suppose |(x, y)| = |x|+ |y| for (x, y) ∈ X ×Y . We may suppose
without loss of generality that a = 0 and f(a) = 0.

Let ϵ > 0 and choose η > 0 such that η(1 + ||L||) < 1, 1+(1+||L||)η
1−(1+||L||)η ≤ 2 and

(1 + ||L||)3η ≤ ϵ.

Choose ζ > 0 such that if (x, y) ∈ f ∩ B
¯0(ζ) then

dist
¯

((x, y), L) < η|(x, y)|.

Finally, using the fact that f is continuous at 0, choose δ > 0 such that if x ∈ B
¯0(δ)

then x ∈ A and |(x, f(x))| ≤ ζ.
Suppose x ∈ B

¯0(δ) and let y = f(x). Then (x, y) ∈ f ∩ B
¯0(ζ) so

dist
¯

((x, y), L) < η|(x, y)|.

We may choose v ∈ X such that |(x, y)−(v, L(v))| < η(x, y) so |x−v|+ |y−L(v)| ≤
|x|+ |y|. Thus

|y| ≤ |y−L(v)|+|L(v−x)|+|L(x)| ≤ (1+||L||)(|x−v|+|y−L(v)|)+||L|||x| ≤ (1+||L||)η(|x|+|y|)+||L|||x|

so

(1− (1 + ||L||)η)|y| ≤ (1 + (1 + ||L||)η)|x|
so |y| ≤ 2|x|. It follows that

|y−L(x)| ≤ |y−L(v)|+ ||L|||x−v| ≤ (1+ ||L||)η(|x|+ |y|) ≤ (1+ ||L||)3η|x| ≤ ϵ|x|.

Thus f is differentiable at a = 0 and its differential is L. □

0.10. Theorem. Suppose X is a normed vector space, U is an open subset of X,

f : U → R,

a ∈ accA and f is differentiable at a.
If f(x) ≤ f(a) for x ∈ A then ∂f(a) ∈ Nora(A).
If f(x) ≥ f(a) for x ∈ A then −∂f(a) ∈ Nora(A).

Proof. Exercise. □

Now suppose X is an inner product space. In this case, as we indicated before,
we set

Nora(A) = {w ∈ X : v • w ≤ 0 whenever v ∈ Tana(A)}.
Note the the polarity of the inner product carries the present normal cone to the
former normal cone.
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0.11. Definition. The gradient. Suppose A ⊂ X, f : A → R, and f is differentiable
at a. We let

∇f(a),

the gradient of f at a, be the counter image of ∂f(a) under the polarity of the
inner product; that is, ∇f(a) is the unique vector in X satisfying

∂f(a)(v) = v • ∇f(a), v ∈ X.

In this situation the conclusion of the previous Theorem becomes
If f(x) ≤ f(a) for x ∈ A then ∇f(a) ∈ Nora(A).
If f(x) ≥ f(a) for x ∈ A then −∇f(a) ∈ Nora(A).


