Tangency.
Let X be a normed vector space.

0.1. Definition. Suppose v € X and C' C X. We say C is a cone with vertex v
if

ze€C~{vtandt >0 = v+t(zx—v)eC.
Note that the empty set is a cone with vertex v and that v € C if C ~ {v} # 0.

0.2. Proposition. Suppose v € X and C is a nonempty family of cones with vertex
v. Then UC is a cone with vertex v.

Proof. This is immediate. O

0.3. Proposition. Suppose v € X and C is a cone with vertex v. Then the closure
of C'is a cone with vertex v.

Proof. Exercise. O

0.4. Definition. Suppose A C X, a € acc A. For each § > 0 we let
Tan,(A,0) =cl{t(z —a):t >0, and xz € (A~ {a}) NB,(d)}.

Note that. by virtue of the previous Proposition, Tan, (A, ) is a closed cone with
vertex 0.
We let
Tan,(A4) = m Tan, (4, 9)
6>0
and we let

Nor,(A) = {w e X" : w(v) < 0 whenever v € Tan,(A)}.

Note that Tan,(A) and Nor,(A) are closed cones in X and X*, respectively, by
virtue of the first Proposition above..
In case X is an inner product space we will also let

Nor,(A) = {w € X : vew < 0 whenever v € Tan,(A)}

and rely on the context to resolve the ambiguity.

0.5. Theorem. Suppose X is finite dimensional, A C X, a € accA. Then
Tan, (A) # 0. Moreover, for each e > 0 there exists § > 0 such that

clANB,(d) Ca+ {ve X :dist(v, Tan,(A)) < €|v|}

Proof. Let K = {u € X : |u] = 1} and note that K is compact because X is finite
dimensional. Let L = K N Tan,(A) and, for each § > 0, let T5 = K N Tan,(4,9d).
Then {T5 : 6 > 0} is a nonempty nested family of closed subsets of the compact set
K whose nonempty intersection is L. Moreover, if U is an open set containing L
then there is 6 > 0 such that T5 C U.

Now suppose € > 0. Let

U={veX ~{0}:dist(v, Tan,(A)) < €|v|}

and note that U is open. Since L C U and U is open there is § > 0 such that
Ts C U. O
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0.6. Proposition. Suppose A C X, a € acc A and v € X ~ {0}. The following are
equivalent.

(i) v € Tan, (A).

(ii) For each € > 0 and 6 > 0 there are s > 0 and z € (A ~ {a}) NB,(d) such
that
[(x —a) — sv| < €|z —al.

Proof. Suppose v € Tan,(A), ¢ > 0 and 6 > 0. Let n be such that 0 < n < 1
and ﬁ < e. Since v is a member of the closure of Tan, (A, ) there are z € (A ~
{a})NB,(8) and t > 0 such that |¢(z—a)—v| < n|v|. This implies |t|z—a|—|v|| < nlv|
so that t|z — a| > (1 — n)|v|. In particular, t|z —a| > 0. Let s = 1. Then
1 |z — al
|(z = a) — sv| = ¥|t(az —a)—v| < mnM < elx —al
so (ii) holds.

On the other hand, suppose (ii) holds, let § > 0 and let p > 0. Let ¢ be such
that 0 < ¢ < 1 and f‘fvcl < p. Let s > 0 and z € (A ~ {a}) N B,(d) such that
[(x —a) — sv| < {|z — al. Then ||z — a| — s|v|| < ¢Jz — a| so s|v] > (1 = )|z — al.
Set ¢t = % Then

[l
(1 =Q)lz—aq
Owing to the arbitrariness of p we infer that v € Tan,(A,d). Owing to the arbi-
trariness of § we infer that (i) holds.

(o —al < p.

o= a) =0l = {I(o = a) =] <

0.7. Theorem. Suppose X and Y are normed spaces, A C X,a €intA, f: A—-Y
and f is differentiable at a. Then

rng df(a) ~ {0} C Tany,) (f[A]).

Proof. Suppose v € X and w = 9f(a)(v) # 0. Let € > 0 and choose n such that
0 < |v|n < |w| and —L— < ¢|v|. Choose § > 0 such that

\wl—nnlv\ -
T € ANB,(0) = |f(x) — f(a) — 0f(a)(w — a)| < 5|z —al.

If t > 0 and t|v| < 0 we have |f(a+tv) — f(a) — tw] < nt|v| so |f(a+tv) — f(a)] >
t(Jw| — n|v|). Consequently,

arto)~f(a)-tu] < Tl flatto) @) < M flatto)-f(0)] < dfatto)-Fa).
The Theorem now follows from a previous Proposition. [l

0.8. Theorem. Suppose X and Y are normed spaces, X is finite dimensional, A is
an open subset of X, f is differentiable at each point of A and b € rng f.
Suppose, additionally, that

(i) ker 0f(a) = {0} whenever a € A and f(a) = b;

(ii) there is s > 0 such that f~1[B,(s)] is a compact subset of A.



Then b € acerng f, {a € A: f(a) = b} is finite and
(1) Tan, (rng f) = U{rng 0f(a) :a € Aand f(a) = b}.

Proof. We have already shown that the right hand side of (1) is a subset of the left
hand side. So suppose w € Tan,(rng f), |w| = 1 and € > 0. We will obtain a € A
and v € X such that f(a) =b and |w — 9f(a)(v)| < e. This will show that w is a
point of the closure of the range of 9f(a). Since X is finite dimensional, the range
of df(a) is closed so the proof will be complete.

Let K ={a € A: f(a) =b}. K is closed relative to A because f is continuous.
Since K is a subset of the compact set f~1[B,(s)] we infer that K is compact. For
each a € K choose m,, M, such that 0 < m, < M, < oo and

mg|v| < 0f(a)(v)] < Mylv| whenever v € X ~ {0};
this is possible because X is finite dimensional and ker df(a) = {0}. For any
a,r € A we have
1f (@) = f(a)| = |0f (a)(z — a)|| < |f(z) — f(a) = Of (a)(z — a)|;
it follows that for each a € K there is p, > 0 such that B,(p,) C X and
malr —a| < |f(z) — f(a)] < My|z —a| whenever z € B, (a).

In particular, f(z) # f(a) for any a € K and any = € B,(p,). As K is compact,
we infer that that K is finite. Let p > 0 be such that p < p, for a € K and

@) 1 @)~ f(a) —0f(a)(z —a)| _ €
Mg | — al 2

Let F, = f~![B,(0)] for 0 < o < s and note that F, is closed relative to A
because f is continuous. Now {F, : 0 < o < s} is a nested family of closed subsets
of the compact set F; with intersection K. It follows that there is o such that

0<o<sand F, C U{B,(p) : a € A}. Since w € Tan,(rng f) we may choose
y € rng f N (F, ~ {b}) such that

whenever x € B, (p).

DN ™

1
y—0b)—w| <
’Iy—bl< )
Let a € A and = € By(p,) be such thaty:f(x). Then

w—0f(@) (e = )| = = 50— 0+ e @)~ (0) = 05 @)~ )|
(@) = (@) = 0f @)z —a)| _|e—d
< ‘w‘ |y—b\(y‘b) ’ 2 o= fl
<e.
O

0.9. Theorem. Suppose X and Y are finite dimensional normed spaces, A C X,
a €int A,
fiA=Y

and f is continuous at a. Then f is differentiable at a if and only if

Tan(a,f(a))(f)
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is a linear function from X to Y in which case

Tan(,, t(a))(f) = 0f(a).

Proof. Suppose f is differentiable at a. Let F(z) = (z, f(x)) for x € A; note that
F is differentiable at a and that 0F(a)(v) = (v,0f(a)) whenever v € X.. We
may apply the previous Theorem with b and f there replaced by (a,b) and F,
respectively, to deduce that Tan, 1., (f) = 9f(a).

On the other hand, suppose that L = Tan(, ¢(q))(f) is a linear function from
X to Y. Keeping in mind that all norms on a finite dimensional vector space are
equivalent, we may suppose |(z,y)| = |z| + |y| for (z,y) € X x Y. We may suppose
without loss of generality that « = 0 and f(a) = 0.

Let € > 0 and choose 1 > 0 such that n(1+||L||) < 1, % <2 and

(14 |L|))3n < e.

Choose ¢ > 0 such that if (z,y) € f NBy(¢) then

dist((z,y), L) < nl(z,y)|.
Finally, using the fact that f is continuous at 0, choose 6 > 0 such that if x € B(9)
then z € A and |(z, f(2))] < ¢.

Suppose x € By(0) and let y = f(x). Then (z,y) € f N By(¢) so

dist((z,y), L) < nl(z,y)|.
We may choose v € X such that |(z,y) — (v, L(v))| < n(z,y) so |z —v|+|y— L(v)| <
|z| + |y|. Thus
lyl < ly—=L(v)[+|L{v—2)[+|L(z)| < A+||LI)(lz—v[+|ly—L@) D+ Lll[z] < QA+[LI)n(z]+|y))+[|L]||]
S0

(L= @+ LDyl < @+ @+ [ILI)n)|x]

so |y| < 2|x|. It follows that
y—L@) < ly— L@)|+ 1Ll — o] < 1+ LDn(kel + y]) < (+11L1)3ule] < elal.
Thus f is differentiable at a = 0 and its differential is L. O

0.10. Theorem. Suppose X is a normed vector space, U is an open subset of X,
f:U—=R,

a € acc A and f is differentiable at a.
If f(z) < f(a) for x € A then 0f(a) € Nor,(A).
If f(z) > f(a) for x € A then —0f(a) € Nor,(A).

Proof. Exercise. O

Now suppose X is an inner product space. In this case, as we indicated before,
we set

Nor,(A) = {w e X :vew <0 whenever v € Tan,(A)}.

Note the the polarity of the inner product carries the present normal cone to the
former normal cone.
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0.11. Definition. The gradient. Suppose A C X, f : A — R, and f is differentiable
at a. We let

Vf(a),
the gradient of f at a, be the counter image of df(a) under the polarity of the
inner product; that is, V f(a) is the unique vector in X satisfying

Of(a)(v) =veVf(a), veX.

In this situation the conclusion of the previous Theorem becomes
If f(z) < f(a) for x € A then Vf(a) € Nor,(A).
If f(z) > f(a) for x € A then —V f(a) € Nor,(4).



