Tangency.

Let X be a normed vector space.

0.1. Definition. Suppose $v \in X$ and $C \subset X$. We say C is a cone with vertex v if

$$x \in C \sim \{v\}$$
 and $t \ge 0 \implies v + t(x - v) \in C$

Note that the empty set is a cone with vertex v and that $v \in C$ if $C \sim \{v\} \neq \emptyset$.

0.2. Proposition. Suppose $v \in X$ and C is a nonempty family of cones with vertex v. Then $\cup C$ is a cone with vertex v.

Proof. This is immediate.

0.3. Proposition. Suppose $v \in X$ and C is a cone with vertex v. Then the closure of C is a cone with vertex v.

Proof. Exercise.

0.4. Definition. Suppose $A \subset X$, $a \in \mathbf{acc} A$. For each $\delta > 0$ we let

$$\mathbf{Tan}_a(A,\delta) = \mathbf{cl} \{ t(x-a) : t \ge 0, \text{ and } x \in (A \sim \{a\}) \cap \mathbf{B}_a(\delta) \}.$$

Note that. by virtue of the previous Proposition, $Tan_a(A, \delta)$ is a closed cone with vertex 0.

We let

$$\operatorname{Tan}_a(A) = \bigcap_{\delta > 0} \operatorname{Tan}_a(A, \delta)$$

and we let

$$\operatorname{Nor}_{a}(A) = \{ \omega \in X^{*} : \omega(v) \leq 0 \text{ whenever } v \in \operatorname{Tan}_{a}(A) \}.$$

Note that $\operatorname{Tan}_{a}(A)$ and $\operatorname{Nor}_{a}(A)$ are closed cones in X and X^{*}, respectively, by virtue of the first Proposition above.

In case X is an inner product space we will also let

$$\mathbf{Nor}_a(A) = \{ w \in X : v \bullet w \le 0 \text{ whenever } v \in \mathbf{Tan}_a(A) \}$$

and rely on the context to resolve the ambiguity.

0.5. Theorem. Suppose X is finite dimensional, $A \subset X$, $a \in \operatorname{acc} A$. Then $\operatorname{Tan}_{a}(A) \neq \emptyset$. Moreover, for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\operatorname{cl} A \cap \underline{B}_a(\delta) \subset a + \{v \in X : \operatorname{dist}(v, \operatorname{Tan}_a(A)) \le \epsilon |v|\}$$

Proof. Let $K = \{u \in X : |u| = 1\}$ and note that K is compact because X is finite dimensional. Let $L = K \cap \underline{\mathrm{Tan}}_a(A)$ and, for each $\delta > 0$, let $T_{\delta} = K \cap \underline{\mathrm{Tan}}_a(A, \delta)$. Then $\{T_{\delta} : \delta > 0\}$ is a nonempty nested family of closed subsets of the compact set K whose nonempty intersection is L. Moreover, if U is an open set containing L then there is $\delta > 0$ such that $T_{\delta} \subset U$.

Now suppose $\epsilon > 0$. Let

$$U = \{ v \in X \sim \{0\} : \operatorname{dist}(v, \operatorname{Tan}_a(A)) < \epsilon |v| \}$$

and note that U is open. Since $L \subset U$ and U is open there is $\delta > 0$ such that $T_{\delta} \subset U$.

0.6. Proposition. Suppose $A \subset X$, $a \in \operatorname{acc} A$ and $v \in X \sim \{0\}$. The following are equivalent.

(i) $v \in \operatorname{Tan}_{a}(A)$.

(ii) For each $\epsilon > 0$ and $\delta > 0$ there are s > 0 and $x \in (A \sim \{a\}) \cap \underline{B}_a(\delta)$ such that

$$|(x-a) - sv| \le \epsilon |x-a|.$$

Proof. Suppose $v \in \operatorname{Tan}_a(A)$, $\epsilon > 0$ and $\delta > 0$. Let η be such that $0 < \eta < 1$ and $\frac{1}{1-\eta} \leq \epsilon$. Since v is a member of the closure of $\operatorname{Tan}_a(A, \delta)$ there are $x \in (A \sim A)$ $\{a\} \cap \underline{B}_a(\delta)$ and $t \ge 0$ such that $|t(x-a)-v| \le \eta |v|$. This implies $|t|x-a|-|v|| \le \eta |v|$ so that $t|x-a| \ge (1-\eta)|v|$. In particular, t|x-a| > 0. Let $s = \frac{1}{t}$. Then

$$|(x-a) - sv| = \frac{1}{t}|t(x-a) - v| \le \frac{|x-a|}{(1-\eta)|v|}\eta|v| \le \epsilon|x-a|$$

so (ii) holds.

On the other hand, suppose (ii) holds, let $\delta > 0$ and let $\rho > 0$. Let ζ be such that $0 < \zeta < 1$ and $\frac{\zeta|v|}{1-\zeta} \leq \rho$. Let s > 0 and $x \in (A \sim \{a\}) \cap \mathbb{B}_a(\delta)$ such that $|(x-a) - sv| \leq \zeta |x-a|$. Then $||x-a| - s|v|| \leq \zeta |x-a|$ so $s|v| \geq (1-\zeta)|x-a|$. Set $t = \frac{1}{s}$. Then

$$|t(x-a) - v| = \frac{1}{s}|(x-a) - sv| \le \frac{|v|}{(1-\zeta)|x-a|}\zeta|x-a| \le \rho.$$

Owing to the arbitrariness of ρ we infer that $v \in \operatorname{Tan}_{a}(A, \delta)$. Owing to the arbitrariness of δ we infer that (i) holds.

0.7. Theorem. Suppose X and Y are normed spaces, $A \subset X$, $a \in \text{int } A$, $f : A \to Y$ and f is differentiable at a. Then

$$\operatorname{rng} \partial f(a) \sim \{0\} \subset \operatorname{Tan}_{f(a)}(f[A]).$$

Proof. Suppose $v \in X$ and $w = \partial f(a)(v) \neq 0$. Let $\epsilon > 0$ and choose η such that $0 < |v|\eta < |w|$ and $\frac{\eta}{|w| - \eta |v|} \le \epsilon |v|$. Choose $\delta > 0$ such that

$$x \in A \cap \underline{B}_a(\delta) \ \Rightarrow \ |f(x) - f(a) - \partial f(a)(x - a)| \le \eta |x - a|.$$

If t > 0 and $t|v| \le \delta$ we have $|f(a+tv) - f(a) - tw| \le \eta t|v|$ so $|f(a+tv) - f(a)| \ge \eta t|v|$ $t(|w| - \eta |v|)$. Consequently,

$$|f(a+tv)-f(a)-tw| \le \frac{t\eta|v|}{|f(a+tv)-f(a)|} |f(a+tv)-f(a)| \le \frac{\eta|v|}{|w|-\eta|v|} |f(a+tv)-f(a)| \le \epsilon |f(a+tv)-f(a)|.$$

The Theorem now follows from a previous Proposition.

The Theorem now follows from a previous Proposition.

0.8. Theorem. Suppose X and Y are normed spaces, X is finite dimensional, A is an open subset of X, f is differentiable at each point of A and $b \in \operatorname{rng} f$.

Suppose, additionally, that

- (i) ker $\partial f(a) = \{0\}$ whenever $a \in A$ and f(a) = b;
- (ii) there is s > 0 such that $f^{-1}[\underline{B}_{h}(s)]$ is a compact subset of A.

Then $b \in \mathbf{acc\,rng}\, f$, $\{a \in A : f(a) = b\}$ is finite and

(1)
$$\operatorname{Tan}_{b}(\operatorname{\mathbf{rng}} f) = \bigcup \{\operatorname{\mathbf{rng}} \partial f(a) : a \in A \text{ and } f(a) = b\}$$

Proof. We have already shown that the right hand side of (1) is a subset of the left hand side. So suppose $w \in \operatorname{Tan}_b(\operatorname{rng} f)$, |w| = 1 and $\epsilon > 0$. We will obtain $a \in A$ and $v \in X$ such that f(a) = b and $|w - \partial f(a)(v)| \leq \epsilon$. This will show that w is a point of the closure of the range of $\partial f(a)$. Since X is finite dimensional, the range of $\partial f(a)$ is closed so the proof will be complete.

Let $K = \{a \in A : f(a) = b\}$. K is closed relative to A because f is continuous. Since K is a subset of the compact set $f^{-1}[\underline{B}_b(s)]$ we infer that K is compact. For each $a \in K$ choose m_a, M_a such that $0 < m_a \leq M_a < \infty$ and

$$m_a|v| < |\partial f(a)(v)| < M_a|v|$$
 whenever $v \in X \sim \{0\}$;

this is possible because X is finite dimensional and $\ker \partial f(a) = \{0\}$. For any $a, x \in A$ we have

$$||f(x) - f(a)| - |\partial f(a)(x - a)|| \le |f(x) - f(a) - \partial f(a)(x - a)|;$$

it follows that for each $a \in K$ there is $\rho_a > 0$ such that $\underline{B}_a(\rho_a) \subset X$ and

$$m_a|x-a| \le |f(x) - f(a)| \le M_a|x-a|$$
 whenever $x \in \underline{B}_{\rho_a}(a)$

In particular, $f(x) \neq f(a)$ for any $a \in K$ and any $x \in \mathbb{B}_a(\rho_a)$. As K is compact, we infer that that K is finite. Let $\rho > 0$ be such that $\rho < \rho_a$ for $a \in K$ and

(2)
$$\frac{1}{m_a} \frac{|f(x) - f(a) - \partial f(a)(x-a)|}{|x-a|} \le \frac{\epsilon}{2} \quad \text{whenever } x \in \underline{B}_a(\rho).$$

Let $F_{\sigma} = f^{-1}[\mathbf{B}_b(\sigma)]$ for $0 < \sigma \leq s$ and note that F_{σ} is closed relative to A because f is continuous. Now $\{F_{\sigma} : 0 < \sigma \leq s\}$ is a nested family of closed subsets of the compact set F_s with intersection K. It follows that there is σ such that $0 < \sigma \leq s$ and $F_{\sigma} \subset \bigcup \{\mathbf{B}_a(\rho) : a \in A\}$. Since $w \in \operatorname{Tan}_b(\operatorname{rng} f)$ we may choose $y \in \operatorname{rng} f \cap (F_{\sigma} \sim \{b\})$ such that

$$\left|\frac{1}{|y-b|}(y-b) - w\right| \le \frac{\epsilon}{2}.$$

Let $a \in A$ and $x \in \underline{B}_b(\rho_a)$ be such that y = f(x). Then

$$\begin{split} \left| w - \partial f(a) \Big(\frac{1}{|y-b|} (x-a) \Big) \right| &= \left| w - \frac{1}{|y-b|} (y-b) + \frac{1}{|f(x) - f(a)|} f(x) - f(a) - \partial f(a) (x-a) \right| \\ &\leq \left| w - \frac{1}{|y-b|} (y-b) \right| + \frac{|f(x) - f(a) - \partial f(a) (x-a)|}{|x-a|} \frac{|x-a|}{|f(x) - f(a)|} \\ &\leq \epsilon. \end{split}$$

0.9. Theorem. Suppose X and Y are finite dimensional normed spaces, $A \subset X$, $a \in \text{int } A$,

$$f: A \to Y$$

and f is continuous at a. Then f is differentiable at a if and only if

$$\operatorname{Tan}_{(a,f(a))}(f)$$

is a linear function from X to Y in which case

$$\operatorname{Tan}_{(a,f(a))}(f) = \partial f(a).$$

Proof. Suppose f is differentiable at a. Let F(x) = (x, f(x)) for $x \in A$; note that F is differentiable at a and that $\partial F(a)(v) = (v, \partial f(a))$ whenever $v \in X$. We may apply the previous Theorem with b and f there replaced by (a, b) and F, respectively, to deduce that $\underline{Tan}_{(a,f(a))}(f) = \partial f(a)$.

On the other hand, suppose that $L = \operatorname{Tan}_{(a,f(a))}(f)$ is a linear function from X to Y. Keeping in mind that all norms on a finite dimensional vector space are equivalent, we may suppose |(x,y)| = |x| + |y| for $(x,y) \in X \times Y$. We may suppose without loss of generality that a = 0 and f(a) = 0.

Let $\epsilon > 0$ and choose $\eta > 0$ such that $\eta(1 + ||L||) < 1$, $\frac{1 + (1 + ||L||)\eta}{1 - (1 + ||L||)\eta} \le 2$ and

 $(1+||L||)3\eta \le \epsilon.$

Choose $\zeta > 0$ such that if $(x, y) \in f \cap \underline{B}_0(\zeta)$ then

$$\operatorname{dist}((x,y),L) < \eta | (x,y) |.$$

Finally, using the fact that f is continuous at 0, choose $\delta > 0$ such that if $x \in \underline{B}_0(\delta)$ then $x \in A$ and $|(x, f(x))| \leq \zeta$.

Suppose $x \in \underline{B}_0(\delta)$ and let y = f(x). Then $(x, y) \in f \cap \underline{B}_0(\zeta)$ so

 $\operatorname{dist}((x,y),L) < \eta | (x,y) |.$

We may choose $v\in X$ such that $|(x,y)-(v,L(v))|<\eta(x,y)$ so $|x-v|+|y-L(v)|\leq |x|+|y|.$ Thus

$$\begin{split} |y| &\leq |y-L(v)| + |L(v-x)| + |L(x)| \leq (1+||L||)(|x-v|+|y-L(v)|) + ||L|||x| \leq (1+||L||)\eta(|x|+|y|) + ||L|||x| \\ &\text{so} \end{split}$$

$$(1 - (1 + ||L||)\eta)|y| \le (1 + (1 + ||L||)\eta)|x|$$

so $|y| \leq 2|x|$. It follows that

 $|y - L(x)| \le |y - L(v)| + ||L|||x - v| \le (1 + ||L||)\eta(|x| + |y|) \le (1 + ||L||)3\eta|x| \le \epsilon |x|.$ Thus f is differentiable at a = 0 and its differential is L.

0.10. Theorem. Suppose X is a normed vector space, U is an open subset of X,

$$f: U \to \mathbf{R},$$

 $a \in \operatorname{acc} A$ and f is differentiable at a. If $f(x) \leq f(a)$ for $x \in A$ then $\partial f(a) \in \operatorname{Nor}_a(A)$. If $f(x) \geq f(a)$ for $x \in A$ then $-\partial f(a) \in \operatorname{Nor}_a(A)$.

Proof. Exercise.

Now suppose X is an inner product space. In this case, as we indicated before, we set

$$\operatorname{Nor}_{a}(A) = \{ w \in X : v \bullet w \leq 0 \text{ whenever } v \in \operatorname{Tan}_{a}(A) \}$$

Note the polarity of the inner product carries the present normal cone to the former normal cone.

0.11. Definition. The gradient. Suppose $A \subset X$, $f : A \to \mathbf{R}$, and f is differentiable at a. We let

$$\nabla f(a)$$

the **gradient of** f **at** a, be the counter image of $\partial f(a)$ under the polarity of the inner product; that is, $\nabla f(a)$ is the unique vector in X satisfying

$$\partial f(a)(v) = v \bullet \nabla f(a), \quad v \in X.$$

In this situation the conclusion of the previous Theorem becomes If $f(x) \leq f(a)$ for $x \in A$ then $\nabla f(a) \in \mathbf{Nor}_a(A)$. If $f(x) \geq f(a)$ for $x \in A$ then $-\nabla f(a) \in \mathbf{Nor}_a(A)$.