
1. Summation.

Let X be a set.

1.1. Finite summation. The stuff in this subsection is now in binary.tex

Suppose Y is a set and

· + · : Y × Y → Y

is such that

(i) x+ (y + z) = (x+ y) + z whenever x, y, z ∈ Y ;
(ii) x+ y = y + x whenever x, y ∈ Y ;
(iii) there is 0 ∈ Y such that y + 0 = y = 0 + y whenever y ∈ Y .

For example, Y could be an Abelian group or Y could be [0,∞] where + on
[0,∞)× [0,∞) is addition in the Abelian group R and where

y +∞ = ∞ = ∞+ y whenever y ∈ [0,∞].

Definition 1.1. For f, g ∈ Y X we define f + g ∈ Y X by letting

(f + g)(x) = f(x) + g(x) for x ∈ X

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We
let

0 : X → Y

be such that 0(x) = 0 for x ∈ X.

Definition 1.2. For f ∈ Y X we let

spt f = {x ∈ X : f(x) ̸= 0}

and call this subset of X the support of f . We let(
Y X
)
0
= {f ∈ Y X : spt f is finite}

and note that
(
Y X
)
0
is closed under addition.

Definition 1.3. Whenever A ⊂ X and f ∈ Y X we let

fA ∈ Y X

be such that

fA(x) =

{
f(x) if x ∈ A,

0 if x ∈ X ∼ A.

Proposition 1.1. Suppose F is a finite subset of X. There is one and only one
function

SF : Y X → Y

such that

(i) SF (0) = 0;
(ii) SF (f) = S(fX∼{a}) + f(a) whenever f ∈ Y X and a ∈ A;

(iii) SF (f + g) = SF (f) + SF (g) whenever f, g ∈ Y X .
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Proof. We define SF by induction on |F | as follows. We let S∅(0) = 0. If |F | > 0
we let

SF = {(f, SF∼{a}(fX∼{a}) + f(a)) : f ∈ FF and a ∈ F}.
It is obvious that SF is a function if |F | = 1. To verify that SF is a function in
case |F | > 1 we suppose f ∈ FF , a, b ∈ F and a ̸= b and we calculate

SF∼{a}(fX∼{a}) + f(a) = (SF∼{a,b}(fX∼{a,b}) + f(b)) + f(a)

= SF∼{a,b}(fX∼{a,b}) + (f(b) + f(a))

= SF∼{a,b}(fX∼{a,b}) + (f(a) + f(b))

= (SF∼{a,b}(fX∼{a,b} + f(a)) + f(b)

= SF∼{b}(fX∼{b}) + f(b).

We leave to the reader the straightforward verification using induction on |F |
that SF satisfies (i)-(iii). □

1.2. Summing a function with values in [0,∞]. For each subset A of X let
1A ∈ [0,∞]X be such that

1A(x) =

{
1 if x ∈ A,

0 if x ∈ X ∼ A;

one calls 1A the indicator function of A.
Note that

pA = 1Ap whenever p ∈ [0,∞]X .

Definition 1.4. For p ∈ [0,∞]X we let∑
p = sup{SF (p) : F ⊂ X and F is finite}.

Theorem 1.1. We have

(i)
∑

0 = 0;
(ii)

∑
1{a} = 1 whenever a ∈ X;

(iii)
∑

cp = c
∑

p whenever 0 ≤ c ≤ ∞ and p ∈ [0,∞]X ;
(iv)

∑
(p+ q) =

∑
p+

∑
q whenever p, q ∈ [0,∞]X ;

(v)
∑

p ≤
∑

q whenever p, q ∈ [0,∞]X and p ≤ q.

Proof. (i) and (ii) are immediate. Let F be the family of finite subsets of X. In
what follows we leave it to the reader to supply the simple proofs of the properties
of SF , F ∈ F that we shall use.

Suppose p, q ∈ [0,∞]X and 0 ≤ c ≤ ∞. Then∑
cp = sup

F∈F
SF (cp) = sup

F∈F
cSF (p) = c sup

F∈F
SF (p) = c

∑
p

so (ii) holds.
For any F ∈ F we have

SF (p+ q) = SF (p) + SF (q) ≤
∑

p+
∑

q

which implies that
∑

(p+ q) ≤
∑

p+
∑

q. Moreover, if F,G ∈ F we have

SF (p) + SG(q) ≤ SF∪G(p) + SF∪G(q) ≤ SF∪G(p+ q) ≤
∑

(p+ q).

Thus (iv) holds.
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Suppose p ≤ q. For any F ∈ F we have

SF (p) ≤ SF (q) =
∑

q

so (v) holds. □

Suppose p ∈ [0,∞]X . We will sometimes write∑
A

p or
∑
x∈A

p(x) instead of
∑

pA.

Corollary 1.1. Suppose p, q ∈ [0,∞]X , p ≤ q and A ⊂ B ⊂ X. Then∑
A

p ≤
∑
B

q.

Proof. Note that pA ≤ qB . □
Example 1.1. Suppose 0 ≤ r < 1. We define p : N → [0, 1) by letting

p(n) = rn for n ∈ N.
Then

∞∑
n=0

rn =
∑

p

= sup{SF (p) : F is a finite subset of N}

= sup{
N∑

n=0

rn : N ∈ N}

= sup

{
1− rN+1

1− r
: N ∈ N

}
=

1

1− r
.

(1)

Proposition 1.2. Suppose A is a partition of X and p ∈ [0,∞]X . Then∑
p =

∑
A∈A

∑
A

p.

Proof. One proves by induction on |A| using (iv) of the preceding Theorem that
the Proposition holds when A is finite.

Suppose F is a finite subfamily of A. Then∑
A∈F

∑
A

p =
∑
A∈F

∑
pA =

∑ ∑
A∈F

pA =
∑

p∪F ≤
∑

p.

Thus ∑
A∈A

∑
A

p ≤
∑

p.

Suppose F is a finite subset of X. Let F = {A ∈ A : F ∩A ̸= ∅}. Then∑
pF =

∑ ∑
A∈F

pF∩A =
∑
A∈F

∑
pF∩A ≤

∑
A∈F

∑
A

p ≤
∑
A∈A

∑
A

p.

Thus ∑
p ≤

∑
A∈A

∑
A

p.
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□

Definition 1.5. Suppose B is a set and p : B → [0,∞]X . (Some would say
pb, b ∈ B, is an indexed family of [0,∞] valued functions with domain X.) We let∑

b∈B

pb =
(
X ∋ x 7→

∑
b∈B

pb(x) ∈ [0,∞]
)
∈ [0,∞]X .

Proposition 1.3. Suppose pb, b ∈ B is an indexed family of [0,∞] valued functions
with a common domain X and A ⊂ X. Then∑

A

∑
b∈B

pb =
∑
b∈B

∑
A

pb.

Proof. Let P (b, x) = pb(x) for (b, x) ∈ B × X. Apply the previous Proposition
twice to P with A there equal {{b} ×X : b ∈ B} and {B × {x} : x ∈ X}. □

Proposition 1.4. Suppose p ∈ [0,∞]X and
∑

p < ∞. For each ϵ > 0 there is a
finite subset F of X such that∑

X∼A

p < ϵ whenever F ⊂ A ⊂ X.

Proof. Suppose ϵ > 0. Let F be a finite subset of X such that∑
p <

∑
F

p+ ϵ.

Since p = pF + pX∼F we have∑
F

p+
∑
X∼F

p =
∑

pF +
∑

pX∼F =
∑

p <
∑
F

p+ ϵ.

If F ⊂ A ⊂ X we have pX∼A ≤ pX∼F so∑
X∼A

p ≤
∑
X∼F

p < ϵ.

□

Proposition 1.5. Suppose p ∈ [0,∞]X and∑
p < ∞.

Then spt p is countable.

Proof. Suppose n is positive integer and An = {x ∈ X : p(x) ≥ 1/n}. Then
1An ≤ np which implies |An| =

∑
1An ≤

∑
np = n

∑
p < ∞ so An is finite.

Thus spt p = ∪∞
n=1An is countable. □
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1.3. Vector valued summation. We now assume that V is a Banach space
which, by definition, means that V is a complete normed linear space and, under
this assumption, extend the notion of summation when the support of f is infinite.

Definition 1.6. Suppose f ∈ V X and A ⊂ X. We say f is summable over A if∑
A

|f | < ∞.

We say f is summable if f is summable over X.

If A ⊂ X and f ∈ V X is summable then, as |fA| ≤ |f | we find that f is summable
over A.

Evidently,

{f ∈ V X : f if summable} is a linear subspace of V X .

Theorem 1.2. There is one and only one linear function∑
: {f ∈ V X : f is summable} → V

such that ∑
fF = SF (f) if f ∈ V X and F is a finite subset of X

and ∣∣∣∑ f
∣∣∣ ≤∑ |f | whenever f ∈ V X and f is summable.

Proof. Let ρ(f) =
∑

|f | for f ∈ V X . Then

ρ(cf) = |c|ρ(f) whenever c ∈ R and f ∈ V X

and
ρ(f + g) ≤ ρ(f) + ρ(g) whenever f, g ∈ V X .

By induction on |spt f | one shows that

|SF (f)| ≤ SF (|f |) ≤ ρ(f) whenever f ∈ V X and F is a finite subset of F .

The Theorem now follows by applying the Abstract Closure Principle to(
V X
)
0
∋ f 7→ Sspt f (f).

□

Remark 1.1. An alternative approach to defining
∑

f when f is summable is as
follows. For each positive integer ν let Fν = {x ∈ X : |f(x)| ≥ 1/ν}, note that Fν

is finite and set yν =
∑

x∈Fν
f(x). Given ϵ > 0 there is a positive integer N such

that
∑

X∼FN
|f | < ϵ. Thus if µ, ν are positive integers and µ, ν ≥ N we have

|yµ − yν | ≤
∑

x∈X∼FN

|f(x)| < ϵ

where we have used that fact that FN ⊂ Fµ ∩ Fν . Thus y is a Cauchy sequence
whose limit is

∑
f .

Definition 1.7. Whenever f ∈ V X , A is a subset of X and fA is summable we let∑
A

f =
∑

fA.
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Remark 1.2. Note that if f is summable and ϵ > 0 there is a finite subset F of
X such that ∣∣∣∣∣∑ f −

∑
A

f

∣∣∣∣∣ < ϵ whenever F ⊂ A ⊂ X.

Theorem 1.3. Suppose f ∈ V X , f is summable and A is a partition of X.
Then

(i)
∑

A |f | < ∞ for each A ∈ A;
(ii)

∑
A∈A |

∑
A f | < ∞;

and

(1)
∑
∪A

f =
∑
A∈A

∑
A

f.

Proof. We have ∑
A∈A

∑
A

|f | =
∑

|f | < ∞

so (i) holds. We have∑
A∈A

∣∣∣∣∣∑
A

f

∣∣∣∣∣ ≤ ∑
A∈A

∑
A

|f | =
∑

|f | < ∞

and (ii) holds.
Suppose ϵ > 0. Let F be a subset of ∪A such that∑

(∪A)∼F

|f | < ϵ

2
.

Let F = {A ∈ A : A ∩ F ̸= ∅}; note that F is finite, F ⊂ ∪F and∑
(∪A)∼(∪F)

|f | ≤
∑

(A)∼F

|f | < ϵ

2
.

Using the fact that
∑

(
∑m

i=1 gi) =
∑m

i=1

∑
gi whenever g1, . . . , gm are summable

we find that∑
supF

=
∑

f∪F =
∑(∑

A∈F

fA

)
=
∑
A∈F

(∑
fA

)
=
∑
A∈F

∑
A

f.

Thus ∣∣∣∣∣∑
∪A

f −
∑
A∈A

∑
A

f

∣∣∣∣∣ ≤
∣∣∣∣∣∑
∪A

f −
∑
∪F

f

∣∣∣∣∣+
∣∣∣∣∣∑
A∈A

∑
A

f −
∑
A∈F

∑
A

f

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(∪A)∼(∪F)

f

∣∣∣∣∣∣+
∣∣∣∣∣ ∑
A∈A∼F

∑
A

f

∣∣∣∣∣
≤

∑
(∪A)∼(∪F)

|f |+
∑

A∈A∼F

∑
A

|f |

= 2
∑

(∪A)∼(∪F)

|f |;

< ϵ.
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here we have used again that summation is finitely additive and the version of the
current Theorem in the case of nonnegative functions. □

1.4. The complex exponential function. Whenever 0 < r < ∞ we let

M(r) = sup

{
rn

n!
: n ∈ N

}
.

Suppose 0 < r < ∞. Let N(r) be that integer such that N(r) ≤ r < N(r) + 1.
Whenever n ∈ N and n > N(r) we have

rn

n!
=

 n∏
m=N(r)+1

r

m

 rN(r)

N(r)!
<

rN(r)

N(r)!

from which it follows that

M(r) ≤ rN(r)

N(r)!
< ∞.

Suppose z ∈ C. Let r be such that |z| < r < ∞. Then∣∣∣∣znn!
∣∣∣∣ = |z|n

n!
=

rn

n!

(
|z|
r

)n

≤ M(r)

(
|z|
r

)n

so, by Example (1),

∞∑
n=0

∣∣∣∣znn!
∣∣∣∣ ≤ M(r)

∞∑
n=0

(
|z|
r

)n

= M(r)
1

1− |z|
r

< ∞.

Thus we may define

ez =
∞∑

n=0

zn

n!
.

(One also writes exp(z) for ez.) I claim that

ez+w = ezew for z, w ∈ C.

We prove this as follows. Fix z, w ∈ C. Let

T = {(m,n) ∈ N× N : m ≤ n}

and let

f(m,n) =
zm

m!

wn−m

(n−m)!
for (m,n) ∈ T .

For each n ∈ N let An = {m ∈ N : m ≤ n} and for each m ∈ N let Bm = {n ∈ N :
m ≤ n}. Note that

{An : n ∈ N} and {Bm : m ∈ N} are partitions of T .

We have ∑
(m,n)∈T

|f(m,n)| =
∞∑

n=0

∑
m∈An

|f(m,n)|
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so that, using more traditional notation,∑
(m,n)∈T

|z|m

m!

|w|n−m

(n−m)!
=

∞∑
n=0

n∑
m=0

|z|m

m!

|w|n−m

(n−m)!

=
∞∑

n=0

(|z|+ |w|)n

n!

= e|z|+|w|

< ∞.

Applying the previous theorem twice we infer that
∞∑

n=0

∑
m∈An

f(m,n) =
∑

(m,n)∈T

f(m,n) =

∞∑
m=0

∑
n∈Bm

f(m,n)

so that
∞∑

n=0

n∑
m=0

zm

m!

wn−m

(n−m)!
=

∞∑
m=0

∞∑
n=m

zm

m!

wn−m

(n−m)!
.

Thus

ez+w =
∞∑

n=0

(z + w)
n

n!

=

∞∑
n=0

n∑
m=0

zm

m!

wn−m

(n−m)!

=

∞∑
m=0

∞∑
n=m

zm

m!

wn−m

(n−m)!

=
∞∑

m=0

zm

m!
ew

= ezew.

Finally, let us show that

(3) lim
w→z

ew − ez

w − z
= ez.

Suppose z, w ∈ C and 0 < |w − z| < 1. Then

ew−z = 1 + (w − z) + (w − z)2
∞∑

n=2

(w − z)n−2

n!

so ∣∣∣∣ew−z − 1

w − z
− 1

∣∣∣∣ = |w − z|

∣∣∣∣∣
∞∑

n=2

(w − z)n−2

n!

∣∣∣∣∣ ≤ |w − z|
∞∑

n=2

|w − z|n−2

= |w − z| 1

1− |w − z|
.

Since
ew − ez

w − z
− ez = ez

(
ew−z − 1

w − z
− 1

)
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(3) holds.


