1. SUMMATION.
Let X be a set.

1.1. Finite summation. The stuff in this subsection is now in binary.tex
Suppose Y is a set and

-+ Y XY =Y
is such that

(i) v+ (y+2) = (r + y) + 2z whenever z,y,z € Y;
(ii) z+y =y + = whenever z,y € Y;
(iii) there is 0 € Y such that y + 0 =y = 0+ y whenever y € Y.

For example, Y could be an Abelian group or Y could be [0, 00] where + on
[0,00) % [0,00) is addition in the Abelian group R and where

y+oo=00=00+y whenevery € [0,00].
Definition 1.1. For f,g € Y we define f + g € YX by letting
(f +9)(x) = f(x) +g(x) forzeX

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We
let

0: X —-Y
be such that 0(x) =0 for z € X.

Definition 1.2. For f € YX we let

spt f ={z € X : f(z) # 0}
and call this subset of X the support of f. We let

(YX)O ={f €YX :spt f is finite}
and note that (YX )0 is closed under addition.
Definition 1.3. Whenever A C X and f € Y¥ we let
faevYX

be such that

) flx) ifxze A
fA(x)_{o ifre X~ A

Proposition 1.1. Suppose F' is a finite subset of X. There is one and only one
function
Sp:Y¥ =Y
such that
() 5¢(0) =0,
(i) Sr(f) = S(fx~ia}) + f(a) whenever f € YX and a € A4;
f+9)

Sk
(iii) Sr(f+9) = Sr(f) + Sr(g) whenever f,g € Y.
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Proof. We define Sr by induction on |F| as follows. We let Sp(0) = 0. If |F| > 0
we let

Sp = {(f7SF~{a}(fX~{a}) +f(a)) : f € Frpand a € F}

It is obvious that Sp is a function if |F| = 1. To verify that Sp is a function in
case |F'| > 1 we suppose f € Fp, a,b € F and a # b and we calculate

Skefat(fx~qa}) + f(a) = (Spaiapy (fx~fapy) + (D) + f(a)
= Sr~faby ([x~fapy) + (f(0) + f(a))
= Spefaby ([x~gapy) + (f(a) + (b))
= (Sp~tap) (fx~qapy + fla)) + f(D)
= Sp~pny (fxmqpy) + ().

We leave to the reader the straightforward verification using induction on |F|
that Sp satisfies (i)-(iii). O
1.2. Summing a function with values in [0, 00]. For each subset A of X let
14 € [0,00]* be such that

La(z) = {1 ?fxeA,

0 ifxeX ~ A

one calls 14 the indicator function of A.

Note that
pa = 1ap whenever p € [0, 00]¥.

Definition 1.4. For p € [0, 00 we let
Z p=sup{Sr(p) : F' C X and F is finite}.

Theorem 1.1. We have
(i) > 0=0;
(ii) > 1gqy = 1 whenever a € X;
(iii) > ep=c>_ p whenever 0 < ¢ < 0o and p € [0, oc]X
(iv) X (p+4q) =3 p+ 3 ¢ whenever p,q € [0,00]*
(v) 3> p <Y g whenever p, q € [0,00]% and p < q.

Proof. (i) and (ii) are immediate. Let F be the family of finite subsets of X. In
what follows we leave it to the reader to supply the simple proofs of the properties
of Sg, F' € F that we shall use.

Suppose p, q € [0,00]% and 0 < ¢ < co. Then

Zcp: sup Sp(cp) = sup cSp(p )—csup Sr(p —ch
FeF FeF Fe

o (ii) holds.
For any F' € F we have

Sr(p+q) = Sr(p)+Sk(@) <Y P+ 4
which implies that > (p+¢) <> p+ > gq. Moreover, if F,G € F we have
Sp(p) + Sa(q) < Sruc(p) + Sruc(9) < Sruc(p+q) < Z (p+4q).
Thus (iv) holds.



Suppose p < q. For any F' € F we have

Se(p) < Sk(@) =) q
so (v) holds. O

Suppose p € [0,00]%. We will sometimes write

Zp or Zp(x) instead of ZpA.
A

z€A

Corollary 1.1. Suppose p,q € [0,00]X, p < gand A C B C X. Then
PEDIN
A B

Proof. Note that ps < ¢p. ([

Example 1.1. Suppose 0 < r < 1. We define p : N — [0,1) by letting
p(n) =r" forneN.

Then
Sy
n=0
= sup{Sr(p) : F is a finite subset of N}
N
(1) = sup{z r™: N € N}
n=0
1— N+1
= sup {r N e N}
1—r
1
17

Proposition 1.2. Suppose A is a partition of X and p € [0, 00]X. Then
> =22
AcA A

Proof. One proves by induction on |A| using (iv) of the preceding Theorem that
the Proposition holds when A is finite.
Suppose F is a finite subfamily of A. Then

3 =D "pa=>_> pa=> pr<d »

AeF A AcF AeF

2.2 ps) p

AcA A
Suppose F is a finite subset of X. Let F ={A € A: FNA#(}. Then

S o= Y o= Y Y < Y 0 S0

AcF AcF AeF A AcA A

P EDIPVI

AcA A

Thus

Thus
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Definition 1.5. Suppose B is a set and p : B — [0,00]%. (Some would say
py, b € B, is an indexed family of [0, co] valued functions with domain X.) We let

Zpb = (X Sx Zpb(x) IS [0,00]) IS [O,OO]X.
beB beB

Proposition 1.3. Suppose pp, b € B is an indexed family of [0, co] valued functions
with a common domain X and A C X. Then

2.2 m=>.> m

A beB beB A

Proof. Let P(b,x) = pp(z) for (b,x) € B x X. Apply the previous Proposition
twice to P with A there equal {{b} x X : b€ B} and {B x {z} :z € X}. O

Proposition 1.4. Suppose p € [0,00]% and Y p < co. For each € > 0 there is a
finite subset F' of X such that

Zp<e whenever F'C A C X.
X~A

Proof. Suppose € > 0. Let F be a finite subset of X such that
S p<Yrte
F

Since p = pr + px~r we have

Db+ p=Y pr+Y pxer=) p<)> pte
F X~F F
If FC AC X we have px.a < px~F SO

Zpé Zp<6-

X~A X~F

Proposition 1.5. Suppose p € [0, 0]X and

Zp<oo.

Then spt p is countable.

Proof. Suppose n is positive integer and A, = {z € X : p(z) > 1/n}. Then
14, < np which implies |A,| =" 14, <> . np=n), p < oo so A, is finite.
Thus sptp = U2, A, is countable. |
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1.3. Vector valued summation. We now assume that V is a Banach space
which, by definition, means that V is a complete normed linear space and, under
this assumption, extend the notion of summation when the support of f is infinite.

Definition 1.6. Suppose f € VX and A C X. We say f is summable over A if
Sl < .
A

We say f is summable if f is summable over X.

If AC X and f € V¥ is summable then, as | f4| < |f| we find that f is summable
over A.
Evidently,

{f € VX : f if summable} is a linear subspace of VX.

Theorem 1.2. There is one and only one linear function
Z {f eV¥:fissummable} —» V
such that
Z fr=Sr(f) if f€ VX and F is a finite subset of X

and

’Z f‘ < Z |f| whenever f € VX and f is summable.

Proof. Let p(f) =Y |f| for f € VX. Then
p(cf) = |e|lp(f) whenever c € R and f € VX
and

p(f +9) < p(f) +plg) whenever f,g € V.
By induction on |spt f| one shows that

ISE(f)| < Sr(f]) < p(f) whenever f € VX and F is a finite subset of F.
The Theorem now follows by applying the Abstract Closure Principle to

(VX)O > f e Sspep(f)-
O

Remark 1.1. An alternative approach to defining > f when f is summable is as
follows. For each positive integer v let F, = {z € X : |f(z)| > 1/v}, note that F,
is finite and set y, = erFV f(z). Given e > 0 there is a positive integer N such
that >y p, [f| < e Thus if y, v are positive integers and p,v > N we have

v —wl< Y If@)l<e

rzeX~FN

where we have used that fact that Fiy C Fj, N F,. Thus y is a Cauchy sequence
whose limit is > f.

Definition 1.7. Whenever f € VX, A is a subset of X and f4 is summable we let

ZfZZfA~
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Remark 1.2. Note that if f is summable and ¢ > 0 there is a finite subset F' of

X such that
‘Zf—Zf
A

Theorem 1.3. Suppose f € VX, f is summable and A is a partition of X.
Then

(i) Do4|f] < oo for each A € A;
(i) 2acal2a fl<oo;
and

(1) gf=ZZf-

AcA A

<€ whenever F C AC X.

Proof. We have

MU=l <

AcA A
so (i) holds. We have

>

AeA

S f

A

<Y D =D Il <00

AcA A

and (ii) holds.
Suppose € > 0. Let F be a subset of UA such that

€
Z |fl < 3
(VA)~F
Let F={A € A: ANF # 0}; note that F is finite, F C UF and
€
> < X Ifl<s
(VA)~(UF) (A)~F

Using the fact that Y (372, ¢i) = >oiey > gi whenever gi,..., gy are summable
we find that

3 :zfuf:z(zfA> Y (C)=Y Y

sup F AeF AeF AeF A
Thus
SIED SN ED S S ED S OIED Bp oY
UA AeA A UA UF AeA A AeF A
oy Ay Zf‘
(UA)~(UF) A€A~F A
< D+ Y DI
(VA)~(UF) AcA~F A
=2 > |fl;
(UA)~(UF)

< €.
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here we have used again that summation is finitely additive and the version of the
current Theorem in the case of nonnegative functions. (I

1.4. The complex exponential function. Whenever 0 < r < oo we let
,rn
M(r)sup{' :nGN}.
n!

Suppose 0 < 7 < co. Let N(r) be that integer such that N(r) <r < N(r) + 1.
Whenever n € N and n > N(r) we have

n N(r) N(r)
G U | (A il
n! m | N(r)l ~ N(r)!
m=N(r)+1
from which it follows that
\ TN(T)
)< ey <

Suppose z € C. Let r be such that |z] < r < co. Then

S Y (EY
n! n! nl \ r - r

so, by Example (1),

7;) ) SM(T)7;)<T) :M(r)l_lil < 00.

Thus we may define

(One also writes exp(z) for €*.) I claim that
et = e%e¥ for z,w € C.
We prove this as follows. Fix z,w € C. Let
T={(mn) e NxN:m<n}

and let

m n—m

z w

f(m,n) =

For each n € Nlet 4, = {m € N:m < n} and for each m € Nlet B,,, = {n € N:
m < n}. Note that

Wm for (m,n) eT.

{4, :neN} and {B,, :m €N} are partitions of T.
We have

Yo mam= > If(mn)

(m,n)eT n=0meA,



so that, using more traditional notation,

2. |277L!(|7110|—m)! :Zzill!(tu'—m)!

(m,n)eT n=0m=0

> (|z] + [w))™
_;(Hn!l )

— elzl+lwl
< 00.

Applying the previous theorem twice we infer that

n=0mecA, m,n)eT m=0n€B,,
so that
P XL g g m O X, ym gynmm
> 2 ml (n—m)l > 2 ml (n—m)!
n=0m=0 m=0n=m
Thus
eFTw — i (’Z "";l'w)n
n=0
O M om g nem
- nZ:o mZ:o m! (n —m)!

X _m
— z w
=2
m=0
Finally, let us show that
eV —e*

(3) lim

w—z W — 2

Suppose z,w € C and 0 < |w — z| < 1. Then

o (w—2)" 2
P =14+ (w—2)+(w—2) ZT
n=2
SO
ew—z _ 1 0 (U) o Z)n72 e s
p— —1‘—|w—zzn! S\w—z|2|w—z|
n=2 n=2
o = 2l
=|w—z
1—|w—z|
Since




(3) holds.



