1. Summation.

Let X be a set.
1.1. Finite summation. The stuff in this subsection is now in binary.tex

Suppose Y is a set and

$$
\cdot+\cdots Y \times Y \rightarrow Y
$$

is such that
(i) $x+(y+z)=(x+y)+z$ whenever $x, y, z \in Y$;
(ii) $x+y=y+x$ whenever $x, y \in Y$;
(iii) there is $0 \in Y$ such that $y+0=y=0+y$ whenever $y \in Y$.

For example, Y could be an Abelian group or Y could be $[0, \infty]$ where + on $[0, \infty) \times[0, \infty)$ is addition in the Abelian group \mathbb{R} and where

$$
y+\infty=\infty=\infty+y \quad \text { whenever } y \in[0, \infty]
$$

Definition 1.1. For $f, g \in Y^{X}$ we define $f+g \in Y^{X}$ by letting

$$
(f+g)(x)=f(x)+g(x) \quad \text { for } x \in X
$$

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We let

$$
0: X \rightarrow Y
$$

be such that $0(x)=0$ for $x \in X$.
Definition 1.2. For $f \in Y^{X}$ we let

$$
\operatorname{spt} f=\{x \in X: f(x) \neq 0\}
$$

and call this subset of X the support of f. We let

$$
\left(Y^{X}\right)_{0}=\left\{f \in Y^{X}: \mathbf{s p t} f \text { is finite }\right\}
$$

and note that $\left(Y^{X}\right)_{0}$ is closed under addition.
Definition 1.3. Whenever $A \subset X$ and $f \in Y^{X}$ we let

$$
f_{A} \in Y^{X}
$$

be such that

$$
f_{A}(x)= \begin{cases}f(x) & \text { if } x \in A \\ 0 & \text { if } x \in X \sim A\end{cases}
$$

Proposition 1.1. Suppose F is a finite subset of X. There is one and only one function

$$
S_{F}: Y^{X} \rightarrow Y
$$

such that
(i) $S_{F}(0)=0$;
(ii) $S_{F}(f)=S\left(f_{X \sim\{a\}}\right)+f(a)$ whenever $f \in Y^{X}$ and $a \in A$;
(iii) $S_{F}(f+g)=S_{F}(f)+S_{F}(g)$ whenever $f, g \in Y^{X}$.

Proof. We define S_{F} by induction on $|F|$ as follows. We let $S_{\emptyset}(0)=0$. If $|F|>0$ we let

$$
S_{F}=\left\{\left(f, S_{F \sim\{a\}}\left(f_{X \sim\{a\}}\right)+f(a)\right): f \in \mathcal{F}_{F} \text { and } a \in F\right\} .
$$

It is obvious that S_{F} is a function if $|F|=1$. To verify that S_{F} is a function in case $|F|>1$ we suppose $f \in \mathcal{F}_{F}, a, b \in F$ and $a \neq b$ and we calculate

$$
\begin{aligned}
S_{F \sim\{a\}}\left(f_{X \sim\{a\}}\right)+f(a) & =\left(S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+f(b)\right)+f(a) \\
& =S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+(f(b)+f(a)) \\
& =S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}\right)+(f(a)+f(b)) \\
& =\left(S_{F \sim\{a, b\}}\left(f_{X \sim\{a, b\}}+f(a)\right)+f(b)\right. \\
& =S_{F \sim\{b\}}\left(f_{X \sim\{b\}}\right)+f(b) .
\end{aligned}
$$

We leave to the reader the straightforward verification using induction on $|F|$ that S_{F} satisfies (i)-(iii).
1.2. Summing a function with values in $[0, \infty]$. For each subset A of X let $1_{A} \in[0, \infty]^{X}$ be such that

$$
1_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \in X \sim A\end{cases}
$$

one calls 1_{A} the indicator function of A.
Note that

$$
p_{A}=1_{A} p \quad \text { whenever } p \in[0, \infty]^{X} .
$$

Definition 1.4. For $p \in[0, \infty]^{X}$ we let

$$
\sum p=\sup \left\{S_{F}(p): F \subset X \text { and } F \text { is finite }\right\}
$$

Theorem 1.1. We have
(i) $\sum 0=0$;
(ii) $\sum 1_{\{a\}}=1$ whenever $a \in X$;
(iii) $\sum c p=c \sum p$ whenever $0 \leq c \leq \infty$ and $p \in[0, \infty]^{X}$;
(iv) $\sum(p+q)=\sum p+\sum q$ whenever $p, q \in[0, \infty]^{X}$;
(v) $\sum p \leq \sum q$ whenever $p, q \in[0, \infty]^{X}$ and $p \leq q$.

Proof. (i) and (ii) are immediate. Let \mathcal{F} be the family of finite subsets of X. In what follows we leave it to the reader to supply the simple proofs of the properties of $S_{F}, F \in \mathcal{F}$ that we shall use.

Suppose $p, q \in[0, \infty]^{X}$ and $0 \leq c \leq \infty$. Then

$$
\sum c p=\sup _{F \in \mathcal{F}} S_{F}(c p)=\sup _{F \in \mathcal{F}} c S_{F}(p)=c \sup _{F \in \mathcal{F}} S_{F}(p)=c \sum p
$$

so (ii) holds.
For any $F \in \mathcal{F}$ we have

$$
S_{F}(p+q)=S_{F}(p)+S_{F}(q) \leq \sum p+\sum q
$$

which implies that $\sum(p+q) \leq \sum p+\sum q$. Moreover, if $F, G \in \mathcal{F}$ we have

$$
S_{F}(p)+S_{G}(q) \leq S_{F \cup G}(p)+S_{F \cup G}(q) \leq S_{F \cup G}(p+q) \leq \sum(p+q)
$$

Thus (iv) holds.

Suppose $p \leq q$. For any $F \in \mathcal{F}$ we have

$$
S_{F}(p) \leq S_{F}(q)=\sum q
$$

so (v) holds.

Suppose $p \in[0, \infty]^{X}$. We will sometimes write

$$
\sum_{A} p \quad \text { or } \quad \sum_{x \in A} p(x) \quad \text { instead of } \quad \sum p_{A}
$$

Corollary 1.1. Suppose $p, q \in[0, \infty]^{X}, p \leq q$ and $A \subset B \subset X$. Then

$$
\sum_{A} p \leq \sum_{B} q
$$

Proof. Note that $p_{A} \leq q_{B}$.
Example 1.1. Suppose $0 \leq r<1$. We define $p: \mathbb{N} \rightarrow[0,1)$ by letting

$$
p(n)=r^{n} \quad \text { for } n \in \mathbb{N}
$$

Then

$$
\begin{align*}
\sum_{n=0}^{\infty} r^{n} & =\sum p \\
& =\sup \left\{S_{F}(p): F \text { is a finite subset of } \mathbb{N}\right\} \\
& =\sup \left\{\sum_{n=0}^{N} r^{n}: N \in \mathbb{N}\right\} \tag{1}\\
& =\sup \left\{\frac{1-r^{N+1}}{1-r}: N \in \mathbb{N}\right\} \\
& =\frac{1}{1-r}
\end{align*}
$$

Proposition 1.2. Suppose \mathcal{A} is a partition of X and $p \in[0, \infty]^{X}$. Then

$$
\sum p=\sum_{A \in \mathcal{A}} \sum_{A} p
$$

Proof. One proves by induction on $|\mathcal{A}|$ using (iv) of the preceding Theorem that the Proposition holds when \mathcal{A} is finite.

Suppose \mathcal{F} is a finite subfamily of \mathcal{A}. Then

$$
\sum_{A \in \mathcal{F}} \sum_{A} p=\sum_{A \in \mathcal{F}} \sum p_{A}=\sum \sum_{A \in \mathcal{F}} p_{A}=\sum p_{\cup \mathcal{F}} \leq \sum p
$$

Thus

$$
\sum_{A \in \mathcal{A}} \sum_{A} p \leq \sum p
$$

Suppose F is a finite subset of X. Let $\mathcal{F}=\{A \in \mathcal{A}: F \cap A \neq \emptyset\}$. Then

$$
\sum p_{F}=\sum \sum_{A \in \mathcal{F}} p_{F \cap A}=\sum_{A \in \mathcal{F}} \sum p_{F \cap A} \leq \sum_{A \in \mathcal{F}} \sum_{A} p \leq \sum_{A \in \mathcal{A}} \sum_{A} p
$$

Thus

$$
\sum p \leq \sum_{A \in \mathcal{A}} \sum_{A} p
$$

Definition 1.5. Suppose B is a set and $p: B \rightarrow[0, \infty]^{X}$. (Some would say $p_{b}, b \in B$, is an indexed family of $[0, \infty]$ valued functions with domain X.) We let

$$
\sum_{b \in B} p_{b}=\left(X \ni x \mapsto \sum_{b \in B} p_{b}(x) \in[0, \infty]\right) \in[0, \infty]^{X}
$$

Proposition 1.3. Suppose $p_{b}, b \in B$ is an indexed family of $[0, \infty]$ valued functions with a common domain X and $A \subset X$. Then

$$
\sum_{A} \sum_{b \in B} p_{b}=\sum_{b \in B} \sum_{A} p_{b} .
$$

Proof. Let $P(b, x)=p_{b}(x)$ for $(b, x) \in B \times X$. Apply the previous Proposition twice to P with \mathcal{A} there equal $\{\{b\} \times X: b \in B\}$ and $\{B \times\{x\}: x \in X\}$.

Proposition 1.4. Suppose $p \in[0, \infty]^{X}$ and $\sum p<\infty$. For each $\epsilon>0$ there is a finite subset F of X such that

$$
\sum_{X \sim A} p<\epsilon \quad \text { whenever } F \subset A \subset X
$$

Proof. Suppose $\epsilon>0$. Let F be a finite subset of X such that

$$
\sum p<\sum_{F} p+\epsilon
$$

Since $p=p_{F}+p_{X \sim F}$ we have

$$
\sum_{F} p+\sum_{X \sim F} p=\sum p_{F}+\sum p_{X \sim F}=\sum p<\sum_{F} p+\epsilon .
$$

If $F \subset A \subset X$ we have $p_{X \sim A} \leq p_{X \sim F}$ so

$$
\sum_{X \sim A} p \leq \sum_{X \sim F} p<\epsilon
$$

Proposition 1.5. Suppose $p \in[0, \infty]^{X}$ and

$$
\sum p<\infty
$$

Then $\boldsymbol{\operatorname { s p t }} p$ is countable.
Proof. Suppose n is positive integer and $A_{n}=\{x \in X: p(x) \geq 1 / n\}$. Then $1_{A_{n}} \leq n p$ which implies $\left|A_{n}\right|=\sum 1_{A_{n}} \leq \sum n p=n \sum p<\infty$ so A_{n} is finite.

Thus spt $p=\cup_{n=1}^{\infty} A_{n}$ is countable.
1.3. Vector valued summation. We now assume that V is a Banach space which, by definition, means that V is a complete normed linear space and, under this assumption, extend the notion of summation when the support of f is infinite.

Definition 1.6. Suppose $f \in V^{X}$ and $A \subset X$. We say f is summable over A if

$$
\sum_{A}|f|<\infty
$$

We say f is summable if f is summable over X.
If $A \subset X$ and $f \in V^{X}$ is summable then, as $\left|f_{A}\right| \leq|f|$ we find that f is summable over A.

Evidently,

$$
\left\{f \in V^{X}: f \text { if summable }\right\} \quad \text { is a linear subspace of } V^{X}
$$

Theorem 1.2. There is one and only one linear function

$$
\sum:\left\{f \in V^{X}: f \text { is summable }\right\} \rightarrow V
$$

such that

$$
\sum f_{F}=S_{F}(f) \quad \text { if } f \in V^{X} \text { and } F \text { is a finite subset of } X
$$

and

$$
\left|\sum f\right| \leq \sum|f| \quad \text { whenever } f \in V^{X} \text { and } f \text { is summable. }
$$

Proof. Let $\rho(f)=\sum|f|$ for $f \in V^{X}$. Then

$$
\rho(c f)=|c| \rho(f) \quad \text { whenever } c \in \mathbf{R} \text { and } f \in V^{X}
$$

and

$$
\rho(f+g) \leq \rho(f)+\rho(g) \quad \text { whenever } f, g \in V^{X}
$$

By induction on $|\mathbf{s p t} f|$ one shows that
$\left|S_{F}(f)\right| \leq S_{F}(|f|) \leq \rho(f) \quad$ whenever $f \in V^{X}$ and F is a finite subset of F.
The Theorem now follows by applying the Abstract Closure Principle to

$$
\left(V^{X}\right)_{0} \ni f \mapsto S_{\operatorname{spt} f}(f)
$$

Remark 1.1. An alternative approach to defining $\sum f$ when f is summable is as follows. For each positive integer ν let $F_{\nu}=\{x \in X:|f(x)| \geq 1 / \nu\}$, note that F_{ν} is finite and set $y_{\nu}=\sum_{x \in F_{\nu}} f(x)$. Given $\epsilon>0$ there is a positive integer N such that $\sum_{X \sim F_{N}}|f|<\epsilon$. Thus if μ, ν are positive integers and $\mu, \nu \geq N$ we have

$$
\left|y_{\mu}-y_{\nu}\right| \leq \sum_{x \in X \sim F_{N}}|f(x)|<\epsilon
$$

where we have used that fact that $F_{N} \subset F_{\mu} \cap F_{\nu}$. Thus y is a Cauchy sequence whose limit is $\sum f$.

Definition 1.7. Whenever $f \in V^{X}, A$ is a subset of X and f_{A} is summable we let

$$
\sum_{A} f=\sum f_{A}
$$

Remark 1.2. Note that if f is summable and $\epsilon>0$ there is a finite subset F of X such that

$$
\left|\sum f-\sum_{A} f\right|<\epsilon \quad \text { whenever } F \subset A \subset X
$$

Theorem 1.3. Suppose $f \in V^{X}, f$ is summable and \mathcal{A} is a partition of X.
Then
(i) $\sum_{A}|f|<\infty$ for each $A \in \mathcal{A}$;
(ii) $\sum_{A \in \mathcal{A}}\left|\sum_{A} f\right|<\infty$;
and

$$
\begin{equation*}
\sum_{\cup \mathcal{A}} f=\sum_{A \in \mathcal{A}} \sum_{A} f . \tag{1}
\end{equation*}
$$

Proof. We have

$$
\sum_{A \in \mathcal{A}} \sum_{A}|f|=\sum|f|<\infty
$$

so (i) holds. We have

$$
\sum_{A \in \mathcal{A}}\left|\sum_{A} f\right| \leq \sum_{A \in \mathcal{A}} \sum_{A}|f|=\sum|f|<\infty
$$

and (ii) holds.
Suppose $\epsilon>0$. Let F be a subset of $\cup \mathcal{A}$ such that

$$
\sum_{(\cup \mathcal{A}) \sim F}|f|<\frac{\epsilon}{2}
$$

Let $\mathcal{F}=\{A \in \mathcal{A}: A \cap F \neq \emptyset\}$; note that \mathcal{F} is finite, $F \subset \cup \mathcal{F}$ and

$$
\sum_{(\cup \mathcal{A}) \sim(\cup \mathcal{F})}|f| \leq \sum_{(\mathcal{A}) \sim F}|f|<\frac{\epsilon}{2}
$$

Using the fact that $\sum\left(\sum_{i=1}^{m} g_{i}\right)=\sum_{i=1}^{m} \sum g_{i}$ whenever g_{1}, \ldots, g_{m} are summable we find that

$$
\sum_{\sup \mathcal{F}}=\sum f_{\cup \mathcal{F}}=\sum\left(\sum_{A \in \mathcal{F}} f_{A}\right)=\sum_{A \in \mathcal{F}}\left(\sum f_{A}\right)=\sum_{A \in \mathcal{F}} \sum_{A} f
$$

Thus

$$
\begin{aligned}
\left|\sum_{\cup \mathcal{A}} f-\sum_{A \in \mathcal{A}} \sum_{A} f\right| & \leq\left|\sum_{\cup \mathcal{A}} f-\sum_{\cup \mathcal{F}} f\right|+\left|\sum_{A \in \mathcal{A}} \sum_{A} f-\sum_{A \in \mathcal{F}} \sum_{A} f\right| \\
& =\left|\sum_{(\cup \mathcal{A}) \sim(\cup \mathcal{F})} f\right|+\left|\sum_{A \in \mathcal{A} \sim \mathcal{F}} \sum_{A} f\right| \\
& \leq \sum_{(\cup \mathcal{A}) \sim(\cup \mathcal{F})}|f|+\sum_{A \in \mathcal{A} \sim \mathcal{F}} \sum_{A}|f| \\
& =2 \sum_{(\cup \mathcal{A}) \sim(\cup \mathcal{F})}|f| ; \\
& <\epsilon
\end{aligned}
$$

here we have used again that summation is finitely additive and the version of the current Theorem in the case of nonnegative functions.
1.4. The complex exponential function. Whenever $0<r<\infty$ we let

$$
M(r)=\sup \left\{\frac{r^{n}}{n!}: n \in \mathbb{N}\right\}
$$

Suppose $0<r<\infty$. Let $N(r)$ be that integer such that $N(r) \leq r<N(r)+1$. Whenever $n \in \mathbb{N}$ and $n>N(r)$ we have

$$
\frac{r^{n}}{n!}=\left(\prod_{m=N(r)+1}^{n} \frac{r}{m}\right) \frac{r^{N(r)}}{N(r)!}<\frac{r^{N(r)}}{N(r)!}
$$

from which it follows that

$$
M(r) \leq \frac{r^{N(r)}}{N(r)!}<\infty
$$

Suppose $z \in \mathbb{C}$. Let r be such that $|z|<r<\infty$. Then

$$
\left|\frac{z^{n}}{n!}\right|=\frac{|z|^{n}}{n!}=\frac{r^{n}}{n!}\left(\frac{|z|}{r}\right)^{n} \leq M(r)\left(\frac{|z|}{r}\right)^{n}
$$

so, by Example (1),

$$
\sum_{n=0}^{\infty}\left|\frac{z^{n}}{n!}\right| \leq M(r) \sum_{n=0}^{\infty}\left(\frac{|z|}{r}\right)^{n}=M(r) \frac{1}{1-\frac{|z|}{r}}<\infty
$$

Thus we may define

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

(One also writes $\exp (z)$ for e^{z}.) I claim that

$$
e^{z+w}=e^{z} e^{w} \quad \text { for } z, w \in \mathbb{C}
$$

We prove this as follows. Fix $z, w \in \mathbb{C}$. Let

$$
T=\{(m, n) \in \mathbb{N} \times \mathbb{N}: m \leq n\}
$$

and let

$$
f(m, n)=\frac{z^{m}}{m!} \frac{w^{n-m}}{(n-m)!} \quad \text { for }(m, n) \in T
$$

For each $n \in \mathbb{N}$ let $A_{n}=\{m \in \mathbb{N}: m \leq n\}$ and for each $m \in \mathbb{N}$ let $B_{m}=\{n \in \mathbb{N}$: $m \leq n\}$. Note that

$$
\left\{A_{n}: n \in \mathbb{N}\right\} \quad \text { and } \quad\left\{B_{m}: m \in \mathbb{N}\right\} \quad \text { are partitions of } T
$$

We have

$$
\sum_{(m, n) \in T}|f(m, n)|=\sum_{n=0}^{\infty} \sum_{m \in A_{n}}|f(m, n)|
$$

so that, using more traditional notation,

$$
\begin{aligned}
\sum_{(m, n) \in T} \frac{|z|^{m}}{m!} \frac{|w|^{n-m}}{(n-m)!} & =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{|z|^{m}}{m!} \frac{|w|^{n-m}}{(n-m)!} \\
& =\sum_{n=0}^{\infty} \frac{(|z|+|w|)^{n}}{n!} \\
& =e^{|z|+|w|} \\
& <\infty
\end{aligned}
$$

Applying the previous theorem twice we infer that

$$
\sum_{n=0}^{\infty} \sum_{m \in A_{n}} f(m, n)=\sum_{(m, n) \in T} f(m, n)=\sum_{m=0}^{\infty} \sum_{n \in B_{m}} f(m, n)
$$

so that

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{z^{m}}{m!} \frac{w^{n-m}}{(n-m)!}=\sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{z^{m}}{m!} \frac{w^{n-m}}{(n-m)!}
$$

Thus

$$
\begin{aligned}
e^{z+w} & =\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{z^{m}}{m!} \frac{w^{n-m}}{(n-m)!} \\
& =\sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{z^{m}}{m!} \frac{w^{n-m}}{(n-m)!} \\
& =\sum_{m=0}^{\infty} \frac{z^{m}}{m!} e^{w} \\
& =e^{z} e^{w} .
\end{aligned}
$$

Finally, let us show that

$$
\begin{equation*}
\lim _{w \rightarrow z} \frac{e^{w}-e^{z}}{w-z}=e^{z} \tag{3}
\end{equation*}
$$

Suppose $z, w \in \mathbb{C}$ and $0<|w-z|<1$. Then

$$
e^{w-z}=1+(w-z)+(w-z)^{2} \sum_{n=2}^{\infty} \frac{(w-z)^{n-2}}{n!}
$$

so

$$
\begin{aligned}
\left|\frac{e^{w-z}-1}{w-z}-1\right| & =|w-z|\left|\sum_{n=2}^{\infty} \frac{(w-z)^{n-2}}{n!}\right| \leq|w-z| \sum_{n=2}^{\infty}|w-z|^{n-2} \\
& =|w-z| \frac{1}{1-|w-z|}
\end{aligned}
$$

Since

$$
\frac{e^{w}-e^{z}}{w-z}-e^{z}=e^{z}\left(\frac{e^{w-z}-1}{w-z}-1\right)
$$

(3) holds.

