1. SUMMATION.

Let X be a set.

1.1. Finite summation. The stuff in this subsection is now in binary.tex Suppose Y is a set and

$$\cdot + \cdot : Y \times Y \to Y$$

is such that

- (i) x + (y + z) = (x + y) + z whenever $x, y, z \in Y$;
- (ii) x + y = y + x whenever $x, y \in Y$;
- (iii) there is $0 \in Y$ such that y + 0 = y = 0 + y whenever $y \in Y$.

For example, Y could be an Abelian group or Y could be $[0,\infty]$ where + on $[0,\infty) \times [0,\infty)$ is addition in the Abelian group \mathbb{R} and where

$$y + \infty = \infty = \infty + y$$
 whenever $y \in [0, \infty]$.

Definition 1.1. For $f, g \in Y^X$ we define $f + g \in Y^X$ by letting

$$(f+g)(x) = f(x) + g(x)$$
 for $x \in X$

and we note that appropriately reformulated versions of (i),(ii) and (iii) hold. We let

$$0: X \to Y$$

be such that 0(x) = 0 for $x \in X$.

Definition 1.2. For $f \in Y^X$ we let

$$\operatorname{spt} f = \{ x \in X : f(x) \neq 0 \}$$

and call this subset of X the **support of** f. We let

$$(Y^X)_0 = \{f \in Y^X : \mathbf{spt} \ f \text{ is finite}\}$$

and note that $(Y^X)_0$ is closed under addition.

Definition 1.3. Whenever $A \subset X$ and $f \in Y^X$ we let

$$f_A \in Y^X$$

be such that

$$f_A(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \in X \sim A. \end{cases}$$

Proposition 1.1. Suppose F is a finite subset of X. There is one and only one function

$$S_F: Y^X \to Y$$

such that

(i) $S_F(0) = 0;$ (ii) $S_F(f) = S(f_{X \sim \{a\}}) + f(a)$ whenever $f \in Y^X$ and $a \in A;$ (iii) $S_F(f+g) = S_F(f) + S_F(g)$ whenever $f, g \in Y^X.$ *Proof.* We define S_F by induction on |F| as follows. We let $S_{\emptyset}(0) = 0$. If |F| > 0we let

$$S_F = \{ (f, S_{F \sim \{a\}}(f_{X \sim \{a\}}) + f(a)) : f \in \mathcal{F}_F \text{ and } a \in F \}.$$

It is obvious that S_F is a function if |F| = 1. To verify that S_F is a function in case |F| > 1 we suppose $f \in \mathcal{F}_F$, $a, b \in F$ and $a \neq b$ and we calculate

$$S_{F\sim\{a\}}(f_{X\sim\{a\}}) + f(a) = (S_{F\sim\{a,b\}}(f_{X\sim\{a,b\}}) + f(b)) + f(a)$$

= $S_{F\sim\{a,b\}}(f_{X\sim\{a,b\}}) + (f(b) + f(a))$
= $S_{F\sim\{a,b\}}(f_{X\sim\{a,b\}}) + (f(a) + f(b))$
= $(S_{F\sim\{a,b\}}(f_{X\sim\{a,b\}} + f(a)) + f(b)$
= $S_{F\sim\{b\}}(f_{X\sim\{b\}}) + f(b).$

We leave to the reader the straightforward verification using induction on |F|that S_F satisfies (i)-(iii).

1.2. Summing a function with values in $[0,\infty]$. For each subset A of X let $1_A \in [0,\infty]^X$ be such that

$$1_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \in X \sim A; \end{cases}$$

one calls 1_A the indicator function of A.

Note that

$$p_A = 1_A p$$
 whenever $p \in [0, \infty]^X$.

Definition 1.4. For $p \in [0,\infty]^X$ we let

$$\sum p = \sup\{S_F(p) : F \subset X \text{ and } F \text{ is finite}\}.$$

Theorem 1.1. We have

- (i) $\sum 0 = 0;$ (ii) $\sum 1_{\{a\}} = 1$ whenever $a \in X;$ (iii) $\sum cp = c \sum p$ whenever $0 \le c \le \infty$ and $p \in [0, \infty]^X;$ (iv) $\sum (p+q) = \sum p + \sum q$ whenever $p, q \in [0, \infty]^X;$ (v) $\sum p \le \sum q$ whenever $p, q \in [0, \infty]^X$ and $p \le q.$

Proof. (i) and (ii) are immediate. Let \mathcal{F} be the family of finite subsets of X. In what follows we leave it to the reader to supply the simple proofs of the properties of $S_F, F \in \mathcal{F}$ that we shall use.

Suppose $p, q \in [0, \infty]^X$ and $0 \le c \le \infty$. Then

$$\sum cp = \sup_{F \in \mathcal{F}} S_F(cp) = \sup_{F \in \mathcal{F}} cS_F(p) = c \sup_{F \in \mathcal{F}} S_F(p) = c \sum p$$

so (ii) holds.

For any $F \in \mathcal{F}$ we have

$$S_F(p+q) = S_F(p) + S_F(q) \le \sum p + \sum q$$

which implies that $\sum (p+q) \leq \sum p + \sum q$. Moreover, if $F, G \in \mathcal{F}$ we have

$$S_F(p) + S_G(q) \le S_{F \cup G}(p) + S_{F \cup G}(q) \le S_{F \cup G}(p+q) \le \sum (p+q)$$

Thus (iv) holds.

Suppose $p \leq q$. For any $F \in \mathcal{F}$ we have

$$S_F(p) \le S_F(q) = \sum q$$

so (v) holds.

Suppose $p \in [0,\infty]^X$. We will sometimes write

$$\sum_{A} p$$
 or $\sum_{x \in A} p(x)$ instead of $\sum p_A$.

Corollary 1.1. Suppose $p, q \in [0, \infty]^X$, $p \leq q$ and $A \subset B \subset X$. Then

$$\sum_{A} p \le \sum_{B} q.$$

Proof. Note that $p_A \leq q_B$.

Example 1.1. Suppose $0 \le r < 1$. We define $p : \mathbb{N} \to [0, 1)$ by letting

$$p(n) = r^n \quad \text{for } n \in \mathbb{N}.$$

Then

(1)

$$\sum_{n=0}^{\infty} r^n = \sum p$$

$$= \sup\{S_F(p) : F \text{ is a finite subset of } \mathbb{N}\}$$

$$= \sup\{\sum_{n=0}^{N} r^n : N \in \mathbb{N}\}$$

$$= \sup\left\{\frac{1 - r^{N+1}}{1 - r} : N \in \mathbb{N}\right\}$$

$$= \frac{1}{1 - r}.$$

Proposition 1.2. Suppose \mathcal{A} is a partition of X and $p \in [0, \infty]^X$. Then

$$\sum p = \sum_{A \in \mathcal{A}} \sum_{A} p.$$

Proof. One proves by induction on $|\mathcal{A}|$ using (iv) of the preceding Theorem that the Proposition holds when \mathcal{A} is finite.

Suppose \mathcal{F} is a finite subfamily of \mathcal{A} . Then

$$\sum_{A \in \mathcal{F}} \sum_{A} p = \sum_{A \in \mathcal{F}} \sum_{P_A} p_A = \sum_{A \in \mathcal{F}} p_A = \sum_{P \cup \mathcal{F}} p_{\cup \mathcal{F}} \leq \sum_{P_A} p_A$$

Thus

$$\sum_{A \in \mathcal{A}} \sum_{A} p \le \sum p.$$

Suppose F is a finite subset of X. Let $\mathcal{F} = \{A \in \mathcal{A} : F \cap A \neq \emptyset\}$. Then

$$\sum p_F = \sum \sum_{A \in \mathcal{F}} p_{F \cap A} = \sum_{A \in \mathcal{F}} \sum p_{F \cap A} \le \sum_{A \in \mathcal{F}} \sum_A p \le \sum_{A \in \mathcal{A}} \sum_A p$$
$$\sum p \le \sum_{A \in \mathcal{A}} \sum_A p.$$

Thus

$$p \leq \sum_{A \in \mathcal{A}} \sum_{A} p.$$

3

Definition 1.5. Suppose B is a set and $p: B \to [0,\infty]^X$. (Some would say $p_b, b \in B$, is an indexed family of $[0, \infty]$ valued functions with domain X.) We let

$$\sum_{b \in B} p_b = \left(X \ni x \mapsto \sum_{b \in B} p_b(x) \in [0, \infty] \right) \in [0, \infty]^X.$$

Proposition 1.3. Suppose $p_b, b \in B$ is an indexed family of $[0, \infty]$ valued functions with a common domain X and $A \subset X$. Then

$$\sum_{A} \sum_{b \in B} p_b = \sum_{b \in B} \sum_{A} p_b.$$

Proof. Let $P(b,x) = p_b(x)$ for $(b,x) \in B \times X$. Apply the previous Proposition twice to P with A there equal $\{\{b\} \times X : b \in B\}$ and $\{B \times \{x\} : x \in X\}$.

Proposition 1.4. Suppose $p \in [0,\infty]^X$ and $\sum p < \infty$. For each $\epsilon > 0$ there is a finite subset F of X such that

$$\sum_{X \sim A} p < \epsilon \quad \text{whenever } F \subset A \subset X.$$

Proof. Suppose $\epsilon > 0$. Let F be a finite subset of X such that

$$\sum p < \sum_F p + \epsilon.$$

Since $p = p_F + p_{X \sim F}$ we have

4

$$\sum_{F} p + \sum_{X \sim F} p = \sum p_F + \sum p_{X \sim F} = \sum p < \sum_{F} p + \epsilon.$$

If $F \subset A \subset X$ we have $p_{X \sim A} \leq p_{X \sim F}$ so

$$\sum_{X \sim A} p \le \sum_{X \sim F} p < \epsilon.$$

Proposition 1.5. Suppose $p \in [0, \infty]^X$ and

$$\sum p < \infty.$$

Then $\operatorname{spt} p$ is countable.

Proof. Suppose n is positive integer and $A_n = \{x \in X : p(x) \ge 1/n\}$. Then $1_{A_n} \leq np$ which implies $|A_n| = \sum 1_{A_n} \leq \sum np = n \sum p < \infty$ so A_n is finite. Thus $\operatorname{spt} p = \bigcup_{n=1}^{\infty} A_n$ is countable.

1.3. Vector valued summation. We now assume that V is a Banach space which, by definition, means that V is a complete normed linear space and, under this assumption, extend the notion of summation when the support of f is *infinite*.

Definition 1.6. Suppose $f \in V^X$ and $A \subset X$. We say f is summable over A if $\sum_A |f| < \infty.$

We say f is summable if f is summable over X.

If $A \subset X$ and $f \in V^X$ is summable then, as $|f_A| \leq |f|$ we find that f is summable over A.

Evidently,

$$\{f \in V^X : f \text{ if summable}\}\$$
 is a linear subspace of V^X .

Theorem 1.2. There is one and only one linear function

$$\sum : \{f \in V^X : f \text{ is summable}\} \to V$$

such that

$$\sum f_F = S_F(f)$$
 if $f \in V^X$ and F is a finite subset of X

and

$$\sum f \Big| \leq \sum |f|$$
 whenever $f \in V^X$ and f is summable.

Proof. Let $\rho(f) = \sum |f|$ for $f \in V^X$. Then

$$\rho(cf) = |c|\rho(f) \text{ whenever } c \in \mathbf{R} \text{ and } f \in V^X$$

and

$$\rho(f+g) \le \rho(f) + \rho(g) \quad \text{whenever } f, g \in V^X.$$

By induction on $|\mathbf{spt} f|$ one shows that

 $|S_F(f)| \leq S_F(|f|) \leq \rho(f)$ whenever $f \in V^X$ and F is a finite subset of F. The Theorem now follows by applying the Abstract Closure Principle to

$$(V^X)_0 \ni f \mapsto S_{\operatorname{spt} f}(f).$$

Remark 1.1. An alternative approach to defining $\sum f$ when f is summable is as follows. For each positive integer ν let $F_{\nu} = \{x \in X : |f(x)| \ge 1/\nu\}$, note that F_{ν} is finite and set $y_{\nu} = \sum_{x \in F_{\nu}} f(x)$. Given $\epsilon > 0$ there is a positive integer N such that $\sum_{X \sim F_N} |f| < \epsilon$. Thus if μ, ν are positive integers and $\mu, \nu \ge N$ we have

$$|y_{\mu} - y_{\nu}| \le \sum_{x \in X \sim F_N} |f(x)| < \epsilon$$

where we have used that fact that $F_N \subset F_\mu \cap F_\nu$. Thus y is a Cauchy sequence whose limit is $\sum f$.

Definition 1.7. Whenever $f \in V^X$, A is a subset of X and f_A is summable we let

$$\sum_{A} f = \sum f_A$$

Remark 1.2. Note that if f is summable and $\epsilon > 0$ there is a finite subset F of X such that .

$$\left|\sum f - \sum_{A} f\right| < \epsilon \quad \text{whenever } F \subset A \subset X.$$

Theorem 1.3. Suppose $f \in V^X$, f is summable and \mathcal{A} is a partition of X. Then

$$\begin{array}{ll} \text{(i)} & \sum_{A} |f| < \infty \text{ for each } A \in \mathcal{A};\\ \text{(ii)} & \sum_{A \in \mathcal{A}} |\sum_{A} f| < \infty; \end{array} \end{array}$$

and

(1)
$$\sum_{\cup \mathcal{A}} f = \sum_{A \in \mathcal{A}} \sum_{A} f.$$

Proof. We have

$$\sum_{A \in \mathcal{A}} \sum_{A} |f| = \sum |f| < \infty$$

so (i) holds. We have

$$\sum_{A \in \mathcal{A}} \left| \sum_{A} f \right| \le \sum_{A \in \mathcal{A}} \sum_{A} |f| = \sum_{A \in \mathcal{A}} |f| < \infty$$

and (ii) holds.

Suppose $\epsilon > 0$. Let F be a subset of $\cup \mathcal{A}$ such that

$$\sum_{(\cup\mathcal{A})\sim F} |f| < \frac{\epsilon}{2}.$$

Let $\mathcal{F} = \{A \in \mathcal{A} : A \cap F \neq \emptyset\}$; note that \mathcal{F} is finite, $F \subset \cup \mathcal{F}$ and

$$\sum_{(\mathcal{A})\sim(\cup\mathcal{F})} |f| \leq \sum_{(\mathcal{A})\sim F} |f| < \frac{\epsilon}{2}.$$

Using the fact that $\sum \left(\sum_{i=1}^{m} g_i\right) = \sum_{i=1}^{m} \sum g_i$ whenever g_1, \ldots, g_m are summable we find that

$$\sum_{\sup \mathcal{F}} = \sum f_{\cup \mathcal{F}} = \sum \left(\sum_{A \in \mathcal{F}} f_A\right) = \sum_{A \in \mathcal{F}} \left(\sum f_A\right) = \sum_{A \in \mathcal{F}} \sum_A f_A$$

Thus

$$\begin{split} \left| \sum_{\cup\mathcal{A}} f - \sum_{A \in \mathcal{A}} \sum_{A} f \right| &\leq \left| \sum_{\cup\mathcal{A}} f - \sum_{\cup\mathcal{F}} f \right| + \left| \sum_{A \in \mathcal{A}} \sum_{A} f - \sum_{A \in \mathcal{F}} \sum_{A} f \right| \\ &= \left| \sum_{(\cup\mathcal{A}) \sim (\cup\mathcal{F})} f \right| + \left| \sum_{A \in \mathcal{A} \sim \mathcal{F}} \sum_{A} f \right| \\ &\leq \sum_{(\cup\mathcal{A}) \sim (\cup\mathcal{F})} |f| + \sum_{A \in \mathcal{A} \sim \mathcal{F}} \sum_{A} |f| \\ &= 2 \sum_{(\cup\mathcal{A}) \sim (\cup\mathcal{F})} |f|; \\ &< \epsilon. \end{split}$$

here we have used again that summation is finitely additive and the version of the current Theorem in the case of nonnegative functions. $\hfill\square$

1.4. The complex exponential function. Whenever $0 < r < \infty$ we let

$$M(r) = \sup\left\{\frac{r^n}{n!} : n \in \mathbb{N}\right\}.$$

Suppose $0 < r < \infty$. Let N(r) be that integer such that $N(r) \le r < N(r) + 1$. Whenever $n \in \mathbb{N}$ and n > N(r) we have

$$\frac{r^n}{n!} = \left(\prod_{m=N(r)+1}^n \frac{r}{m}\right) \frac{r^{N(r)}}{N(r)!} < \frac{r^{N(r)}}{N(r)!}$$

from which it follows that

$$M(r) \le \frac{r^{N(r)}}{N(r)!} < \infty$$

Suppose $z \in \mathbb{C}$. Let r be such that $|z| < r < \infty$. Then

$$\left|\frac{z^n}{n!}\right| = \frac{|z|^n}{n!} = \frac{r^n}{n!} \left(\frac{|z|}{r}\right)^n \le M(r) \left(\frac{|z|}{r}\right)^n$$

so, by Example (1),

$$\sum_{n=0}^{\infty} \left| \frac{z^n}{n!} \right| \le M(r) \sum_{n=0}^{\infty} \left(\frac{|z|}{r} \right)^n = M(r) \frac{1}{1 - \frac{|z|}{r}} < \infty.$$

Thus we may define

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

(One also writes $\exp(z)$ for e^z .) I claim that

$$e^{z+w} = e^z e^w$$
 for $z, w \in \mathbb{C}$.

We prove this as follows. Fix $z, w \in \mathbb{C}$. Let

$$T = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m \le n\}$$

and let

$$f(m,n) = \frac{z^m}{m!} \frac{w^{n-m}}{(n-m)!} \quad \text{for } (m,n) \in T.$$

For each $n \in \mathbb{N}$ let $A_n = \{m \in \mathbb{N} : m \leq n\}$ and for each $m \in \mathbb{N}$ let $B_m = \{n \in \mathbb{N} : m \leq n\}$. Note that

 $\{A_n : n \in \mathbb{N}\}$ and $\{B_m : m \in \mathbb{N}\}$ are partitions of T.

We have

$$\sum_{(m,n)\in T} |f(m,n)| = \sum_{n=0}^{\infty} \sum_{m\in A_n} |f(m,n)|$$

so that, using more traditional notation,

$$\sum_{(m,n)\in T} \frac{|z|^m}{m!} \frac{|w|^{n-m}}{(n-m)!} = \sum_{n=0}^{\infty} \sum_{m=0}^n \frac{|z|^m}{m!} \frac{|w|^{n-m}}{(n-m)!}$$
$$= \sum_{n=0}^{\infty} \frac{(|z|+|w|)^n}{n!}$$
$$= e^{|z|+|w|}$$
$$< \infty.$$

Applying the previous theorem twice we infer that

$$\sum_{n=0}^{\infty} \sum_{m \in A_n} f(m,n) = \sum_{(m,n) \in T} f(m,n) = \sum_{m=0}^{\infty} \sum_{n \in B_m} f(m,n)$$

so that

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{z^m}{m!} \frac{w^{n-m}}{(n-m)!} = \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \frac{z^m}{m!} \frac{w^{n-m}}{(n-m)!}$$

Thus

$$e^{z+w} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \sum_{m=0}^n \frac{z^m}{m!} \frac{w^{n-m}}{(n-m)!}$$
$$= \sum_{m=0}^{\infty} \sum_{n=m}^\infty \frac{z^m}{m!} \frac{w^{n-m}}{(n-m)!}$$
$$= \sum_{m=0}^\infty \frac{z^m}{m!} e^w$$
$$= e^z e^w.$$

Finally, let us show that

(3)
$$\lim_{w \to z} \frac{e^w - e^z}{w - z} = e^z.$$

Suppose $z, w \in \mathbb{C}$ and 0 < |w - z| < 1. Then

$$e^{w-z} = 1 + (w-z) + (w-z)^2 \sum_{n=2}^{\infty} \frac{(w-z)^{n-2}}{n!}$$

 \mathbf{SO}

$$\begin{aligned} \left| \frac{e^{w-z} - 1}{w-z} - 1 \right| &= |w-z| \left| \sum_{n=2}^{\infty} \frac{(w-z)^{n-2}}{n!} \right| \le |w-z| \sum_{n=2}^{\infty} |w-z|^{n-2} \\ &= |w-z| \frac{1}{1-|w-z|}. \end{aligned}$$

Since

$$\frac{e^{w} - e^{z}}{w - z} - e^{z} = e^{z} \left(\frac{e^{w - z} - 1}{w - z} - 1\right)$$

(3) holds.