Stokes' Theorem.

Let n be a positive integer, let V be an open subset of \mathbb{R}^n and let m be an integer such that $1 \le m \le n$.

Stokes' Theorem will follow rather directly from the definition of the integral of a differential form over a submanifold and the following Proposition. **Proposition.** Suppose $\psi \in \mathcal{A}_0^{m-1}(\mathbf{U}^m)$. Then

(1)
$$\int_{\mathbf{U}^m} d\psi(t)(\mathbf{e}_1,\ldots,\mathbf{e}_m) \, dt \,=\, 0$$

and

(2)
$$\int_{\mathbf{U}^{m,m,+}} d\psi(t)(\mathbf{e}_1,\ldots,\mathbf{e}_m) \, dt = (-1)^m \int_{\mathbf{U}^{m-1}} \mathbf{i}_{m-1,m}^{\#} \psi(s)(\mathbf{e}_1,\ldots,\mathbf{e}_{m-1}) \, ds.$$

Proof. For each $j = 1, \ldots, m$ set $f_j = \mathbf{e}^j \wedge \omega$. We have

$$d\psi = \sum_{j=1}^{m} \mathbf{e}^{j} \wedge \partial_{j}\psi = \sum_{j=1}^{m} \partial_{j}f_{j}.$$

From Fubini's Theorem and the Fundamental Theorem of Calculus we conclude that (1) holds and that

$$\int_{\mathbf{U}^{m-1,m,+}} d\psi(t)(\mathbf{e}_1,\ldots,\mathbf{e}_m) \, dt = -\int_{\mathbf{U}^{m-1,m,+}} f_m(t) \, dt = -\int_{\mathbf{U}^{m-1}} f_m \circ \mathbf{i}_{m-1,m}(s) \, ds.$$

For any $t \in \mathbf{U}^m$ we have

$$-f_m(t) = (-1)^m \left(\mathbf{e}^m \wedge \psi(t) \right) \sqcup \mathbf{e}_m(\mathbf{e}_1, \dots, \mathbf{e}_{m-1}) = (-1)^m \psi(t)(\mathbf{e}_1, \dots, \mathbf{e}_{m-1});$$

moreover, for any $s \in \mathbf{U}^{m-1}$ we have that

$$(-1)^{m} \mathbf{i}_{m-1,m}^{\#} \psi(s)(\mathbf{e}_{1},\ldots,\mathbf{e}_{m-1}) = \psi(\mathbf{i}_{m-1,m}(s))(\mathbf{e}_{1},\ldots,\mathbf{e}_{m-1})$$

so (2) holds. \Box

Stokes' Theorem. Suppose $M \in \mathbf{M}_{m,n}$ and \mathbf{s} is an orientation for M and $\partial \mathbf{s}$ orients ∂M . Then

$$\int_{M} \omega = \int_{\partial M} d\omega \quad \text{whenever } \omega \in \mathcal{A}_{0}^{m-1}(V).$$

Proof. Let \mathcal{A} be an admissible subfamily of $\mathcal{Q}(M, V)$. We have

$$d\omega = d\Big(\sum_{(U,\phi,\chi)\in\mathcal{A}}\chi\Big)\omega = d\sum_{(U,\phi,\chi)\in\mathcal{A}}\chi\omega = \sum_{(U,\phi,\chi)\in\mathcal{A}}d(\chi\omega)$$

 \mathbf{SO}

$$\int_{M} d\omega = \sum_{(U,\phi,\chi)\in\mathcal{A}} \int_{M} d(\chi\omega)$$
$$= \sum_{(U,\phi,\chi)\in\mathcal{A}} \mathbf{s}_{\mathbf{o}}(U,\phi) \int_{\phi^{-1}[M]} \phi^{\#} d(\chi\omega)(t)(\mathbf{e}_{1},\dots,\mathbf{e}_{m}) dt$$
$$= \sum_{(U,\phi,\chi)\in\mathcal{A}} \mathbf{s}_{\mathbf{o}}(U,\phi) \int_{\phi^{-1}[M]} d(\phi^{\#}(\chi\omega))(t)(\mathbf{e}_{1},\dots,\mathbf{e}_{m}) dt$$

We have

$$\omega = \Big(\sum_{(U,\phi,\chi)\in\mathcal{A}}\chi\Big)\omega = \sum_{(U,\phi,\chi)\in\mathcal{A}}\chi\omega;$$

keeping in mind that $(U, \phi \circ \mathbf{i}_{m-1,m}) \in \mathcal{P}(\partial M, V)$ whenever $(U, \phi) \in \mathcal{P}(M, V)$ we find that

$$\int_{\partial M} \omega = \sum_{(U,\phi,\chi)\in\mathcal{A}} \int_{\partial M} \chi \omega$$
$$= \sum_{(U,\phi,\chi)\in\mathcal{A}} \mathbf{s}_{\partial \mathbf{o}}(U,\phi\circ\mathbf{i}_{m-1,m}) \int_{\phi^{-1}[\partial M]} (\phi\circ\mathbf{i}_{m-1,m})^{\#}(\chi\omega)(t)(\mathbf{e}_{1},\ldots,\mathbf{e}_{m-1}) dt$$
$$= \sum_{(U,\phi,\chi)\in\mathcal{A}} (-1)^{m} \mathbf{s}_{\mathbf{o}}(U,\phi) \int_{\phi^{-1}[\partial M]} \mathbf{i}_{m-1,m}^{\#} (\phi^{\#}(\chi\omega))(t)(\mathbf{e}_{1},\ldots,\mathbf{e}_{m-1}) dt.$$

Suppose $(U, \phi, \chi) \in \mathcal{Q}(M, V)$. Then exactly one of the following holds:

$$\phi^{-1}[M] = \mathbf{U}^m \quad \text{and} \quad \phi^{-1}[\partial M] = \emptyset;$$

$$\phi^{-1}[M] = \mathbf{U}^{m,m,+} \quad \text{and} \quad \phi^{-1}[\partial M] = \mathbf{U}^{m-1,m};$$

$$\phi^{-1}[M] = \emptyset \quad \text{and} \quad \phi^{-1}[\partial M] = \emptyset.$$

Applying the previous Proposition with ψ there equal $\phi^{\#}(\chi\omega)$ we find that

$$\int_{\phi^{-1}[M]} d(\phi^{\#}(\chi\omega))(t)(\mathbf{e}_{1},\ldots,\mathbf{e}_{m}) dt = (-1)^{m} \int_{\phi^{-1}[\partial M]} \mathbf{i}_{m-1,m}^{\#}(\phi^{\#}(\chi\omega))(t)(\mathbf{e}_{1},\ldots,\mathbf{e}_{m-1}) dt.$$