## Stokes' Theorem.

Let $n$ be a positive integer, let $V$ be an open subset of $\mathbf{R}^{n}$ and let $m$ be an integer such that $1 \leq m \leq n$.

Stokes' Theorem will follow rather directly from the definition of the integral of a differential form over a submanifold and the following Proposition.
Proposition. Suppose $\psi \in \mathcal{A}_{0}^{m-1}\left(\mathbf{U}^{m}\right)$. Then

$$
\begin{equation*}
\int_{\mathbf{U}^{m}} d \psi(t)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right) d t=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{U}^{m, m,+}} d \psi(t)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right) d t=(-1)^{m} \int_{\mathbf{U}^{m-1}} \mathbf{i}_{m-1, m} \# \psi(s)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right) d s \tag{2}
\end{equation*}
$$

Proof. For each $j=1, \ldots, m$ set $f_{j}=\mathbf{e}^{j} \wedge \omega$. We have

$$
d \psi=\sum_{j=1}^{m} \mathbf{e}^{j} \wedge \partial_{j} \psi=\sum_{j=1}^{m} \partial_{j} f_{j}
$$

From Fubini's Theorem and the Fundamental Theorem of Calculus we conclude that (1) holds and that

$$
\int_{\mathbf{U}^{m-1, m,+}} d \psi(t)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right) d t=-\int_{\mathbf{U}^{m-1, m,+}} f_{m}(t) d t=-\int_{\mathbf{U}^{m-1}} f_{m} \circ \mathbf{i}_{m-1, m}(s) d s
$$

For any $t \in \mathbf{U}^{m}$ we have

$$
-f_{m}(t)=(-1)^{m}\left(\mathbf{e}^{m} \wedge \psi(t)\right)\left\llcorner\mathbf{e}_{m}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)=(-1)^{m} \psi(t)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)\right.
$$

moreover, for any $s \in \mathbf{U}^{m-1}$ we have that

$$
(-1)^{m} \mathbf{i}_{m-1, m}^{\#} \psi(s)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)=\psi\left(\mathbf{i}_{m-1, m}(s)\right)\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1}\right)
$$

so (2) holds.

Stokes' Theorem. Suppose $M \in \mathbf{M}_{m, n}$ and $\mathbf{s}$ is an orientation for $M$ and $\partial \mathbf{s}$ orients $\partial M$. Then

$$
\int_{M} \omega=\int_{\partial M} d \omega \quad \text { whenever } \omega \in \mathcal{A}_{0}^{m-1}(V)
$$

Proof. Let $\mathcal{A}$ be an admissible subfamily of $\mathcal{Q}(M, V)$. We have

$$
d \omega=d\left(\sum_{(U, \phi, \chi) \in \mathcal{A}} \chi\right) \omega=d \sum_{(U, \phi, \chi) \in \mathcal{A}} \chi \omega=\sum_{(U, \phi, \chi) \in \mathcal{A}} d(\chi \omega)
$$

so

$$
\begin{aligned}
\int_{M} d \omega & =\sum_{(U, \phi, \chi) \in \mathcal{A}} \int_{M} d(\chi \omega) \\
& =\sum_{(U, \phi, \chi) \in \mathcal{A}} \mathbf{s}_{\mathbf{o}}(U, \phi) \int_{\phi^{-1}[M]} \phi^{\#} d(\chi \omega)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m}\right) d t \\
& =\sum_{(U, \phi, \chi) \in \mathcal{A}} \mathbf{s}_{\mathbf{o}}(U, \phi) \int_{\phi^{-1}[M]} d\left(\phi^{\#}(\chi \omega)\right)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m}\right) d t .
\end{aligned}
$$

We have

$$
\omega=\left(\sum_{(U, \phi, \chi) \in \mathcal{A}} \chi\right) \omega=\sum_{(U, \phi, \chi) \in \mathcal{A}} \chi \omega ;
$$

keeping in mind that $\left(U, \phi \circ \mathbf{i}_{m-1, m}\right) \in \mathcal{P}(\partial M, V)$ whenever $(U, \phi) \in \mathcal{P}(M, V)$ we find that

$$
\begin{aligned}
\int_{\partial M} \omega & =\sum_{(U, \phi, \chi) \in \mathcal{A}} \int_{\partial M} \chi \omega \\
& =\sum_{(U, \phi, \chi) \in \mathcal{A}} \mathbf{s}_{\partial \mathbf{o}}\left(U, \phi \circ \mathbf{i}_{m-1, m}\right) \int_{\phi^{-1}[\partial M]}\left(\phi \circ \mathbf{i}_{m-1, m}\right)^{\#}(\chi \omega)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m-1}\right) d t \\
& =\sum_{(U, \phi, \chi) \in \mathcal{A}}(-1)^{m} \mathbf{s}_{\mathbf{o}}(U, \phi) \int_{\phi^{-1}[\partial M]} \mathbf{i}_{m-1, m}{ }^{\#}\left(\phi^{\#}(\chi \omega)\right)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m-1}\right) d t .
\end{aligned}
$$

Suppose $(U, \phi, \chi) \in \mathcal{Q}(M, V)$. Then exactly one of the following holds:

$$
\begin{array}{rll}
\phi^{-1}[M]=\mathbf{U}^{m} & \text { and } & \phi^{-1}[\partial M]=\emptyset \\
\phi^{-1}[M]=\mathbf{U}^{m, m,+} & \text { and } & \phi^{-1}[\partial M]=\mathbf{U}^{m-1, m} \\
\phi^{-1}[M]=\emptyset & \text { and } & \phi^{-1}[\partial M]=\emptyset
\end{array}
$$

Applying the previous Proposition with $\psi$ there equal $\phi^{\#}(\chi \omega)$ we find that

$$
\int_{\phi^{-1}[M]} d\left(\phi^{\#}(\chi \omega)\right)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m}\right) d t=(-1)^{m} \int_{\phi^{-1}[\partial M]} \mathbf{i}_{m-1, m}^{\#}\left(\phi^{\#}(\chi \omega)\right)(t)\left(\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{m-1}\right) d t
$$

