The solid angle form.

Here is an extremely useful formula which follows directly from the definition of exterior multiplication:

$$
<\omega, v>\psi=\omega \wedge\left(\psi\llcorner v)+(\omega \wedge \psi)\left\llcorner v, \quad \omega \in V^{*}, v \in V, \psi \in \bigwedge^{p} V\right.\right.
$$

Suppose $p \in \mathbf{R}$. We define

$$
\Omega_{p} \in \mathcal{A}^{n-1}\left(\mathbf{R}^{n} \sim\{0\}\right)
$$

be setting

$$
\Omega_{p}(x)=|x|^{p}\left(\mathbf{e}^{1} \wedge \cdots \wedge \mathbf{e}^{n}\right)\left\llcorner x, \quad x \in \mathbf{R}^{n} \sim\{0\}\right.
$$

Exercise. Calculate $d \Omega_{p}$. If you do it correctly you will find that $d \Omega_{p}=0$ if and only if $p=-n$. One calls Ω_{-n} the solid angle form (on \mathbf{R}^{n}).

Exercise. Show that

$$
\int_{\mathbf{S}^{n-1}} \Omega_{-n}
$$

equals the $n-1$-area of \mathbf{S}^{n-1}.

