1. The integers and the rational numbers.

1.1. The integers. Let

$$
\mathcal{Z}=\{((m, n),(p, q)) \in(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N}): m+q=p+n\}
$$

It is a simple matter to verify that \mathcal{Z} is an equivalence relation on $\mathbb{N} \times \mathbb{N}$. Let

$$
\mathbb{Z}=(\mathbb{N} \times \mathbb{N}) / \mathcal{Z}
$$

and call its members integers. Let

$$
m-n=(m, n) / \mathcal{Z} \quad \text { for }(m, n) \in \mathcal{N} \times \mathcal{N} .
$$

One easily verifies that

$$
\mathbb{N} \ni n \mapsto(n-0) / \mathcal{Z}
$$

is univalent. In what follows we will not distinguish between a member of \mathbb{N} and its image under this mapping.

One verifies that there is a unique unary operation - on \mathbb{Z} such that

$$
-(m-n)=n-m
$$

and that there are unique binary operation + and $*$ on \mathbb{Z} such that
$(m-n)+(p-q)=(m+p)-(n+q) \quad$ and $\quad(m-n) *(p-q)=(m * p+n * q)-(m * q+n * p)$ for $(m, n),(p, q) \in \mathbb{N} \times \mathbb{N}$; on the right hand side of these equations + and $*$ are the operations on \mathbb{N}.

One easily verifies that $(\mathbb{Z},+, 0,-)$ is an Abelian group and that $(\mathbb{Z},+, 0, *)$ is an integral domain in which 1 is the neutral element with respect to $*$.

1.2. The rational numbers. Let

$$
\mathcal{Q}=\{((m, n),(p, q)) \in(\mathbb{Z} \times(\mathbb{Z} \sim\{0\})) \times(\mathbb{Z} \times(\mathbb{Z} \sim\{0\})): m q=n p\} .
$$

It is a simple matter to verify that \mathcal{Q} is an equivalence relation on $\mathbb{Z} \times(\mathbb{Z} \sim\{0\})$. Let

$$
\mathbb{Q}=(\mathbb{Z} \times(\mathbb{Z} \sim\{0\})) / \mathcal{Q}
$$

and call its members rational numbers. Let

$$
\frac{m}{n}=(m, n) / \mathcal{Q} \quad \text { for }(m, n) \in \mathcal{Z} \times(\mathcal{Z} \sim\{0\}) .
$$

One easily verifies that

$$
\mathbb{Z} \ni n \mapsto\left(\frac{n}{1}\right) / \mathcal{Q}
$$

is univalent. In what follows we will not distinguish between a member of \mathbb{Z} and its image under this mapping.

One verifies that there is a unique unary operation - on \mathbb{Z} such that

$$
-\frac{m}{n}=\frac{-m}{n} \quad \text { for }(m, n) \in \mathbb{Z} \times(\mathbb{Z} \sim\{0\})
$$

and that there are unique binary operation + and $*$ on \mathbb{Z} such that

$$
\frac{m}{n}+\frac{p}{q}=\frac{m q+n p}{n q} \quad \text { and } \quad \frac{m}{n} * \frac{p}{q}=\frac{m * p}{n * q}
$$

for $(m, n),(p, q) \in \mathbb{N} \times \mathbb{N}$; on the right hand side of these equations,-+ and $*$ are the operations on \mathbb{Z}.

One easily verifies that and that $(\mathbb{Q},+, 0, *, 1)$ is an field.
Note that if one replaces \mathbb{Z} by any integral domain D this construction results in a field which is called the field of quotients of D.

