1. POWER SERIES.

Definition 1.1. Suppose ¢ is a sequence in C. (¢ will be a coefficient sequence.)
We set
M (e, r) = sup{|e,|r™ : n € N} whenever 0 < r < 0o
and we let
R(c) = sup{r € [0,00) : M(c,7) < o0}
Note that M(c,r) and R(c) could equal co. We call R(c) the radius of conver-
gence of ¢ for reasons which will shortly become apparent.

We repeatedly use the following estimate:

e — N

3 \anzfzo\"SM(c,r)(p ZO') -

(1) n=N r T‘—|Z—Zo|
whenever |z — zp| < r < R(c) and N € N.

Indeed, if S is the left hand side of (1) we have

o n
S = ‘C |rn(‘z_zo|>
= E n
n=N T

oo

<M(er) ), (g)n
n=N
o AN r
:M(C7T)(| r O|) 7"—|Z_ZO‘.

Proposition 1.1. Suppose c is a sequence in C and zg € C. Then for any z € C
we have

|z — 20| < R(c) = Z len (2 — 20)"| < o0

n=0

Z len(z — 20)"| < 00 = |z — z0] < R(c);

n=0
and
oo
|z — 20| > R(c) = limsup |c,(z —20)"| =00 = Z len(z — 20)"| = o0.
neo n=0

Proof. The first and second inferences follow directly from (1) and the third follows
directly from the definition of M (c, |z — 2o]). O

Definition 1.2. Suppose A C C and
f:A—C.
We let
f"={(a,m):a€int A and m = lim HORIC)

z—a z—a b

Note that f’ is a function. We say f is differentiable at a if a is in the domain
of f'. For each nonnegative integer m we define f™) by setting f(©) = f, f(1) = f/
and requiring that f(™*1 = (f(™))’ This notion of differentiability is very different
from the previous notion of differentiability although that may not be obvious.
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Lemma 1.1. Suppose c is a sequence in C, zy € C and

oo
(1) f(z)= ch(z —zp)" for |z — 20| < R(c).
n=0
Then
f'(20) = c1.
Proof. Suppose 0 < |z — 29| <7 < R(c). We have
£ (2) = f(z0) = e1(z = 20)| = [ Y_ enlz = 20)"|
n=2
<> leallz = 2ol
n=2
aren(ES3ly_t
- ’ T r— |z — 20|
S0
f(Z)—f(Z()) —Cl|§M(C,T)‘Z_ZO| r )
z— 2 r2  r—|z— z]

O

Proposition 1.2. Suppose c and d are sequencesin C, M € Z, N ¢ N, M+N >0
and

¢n = dpr4n, Whenever n > N.
Then
R(c) = R(d).
Proof. Suppose 0 <r < R(d). If n € N and n > N we have
lenlr™ = = M|dps [P < MM (d, 1) < 00

which implies that M(e,r) < 0o so R(c) > R(d).
Suppose 0 < R(c). If n € N and n > N then

|dargn|r™™ = rMic, |r™ < rMM(c,r) < oo
which implies that M(d,r) < co so R(d) < R(c). O

Exercise 1.1. Prove the following statements.
(i) Suppose ¢ is a sequence in C and a € C ~ {0}. Then R(ac) = R(c).
(ii) Suppose b and ¢ are sequences in C. Then min{R(b), R(c)} < R(b+ ¢).

Exercise 1.2. (The ratio test.) Suppose c is a sequence in C ~ {0} and

L = limsup M < 00.
n—00 ‘Cn|

Show that
< R(c).
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Proposition 1.3. (The root test.) Suppose c is a sequence in C and

L = limsup |cn|%.

Then
oo if L =0,
R(c)=¢1 if0<L<oo,
0 else.

Proof. The point here is that
len|r™ = (|cn|%7')n, neN, 0<r <oo.

We leave the straightforward details which remain to the reader.

O

Exercise 1.3. Suppose c is a sequence in C and N is a nonnegative integer such

that
c,=0 if n<N and cy #0.
show that for each A € (0,1) there is 6 € (0, R(c)) such that

‘ i en(z —20)"

n=0

Hint: This follows easily from (1).

> Nen||z — 20|V provided |z — zg| < 6.

Exercise 1.4. Suppose ¢ is a sequence in C and zg, 21, 2 € C are such that

|21 — 20| + |2 — z1] < R(c).

Make sense of the following:

Tic"(z —20)" = Ticn[(zl —z20) + (2 — 2)]"
N ;C"(W; (Z) (21— 20)" ™ (2 — zl)m)
- i z”: cn (;) (21 = 20)"""(z = 21)
n=0m=0

Hint: Use the ideas in the proof that e*T% = eZe for z,w € C.

Theorem 1.1. Suppose ¢ is a sequence in C, 2o € C, R(c) >0, D = {2z € C:

|z — 20| < R(c)} and
f:D—C
is such that
flz)= ch(z —2z9)" for z € D.

n=0
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Then for any positive integer m the domain of f(™) equals D and

o0

nl
FM(z) = Z 7'%(2 — 29)"™™ whenever z € D.
n=m (n B m)

Proof. From the preceding we have
o0 o0 m
= . — )M —2z1)" wh D.
f(z) 7; (mz_:nc <n)(2’1 20) )(z 21)"  whenever z; €

From a preceding Proposition we infer that

(=)= Z Cm (T) (21 — 20)™ " whenever z; € D.

m=1

Replacing z; by z and m by n we find that

f(z)= Z Cn (?) (z — 20)""'  whenever z € D.

n=1

Substituting n 4+ 1 for n we obtain

fl(z) = Z cn+1(n+1)(z — 29)" whenever z € D

n=0

thereby establishing the Theorem when m = 1. Now induct. O
Remark 1.1. Note that no estimation was required!.

Remark 1.2. Note that a consequence of the foregoing is that for any m € N the
radius of convergence of

+m)!

n !
NBTL’—)(TCn+m€C

equals R(c). One could also prove this directly from the definition by a slightly
tricky argument or one could deduce it from the root test. For yet another proof,
one could invoke the fact that if a sequence of functions converges uniformly to
a limit F' and the sequence of derivatives converges uniformly to a limit G then
F=aG.

Remark 1.3. Note that all of the foregoing goes through when C is replaced by
R. There are further generalizations as well.

Definition 1.3. Suppose A is an open subset of R and f: A — R. We say f is
real analytic if for each a € A there is a sequence ¢ in R such that R(c¢) > 0 and
fl@) = Z cn(z —a)” whenever z € A and |z — a| < R(c).

n=0
Exercise 1.5. Suppose A is an open subset of R and f: A — R.
Show that f is real analytic if and only if the domain of f(") equals A for all
n € N and for each a € I there are § > 0 and M € [0, 00) such that

‘f(")(a:)‘ < M™n! whenever n € N,z € A and |z — a| < 4.

You will need to make use of Taylor’s Theorem.



Exercise 1.6. Show that the composition of real analytic functions is real analytic.
One way to do this is to come up with a clever inductive scheme to estimate higher
derivatives of the composition of two functions.



