Partitions of Unity.

Theorem. Suppose $a \in \mathbf{R}^{n}$ and $0<r<s<\infty$. Then there is a smooth function

$$
\psi: \mathbf{R}^{n} \rightarrow[0,1]
$$

such that

$$
\mathbf{B}_{a}(r) \subset \operatorname{int}\left\{x \in \mathbf{R}^{n}: \psi(x)=1\right\} \quad \text { and } \quad \operatorname{spt} \psi \subset \mathbf{U}_{a}(s)
$$

Proof. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be such that

$$
f(x)= \begin{cases}e^{-1 / x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

We have already shown that f is smooth. Let $g: \mathbf{R} \rightarrow \mathbf{R}$ be such that $g(x)=f(x-2) f(3-x)$ for $x \in \mathbf{R}$; note that g is smooth, that g vanishes outside $(2,3)$ and that g is positive on $(2,3)$. Let $h: \mathbf{R} \rightarrow \mathbf{R}$ be such that

$$
h(x)=\frac{\int_{x}^{\infty} g(t) d t}{\int_{-\infty}^{\infty} g(t) d t}
$$

for $x \in \mathbf{R}$; note that h equals 1 on $(-\infty, 2]$, that h is between 0 and 1 on $(2,3)$ and that h equals 0 on $[3, \infty)$. Let $\zeta: \mathbf{R} \rightarrow \mathbf{R}$ be the affine function (this amounts to saying that the graph is a straight line) such that $\zeta(r)=1$ and $\zeta(s)=4$. Finally, let

$$
\psi(x)=h(\zeta(|x-a|)) \quad \text { for } x \in \mathbf{R}^{n} .
$$

Theorem. Suppose K is a compact subset of \mathbf{R}^{n}, U is an open subset of \mathbf{R}^{n} and $K \subset U$. Then there is a smooth compactly supported function

$$
\chi: \mathbf{R}^{n} \rightarrow[0,1]
$$

such that

$$
K \subset \operatorname{int}\left\{x \in \mathbf{R}^{n}: \chi(x)=1\right\} \quad \text { and } \quad \text { spt } \chi \subset U
$$

Proof. Let

$$
\mathcal{U}=\left\{\mathbf{U}_{a}(r): a \in K, 0<r, \infty \text { and } \mathbf{B}_{a}(2 r) \subset U\right\}
$$

Since K is compact and \mathcal{U} is an open covering of K there are a positive integer m, points a_{1}, \ldots, a_{m} in K and radii r_{1}, \ldots, r_{m} such that

$$
K \subset \bigcup_{i=1}^{m} \mathbf{U}_{a_{i}}\left(r_{i}\right) \quad \text { and } \quad \bigcup_{i=1}^{m} \mathbf{B}_{a_{i}}\left(2 r_{i}\right) \subset U
$$

for each $i=1, \ldots, m$. Make use of the previous Theorem to choose for each $i=1, \ldots, m$ a smooth function $\chi_{i}: \mathbf{R}^{n} \rightarrow[0,1]$ such that $\mathbf{B}_{a_{i}} \subset$ int $\left\{x \in \mathbf{R}^{n}: \chi(x)=1\right\}$ and $\mathbf{s p t} \chi_{i} \subset \mathbf{B}_{a_{i}}\left(2 r_{i}\right)$. Finally, we let

$$
\chi=1-\prod_{i=1}^{m}\left(1-\chi_{i}\right)
$$

Definition. Suppose \mathcal{U} is a family of open subsets of \mathbf{R}^{n}. By a partition of unity subordinate to \mathcal{U} we mean a function which assigns to each member α of some set A a smooth compactly supported function

$$
\chi_{\alpha}: \mathbf{R}^{n} \rightarrow[0,1]
$$

such that
(1) for each $\alpha \in A$ there is $U \in \mathcal{U}$ such that spt $\chi_{\alpha} \subset U$;
(2) for each compact subset K of $\cup \mathcal{U}$ the set

$$
\left\{\alpha \in A: \operatorname{spt} \chi_{\alpha} \cap K \neq \emptyset\right\}
$$

is finite;
(3) $\sum_{\alpha \in A} \chi_{\alpha}(x)=1$ for each $x \in \bigcup \mathcal{U}$.

Theorem. The existence of partitions of Unity. Suppose \mathcal{U} is a family of open subsets of \mathbf{R}^{n}. Then there is a partition of unity subordinate to \mathcal{U}.
Proof. For each nonegative integer m let \mathcal{C}_{m} be the family of cubes we introduced in the first semester. For each $m=0,1,2, \ldots$ we define the subfamily \mathcal{D}_{m} of \mathcal{C}_{m} as follows. We let

$$
\mathcal{D}_{0}=\left\{C \in \mathcal{C}_{0}: \mathbf{c l}(C) \subset U \text { for some } U \in \mathcal{U}\right\}
$$

and we let

$$
\mathcal{D}_{m+1}=\left\{C \in \mathcal{C}_{m+1} \sim \bigcup_{i=0}^{m} \mathcal{D}_{i}: \mathbf{c l}(C) \subset U \text { for some } U \in \mathcal{U}\right\} .
$$

We set

$$
\mathcal{D}=\bigcup_{m=0}^{\infty} \mathcal{D}_{m} .
$$

Note that
(4) \mathcal{D} is disjointed with union $\bigcup \mathcal{U}$ and
(5) any compact subset of U meets only finitely many members of \mathcal{D}.

For each $D \in \mathcal{D}$ let

$$
\hat{D}=\bigcup\{C \in \mathcal{D}: \mathbf{c l}(C) \cap \mathbf{c l}(D) \neq \emptyset\} .
$$

Note that for any $D \in \mathcal{D}$
(6) $\boldsymbol{\operatorname { c l }}(D) \subset \operatorname{int}(\hat{D})$;
(7) \hat{D} is the union of a finite subfamily of \mathcal{D}.

For each $D \in \mathcal{D}$ use Theorem 2 to choose a smooth function $\psi_{D}: \mathbf{R}^{n} \rightarrow[0,1]$ such that, for some $U \in \mathcal{U}$,

$$
D \subset\left\{x \in \mathbf{R}^{n}: \psi_{D}(x)=1\right\} \quad \text { and } \quad \operatorname{spt}\left(\psi_{D}\right) \subset U \cap \hat{D} .
$$

For each $D \in \mathcal{D}$ let

$$
\chi_{D}=\frac{\psi_{D}}{\sum_{C \in \mathcal{D}} \psi_{C}} .
$$

Let \mathcal{A} above equal \mathcal{D}.

