Orientation.

Let n be a positive integer, let m be a positive integer not exceeding n and let V be an n-dimensional vector space.

Associated subspaces. For each $\xi \in \bigwedge_{m} V$ we let

$$
\operatorname{Ass}(\xi)=\{v \in V: v \wedge \xi=0\}
$$

and note that $\operatorname{Ass}(\xi)$ is a linear subspace of V which we call the subspace associated to ξ.
Proposition. Suppose $\xi \in \bigwedge_{m} V \sim\{0\}$. Then $\operatorname{dim} \operatorname{Ass}(\xi) \leq m$. Moreover, if $l=\operatorname{dim} \operatorname{Ass}(\xi)>0$ and v_{1}, \ldots, v_{l} is a basis for $\operatorname{Ass}(\xi)$ then $l \leq m$ and

$$
\xi=v_{1} \wedge \ldots v_{l} \wedge \eta
$$

for some $\eta \in \bigwedge_{m-l} V$.
Proof. Suppose $l=\operatorname{dim} \operatorname{Ass}(\xi)>0$ and v_{1}, \ldots, v_{n} be a basis for V such that v_{1}, \ldots, v_{l} is a basis for $\operatorname{Ass}(\xi)$. Write

$$
\xi=\sum_{\lambda \in \operatorname{alt}(m, n)} v^{\lambda}(\xi) v_{\lambda}
$$

For each $i=1, \ldots, l$ we have

$$
0=v_{i} \wedge \xi=\sum_{\lambda \in \operatorname{alt}(m, n), i \notin \mathbf{r n g} \lambda} v^{\lambda}(\xi) v_{i} \wedge v_{\lambda}
$$

which implies that $v^{\lambda}(\xi)=0$ if $i \notin \mathbf{r n g} \lambda$.
Definition. Suppose m is a positive integer and $\xi \in \bigwedge_{m} V$. We say ξ is decomposable or simple if there are $v_{1}, \ldots, v_{m} \in V$ such that $\xi=v_{1} \wedge \cdots \wedge v_{m}$. In view of the preceding Proposition, ξ is decomposable if and only if $\operatorname{dim} \operatorname{Ass}(\xi)=m$.

Example. Let $\xi=\mathbf{e}_{1} \wedge \mathbf{e}_{2}+\mathbf{e}_{3} \wedge \mathbf{e}_{4} \in \bigwedge_{2} \mathbf{R}^{4}$. If $x \in \mathbf{R}^{4}$ we have

$$
x \wedge \xi=x_{3} \mathbf{e}_{3} \wedge \mathbf{e}_{1} \wedge \mathbf{e}_{2}+x_{4} \mathbf{e}_{4} \wedge \mathbf{e}_{3} \wedge+x_{1} \mathbf{e}_{1} \wedge \mathbf{e}_{4} \wedge \mathbf{e}_{1} \wedge \mathbf{e}_{2}+x_{2} \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}
$$

It follows that $\mathbf{A s s}(\xi)=\{0\}$.

$$
\text { Suppose } M \in \mathbf{M}_{m}(V)
$$

Definition. We let

$$
\mathcal{O}(M)
$$

be the set of continuous maps

$$
\mathbf{o}: M \rightarrow \bigwedge_{m} V
$$

such that

$$
\operatorname{Ass}(\mathbf{o}(a))=\boldsymbol{\operatorname { T a n }}_{a}(M) \quad \text { for each } a \in M
$$

We say \mathbf{o} is an orienting m-vector field for M if $\mathbf{o} \in \mathcal{O}(M)$. We say M is orientable if $\mathcal{O}(M) \neq \emptyset$.
Definition. Suppose M is orientable. Whenever $\mathbf{o}_{i} \in \mathcal{O}(M), i=1,2$, we let

$$
\mathbf{c}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right): M \rightarrow \mathbf{R} \sim\{0\}
$$

be such that

$$
\mathbf{o}_{1}(a)=\mathbf{c}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)(a) \mathbf{o}_{2}(a) \quad \text { whenever } a \in M
$$

and note that $\mathbf{c}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)$ is continuous. Let

$$
\mathbf{o}(M)=\left\{\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \in \mathcal{O}(M) \times \mathcal{O}(M): \mathbf{c}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)>0\right\}
$$

and note that $\mathbf{o}(M)$ is an equivalence relation on $\mathcal{O}(M)$; an orientation of M is, by definition, an equivalence class with respect to $\mathbf{o}(M)$ If $\mathbf{o} \in \mathbf{O}(M)$ we call the equivalence class of \mathbf{o} with respect to $\mathbf{o}(M)$ the orientation of M induced by o.

Definition. Suppose $M \in \mathbf{M}_{n}\left(\mathbf{R}^{n}\right)$; that is, M is an open subset of \mathbf{R}^{n}. Then

$$
M \ni a \mapsto \mathbf{e}_{1} \wedge \cdots \mathbf{e}_{n} \in\left\{\xi \in \bigwedge_{m} \mathbf{R}^{n}:|\xi|=1\right\}
$$

is an orienting vector field for M and we call the induced orientation the standard orientation of M.
Unit normals to hypersurfaces. Suppose $m=n-1$ and

$$
\mathbf{N}: M \rightarrow \mathbf{S}^{n-1}
$$

is a continuous map such that

$$
\{t \mathbf{N}(a): t \in \mathbf{R}\}=\mathbf{N o r}_{a}(M)
$$

Let

$$
\mathbf{o}(a)=\left(\mathbf{e}_{1} \wedge \cdots \wedge \mathbf{e}_{n}\right)\llcorner\beta(\mathbf{N}(a)) \quad \text { for } a \in M
$$

Then \mathbf{o} is an orienting vector field for M and

$$
\mathbf{N}(a) \wedge \mathbf{o}(a)=\mathbf{e}_{1} \wedge \cdots \wedge \mathbf{e}_{n} \quad \text { for } a \in M
$$

We call orientation of M induced by \mathbf{o} the standard orientation of M.
Orienting a boundary. Suppose $1 \leq m$ and $M \in \mathbf{M}_{m}(V)$.
Theorem. There is one and only one map

$$
\mathbf{n}: \partial M \rightarrow \mathbf{S}^{n-1}
$$

such that

$$
-\mathbf{n}(b) \in \mathbf{N o r}_{b}(\partial M) \cap \boldsymbol{\operatorname { T a n }}_{b}(M)
$$

Proof. This is a straightforward consequence of the definitions.
Definition. The map \mathbf{n} in the preceding Theorem is called the outward pointing unit normal to M along ∂M.

Theorem. Suppose \mathbf{o} is an orientation for M. Then there is one and only one orienting vector field $\partial \mathbf{o}$ of ∂M such that

$$
\lim _{M \ni a \rightarrow b} \mathbf{o}(a)=\mathbf{n}(b) \wedge \partial \mathbf{o}(b) \quad \text { whenever } b \in \partial M
$$

Proof. Exercise for the reader. The point here is that if $\left(\mathbf{U}^{n}, \Phi, U\right) \in \mathbf{D i f f e o}_{n}$ is such that $U \subset V, \Phi(0)=b$ and $U \cap M=\Phi\left[\mathbf{U}^{n, m,+}\right]$ then there is $s \in\{-1,1\}$ such that

$$
\left|\bigwedge_{m} \partial \Phi(t)\left(\mathbf{e}_{1} \wedge \cdots \wedge \mathbf{e}_{m}\right)\right|=s \mathbf{o}(\Phi(t))\left(\bigwedge_{m} \partial \Phi(t)\right)\left(\mathbf{e}_{1} \wedge \cdots \wedge \mathbf{e}_{m}\right) \quad \text { for } t \in U
$$

Moreover,

$$
\partial \Phi(0)\left(\mathbf{e}_{m}\right) \bullet \mathbf{n}(b)<0
$$

Definition. We call the orientation of ∂M induced by $\partial \mathbf{o}$ the orientation of ∂M induced by o.

The torus and the Möbius band. Let J be the skewsymmetry of \mathbf{R}^{3} such that

$$
J\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, \quad J\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{1}, \quad J\left(\mathbf{e}_{3}\right)=0
$$

Note that

$$
e^{\theta J}, \theta \in \mathbf{R}
$$

rotates \mathbf{R}^{3} by θ radians in the right-handed sense around the x_{3}-axis. For each $\phi \in \mathbf{R}$ let

$$
U(\phi)=\cos \phi \mathbf{e}_{1}+\sin \phi \mathbf{e}_{3} \quad \text { and } \quad V(\phi)=-\sin \phi \mathbf{e}_{1}+\cos \phi \mathbf{e}_{3}, \phi \in \mathbf{R}
$$

note that $U^{\prime}=V$, that $\left\{U(\theta), \mathbf{e}_{2}, V(\theta)\right\}$ is an orthonormal basis for \mathbf{R}^{3} and that

$$
\left.U(\theta) \wedge \mathbf{e}_{2} \wedge V(\theta)\right\}=\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}, \quad \theta \in \mathbf{R}
$$

Suppose $0<R<\infty$. Let $S=\left\{(\rho, \theta, \phi) \in \mathbf{R}^{3}:-R<\rho<R\right\}$ and let

$$
F: S \rightarrow \mathbf{R}^{3}
$$

be such that

$$
F(\rho, \theta, \phi)=e^{\theta J}\left(R \mathbf{e}_{1}+\rho U(\phi)\right), \quad(\rho, \theta, \phi) \in S
$$

Note that F is univalent on the sets

$$
(-R, R) \times(a, a+2 \pi) \times(b, b+2 \pi)
$$

corresponding to $a, b \in \mathbf{R}$. For any $(\rho, \theta, \phi) \in S$ we have

$$
\begin{aligned}
& \partial_{1} F(\rho, \theta, \phi)=e^{\theta J}(U(\phi)) \\
& \partial_{2} F(\rho, \theta, \phi)=e^{\theta J}\left(J\left(R_{1}+\rho U(\phi)\right)\right)=e^{\theta J}\left((R+\rho \cos \phi) \mathbf{e}_{2}\right) \\
& \partial_{3} F(\rho, \theta, \phi)=e^{\theta J}(\rho V(\phi))
\end{aligned}
$$

so

$$
\bigwedge_{3} \partial F(\rho, \theta, \phi)\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}\right)=\rho(R+\rho \cos \phi) \bigwedge_{3} e^{\theta J} \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}
$$

Suppose $0<r<R$.
Set

$$
T_{r}=\left\{F(r, \theta, \phi):(\theta, \phi) \in \mathbf{R}^{2}\right\}
$$

One calls T_{r} a torus. Evidently, $T_{r} \in \mathbf{M}_{2}\left(\mathbf{R}^{3}\right)$. We may define

$$
\mathbf{N}: T_{r} \rightarrow \mathbf{S}^{2}
$$

by requiring that

$$
\mathbf{N}(F(r, \theta, \phi))=\partial_{1} F(\rho, \theta, \phi)=e^{\theta J}(U(\theta)), \quad(\theta, \phi) \in \mathbf{R}^{2}
$$

It follows from the foregoing that \mathbf{N} is a unit normal field along T_{r}; in particular, T_{r} is orientable.
Set

$$
f_{r}(\rho, \phi)=F(\rho, 2 \phi, \phi), \quad(\rho, \phi) \in(-r, r) \times \mathbf{R}
$$

and let

$$
M_{r}=\operatorname{rng} f_{r}
$$

One calls M_{r} a Möbius band. Evidently, $M_{r} \in \mathbf{M}_{2}\left(\mathbf{R}^{3}\right)$.
Note that

$$
f_{r}(0,0)=R \mathbf{e}_{1}=f_{r}(0, \pi)
$$

We have

$$
\begin{aligned}
& \partial_{1} f(\rho, \phi)=\partial_{1} F(\rho, 2 \phi, \phi)=e^{2 \phi J}(U(\phi)) \\
& \partial_{2} f(\rho, \phi)=2 \partial_{2} F(\rho, 2 \phi, \phi)+\partial_{3} F(\rho, 2 \phi, \phi)=e^{2 \phi J}\left(2(R+\rho \cos \phi) \mathbf{e}_{2}+\rho V(\phi)\right)
\end{aligned}
$$

for $(\rho, \phi) \in(-r, r) \times \mathbf{R}$. Let

$$
\xi(\rho, \phi)=\bigwedge_{2} \partial f_{r}(\rho, \phi)\left(\mathbf{e}_{1} \wedge \mathbf{e}_{2}\right), \quad(\rho, \phi) \in(-r, r) \times \mathbf{R}
$$

We have

$$
\xi(\rho, \phi)=2 \partial_{2} F(\rho, 2 \phi, \phi) \wedge \partial_{3} F(\rho, 2 \phi, \phi)=\bigwedge_{2} e^{2 \phi J}\left((R+\rho \cos \phi) \mathbf{e}_{2} \wedge \rho V(\phi)\right)
$$

for $(\rho, \phi) \in(-r, r) \times \mathbf{R}$. In particular,

$$
\xi(\rho, \phi) \neq 0 \quad \text { for }(\rho, \phi) \in(-r, r) \times \mathbf{R}
$$

Since

$$
\xi(0,0)=2 R \mathbf{e}_{1} \wedge \mathbf{e}_{2}=-\xi(0, \pi)
$$

we find that M_{r} is not orientable.

