
Orientation.

Let n be a positive integer, let m be a positive integer not exceeding n and let V be an n-dimensional
vector space.

Associated subspaces. For each ξ ∈ ∧
m V we let

Ass(ξ) = {v ∈ V : v ∧ ξ = 0}

and note that Ass(ξ) is a linear subspace of V which we call the subspace associated to ξ.

Proposition. Suppose ξ ∈ ∧
m V ∼ {0}. Then dimAss(ξ) ≤ m. Moreover, if l = dimAss(ξ) > 0 and

v1, . . . , vl is a basis for Ass(ξ) then l ≤ m and

ξ = v1 ∧ . . . vl ∧ η

for some η ∈ ∧
m−l V .

Proof. Suppose l = dimAss(ξ) > 0 and v1, . . . , vn be a basis for V such that v1, . . . , vl is a basis for
Ass(ξ). Write

ξ =
∑

λ∈alt(m,n)

vλ(ξ)vλ.

For each i = 1, . . . , l we have

0 = vi ∧ ξ =
∑

λ∈alt(m,n), i 6∈rng λ

vλ(ξ)vi ∧ vλ

which implies that vλ(ξ) = 0 if i 6∈ rng λ.

Definition. Suppose m is a positive integer and ξ ∈ ∧
m V . We say ξ is decomposable or simple if there

are v1, . . . , vm ∈ V such that ξ = v1 ∧ · · · ∧ vm. In view of the preceding Proposition, ξ is decomposable if
and only if dimAss(ξ) = m.

Example. Let ξ = e1 ∧ e2 + e3 ∧ e4 ∈
∧

2 R4. If x ∈ R4 we have

x ∧ ξ = x3 e3 ∧ e1 ∧ e2 + x4 e4 ∧ e3 ∧+x1 e1 ∧ e4 ∧ e1 ∧ e2 + x2 e2 ∧ e3 ∧ e4.

It follows that Ass(ξ) = {0}.

Suppose M ∈ Mm(V ).

Definition. We let
O(M)

be the set of continuous maps
o : M →

∧
m

V

such that
Ass(o(a)) = Tana(M) for each a ∈ M .

We say o is an orienting m-vector field for M if o ∈ O(M). We say M is orientable if O(M) 6= ∅.

Definition. Suppose M is orientable. Whenever oi ∈ O(M), i = 1, 2, we let

c(o1,o2) : M → R ∼ {0}

be such that
o1(a) = c(o1,o2)(a)o2(a) whenever a ∈ M
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and note that c(o1,o2) is continuous. Let

o(M) = {(o1,o2) ∈ O(M)×O(M) : c(o1,o2) > 0}

and note that o(M) is an equivalence relation onO(M); an orientation of M is, by definition, an equivalence
class with respect to o(M) If o ∈ O(M) we call the equivalence class of o with respect to o(M) the
orientation of M induced by o.

Definition. Suppose M ∈ Mn(Rn); that is, M is an open subset of Rn. Then

M 3 a 7→ e1 ∧ · · · en ∈ {ξ ∈
∧

m
Rn : |ξ| = 1}

is an orienting vector field for M and we call the induced orientation the standard orientation of M .

Unit normals to hypersurfaces. Suppose m = n− 1 and

N : M → Sn−1

is a continuous map such that
{tN(a) : t ∈ R} = Nora(M).

Let
o(a) = (e1 ∧ · · · ∧ en) β

(
N(a)

)
for a ∈ M .

Then o is an orienting vector field for M and

N(a) ∧ o(a) = e1 ∧ · · · ∧ en for a ∈ M .

We call orientation of M induced by o the standard orientation of M .

Orienting a boundary. Suppose 1 ≤ m and M ∈ Mm(V ).

Theorem. There is one and only one map

n : ∂M → Sn−1

such that
−n(b) ∈ Norb(∂M) ∩Tanb(M).

Proof. This is a straightforward consequence of the definitions.
Definition. The map n in the preceding Theorem is called the outward pointing unit normal to M
along ∂M .

Theorem. Suppose o is an orientation for M . Then there is one and only one orienting vector field ∂o of
∂M such that

lim
M3a→b

o(a) = n(b) ∧ ∂o(b) whenever b ∈ ∂M .

Proof. Exercise for the reader. The point here is that if (Un, Φ, U) ∈ Diffeon is such that U ⊂ V , Φ(0) = b
and U ∩M = Φ[Un,m,+] then there is s ∈ {−1, 1} such that

|
∧

m
∂Φ(t)(e1 ∧ · · · ∧ em)| = so(Φ(t))

( ∧
m

∂Φ(t)
)
(e1 ∧ · · · ∧ em) for t ∈ U .

Moreover,
∂Φ(0)(em) • n(b) < 0.

Definition. We call the orientation of ∂M induced by ∂o the orientation of ∂M induced by o.
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The torus and the Möbius band. Let J be the skewsymmetry of R3 such that

J(e1) = e2, J(e2) = −e1, J(e3) = 0.

Note that
eθJ , θ ∈ R

rotates R3 by θ radians in the right-handed sense around the x3-axis. For each φ ∈ R let

U(φ) = cos φ e1 + sin φ e3 and V (φ) = − sin φ e1 + cos φ e3, φ ∈ R;

note that U ′ = V , that {U(θ), e2, V (θ)} is an orthonormal basis for R3 and that

U(θ) ∧ e2 ∧ V (θ)} = e1 ∧ e2 ∧ e3, θ ∈ R.

Suppose 0 < R < ∞. Let S = {(ρ, θ, φ) ∈ R3 : −R < ρ < R} and let

F : S → R3

be such that
F (ρ, θ, φ) = eθJ

(
Re1 + ρU(φ)

)
, (ρ, θ, φ) ∈ S.

Note that F is univalent on the sets

(−R, R)× (a, a + 2π)× (b, b + 2π)

corresponding to a, b ∈ R. For any (ρ, θ, φ) ∈ S we have

∂1F (ρ, θ, φ) = eθJ
(
U(φ)

)
,

∂2F (ρ, θ, φ) = eθJ
(
J
(
Re1 + ρU(φ)

))
= eθJ

((
R + ρ cos φ

)
e2

)
,

∂3F (ρ, θ, φ) = eθJ
(
ρV (φ)

)

so ∧
3
∂F (ρ, θ, φ)(e1 ∧ e2 ∧ e3) = ρ(R + ρ cos φ)

∧
3
eθJe1 ∧ e2 ∧ e3.

Suppose 0 < r < R.
Set

Tr = {F (r, θ, φ) : (θ, φ) ∈ R2}.
One calls Tr a torus. Evidently, Tr ∈ M2(R3). We may define

N : Tr → S2

by requiring that
N(F (r, θ, φ)) = ∂1F (ρ, θ, φ) = eθJ

(
U(θ)

)
, (θ, φ) ∈ R2.

It follows from the foregoing that N is a unit normal field along Tr; in particular, Tr is orientable.
Set

fr(ρ, φ) = F (ρ, 2φ, φ), (ρ, φ) ∈ (−r, r)×R

and let
Mr = rng fr.

One calls Mr a Möbius band. Evidently, Mr ∈ M2(R3).
Note that

fr(0, 0) = Re1 = fr(0, π).
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We have
∂1f(ρ, φ) = ∂1F (ρ, 2φ, φ) = e2φJ

(
U(φ)

)
,

∂2f(ρ, φ) = 2∂2F (ρ, 2φ, φ) + ∂3F (ρ, 2φ, φ) = e2φJ
(
2
(
R + ρ cosφ

)
e2 + ρV (φ)

)

for (ρ, φ) ∈ (−r, r)×R. Let

ξ(ρ, φ) =
∧

2
∂fr(ρ, φ)(e1 ∧ e2), (ρ, φ) ∈ (−r, r)×R.

We have
ξ(ρ, φ) = 2∂2F (ρ, 2φ, φ) ∧ ∂3F (ρ, 2φ, φ) =

∧
2
e2φJ

((
R + ρ cos φ

)
e2 ∧ ρV (φ)

)

for (ρ, φ) ∈ (−r, r)×R. In particular,

ξ(ρ, φ) 6= 0 for (ρ, φ) ∈ (−r, r)×R.

Since
ξ(0, 0) = 2Re1 ∧ e2 = −ξ(0, π)

we find that Mr is not orientable.

4


