0.1. Definition. Suppose V_{1}, \ldots, V_{m} and W are vector spaces. We say a function

$$
\mu: V_{1} \times \cdots \times V_{m} \rightarrow W
$$

is multilinear if it is linear in each of its m arguments when the other $m-1$ are held fixed. Let

$$
\mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)
$$

be the set of such μ. Note that $\mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$ is a linear subspace of the vector space of all W-valued functions on $V_{1} \times \cdots \times V_{m}$ and is thus a vector space with respect to pointwise addition and scalar multiplication.

Suppose $\omega_{i} \in V_{i}^{*}, i=1, \ldots, m$ and $w \in W$. Define

$$
\omega_{1} \ldots \omega_{m} w: V_{1} \times \cdots \times V_{m} \rightarrow W
$$

to have the value $\omega_{1}\left(v_{1}\right) \cdots \omega_{m}\left(v_{m}\right) w$ at $\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}$ and note that

$$
\omega_{1} \ldots \omega_{m} w \in \underline{L}\left(V_{1}, \ldots, V_{m} ; W\right)
$$

In case $W=\mathbf{R}$ and $w=1$ one customarily writes

$$
\omega_{1} \cdots \omega_{m}
$$

for $\omega_{1} \cdots \omega_{m} w$.
0.2. Problem 1. Suppose for each $i=1,2, V_{i}$ is a finite dimensional vector space of dimension n_{i} and with ordered basis v_{i}. Let $\mu \in \underline{L}\left(V_{1}, V_{2} ; \mathbf{R}\right)$ and let $A \in \underline{\mathrm{M}}_{n_{2}}^{n_{1}}$ be such that

$$
A(i, j)=\mu\left(v_{i}, v_{j}\right), i=1, \ldots, n_{1}, j=1, \ldots, n_{2}
$$

Show that there are $\omega_{i} \in V_{i}^{*}, i=1,2$, such that $\mu=\omega_{1} \omega_{2}$ if and only if the rank of A does not exceed 1 .
0.3. Problem 2. Suppose V_{1}, \ldots, V_{m} and W are finite dimensional. Let B_{i} be a basis for $V_{i}, i=1, \ldots, m$ and let C be a basis for W. Show that

$$
\mu=\sum_{\left.\left(v_{1}, \ldots, v_{m}, w\right) \in B_{1} \times \cdots \times B_{m} \times C\right\}} w^{*}\left(\mu\left(v_{1}, \ldots, v_{m}\right)\right) v_{1}^{*} \cdots v_{m}^{*} w
$$

for each $\mu \in \mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$. Use this to show that

$$
\left\{v_{1}^{*} \ldots v_{m}^{*} w:\left(v_{1}, \ldots, v_{m}, w\right) \in B_{1} \times \cdots \times B_{m} \times C\right\}
$$

is a basis for $\mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$, concluding thereby that its dimension is $n_{1} \cdots n_{m} \cdot l$.
0.4. Definition. Suppose now that V_{i} has norm $|\cdot|_{V_{i}}, i=1, \ldots, m$ and that W has norm $|\cdot|_{W}$. For each $\mu \in \underline{L}\left(V_{1}, \ldots, V_{m} ; W\right)$ we let

$$
\|\mu\|_{V_{1}, \ldots, V_{m} ; W}=\sup \left\{\left|\mu\left(v_{1}, \ldots, v_{m}\right)\right|_{W}: v_{i} \in V_{i} \text { and }\left|v_{i}\right|_{V_{i}} \leq 1\right\}
$$

Very often one omits the subscripts on the norms relying on the context to resolve the resulting ambiguities.

0.5. Problem 3.

(1) Suppose $\mu \in \mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$ and $M \in[0, \infty)$. Then $\left|\mu\left(v_{1}, \ldots, v_{m}\right)\right| \leq$ $M\left|v_{1}\right| \cdots\left|v_{m}\right|$ whenever $v_{i} \in V_{i}, i=1, \ldots, m$ if and only if $\|\mu\| \leq M$.
(2) $\|\mu+\nu\| \leq\|\mu\|+\|\nu\|$ whenever $\mu, \nu \in \underline{L}\left(V_{1}, \ldots, V_{m} ; W\right)$;
(3) $\|c \mu\|=\mid c\| \| \mu \|$ whenever $c \in \mathbf{R}$ and $\mu \in \mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$;
(4) If $\mu \in \underline{L}\left(V_{1}, \ldots, V_{m} ; W\right)$ then μ is continuous if and only if $\|\mu\|<\infty$.
0.6. Problem 4. Suppose U, V, W are normed vector spaces, $L \in \mathrm{~L}(U ; V)$ and $M \in \mathrm{~L}(V ; W)$. Then

$$
\|M \circ L\| \leq\|M \mid\|\|L\| .
$$

0.7. Problem 5. Suppose V is a finite dimensional Euclidean space. Show that the mapping

$$
V \ni v \mapsto(V \ni \tilde{v} \mapsto \tilde{v} \bullet v \in \mathbf{R}) \in V^{*}
$$

carries V isomorphically onto V^{*}. This map is called the polarity of the inner product and we induce an inner product on V^{*} by requiring that it be an isometry. Conversely, if β carries V isomorphically onto V^{*} and satisfies the conditions
(i) $\beta(v)(w)=\beta(w)(v), v, w \in V$ and
(ii) $\beta(v)(v)>0$ if $v \in V \sim\{\underline{0}\}$
then we may obtain an inner product on V by setting $v \bullet w=\beta(v)(w), / v, w \in V$.
0.8. Problem 6. Verify that the adjoint mapping defined earlier is a linear isomorphism if V and W above are finite dimensional. Do this by showing that the adjoint mapping is linear (this is trivial) and that if B is a basis for V and C is a basis for W then $\left\{v^{*} w: v \in B\right.$ and $\left.w \in C\right\}$ is a basis for $\underline{L}(V, W) ;\left\{w v^{*} ; v \in B\right.$ and $\left.w \in C\right\}$ is a basis for $\mathrm{L}\left(W^{*}, V^{*}\right)$; and

$$
\left(v^{*} w\right)^{*}=w v^{*} \quad \text { whenever } v \in B \text { and } w \in C
$$

(Here we have written w instead of $\iota(w)$ for $w \in W$ as we indicated we might do so when ι was defined.)
0.9. Definition. Let V and W be finite dimensional Euclidean spaces with polarities β and γ, respectively. Let

$$
{ }^{*}=\beta^{-1} \circ\left(\cdot^{*}\right) \circ \gamma
$$

where the ${ }^{*}$ on the right is the adjoint introduced previously and where the one on the left is being introduced now. Note that * (on the left!), also called the adjoint (sorry about that, you were warned!) carries $\mathrm{L}(V ; W)$ isomorphically onto $\mathrm{L}(W ; V)$. Verify that if $L \in \underline{\mathrm{~L}}(V ; W)$ and $K \in \underline{\mathrm{~L}}(W ; V)$ then

$$
L(v) \bullet w=v \bullet K(w) \quad \text { whenever } v \in V, w \in W \quad \Leftrightarrow K=L^{*}
$$

Verify that, under appropriate hypotheses,

$$
(L \circ M)^{*}=M^{*} \circ L^{*} .
$$

Note an additional and rather significant ambiguity in the notation. If $L: V \rightarrow$ W and W is a subspace of the inner product space Z then we have $L^{*} \in \underline{L}(Z ; V)$ (same L but two L^{*} 's!). This same ambiguity was present when we first encountered the adjoint.
0.10. Problem 7. Suppose V and W are finite dimensional Euclidean spaces and $L \in \underline{L}(V ; W)$. Then $\|L\|$ is the square root of the largest eigenvalue of $L^{*} \circ L$.
0.11. Problem 8. Suppose V is a finite dimensional vector space. Let

$$
\zeta: \underline{\mathrm{L}}(V ; V) \rightarrow \underline{\mathrm{L}}\left(V^{*}, V ; \mathbf{R}\right)
$$

be such that

$$
\zeta(L)(\omega, v)=\omega(L(v)), \quad \omega \in V^{*}, v \in V
$$

Verify that ζ is linear. Verify that it is an isomorphism by showing that if B is a basis for V then ζ carries the basis $\tilde{v}^{*} v$ of $\underline{L}(V ; V)$ to the basis $\iota(\tilde{v}) v^{*}$ of $\underline{L}\left(V^{*}, V ; \mathbf{R}\right)$.
0.12. Definition. Suppose V_{1}, \ldots, V_{m} are finite dimensional vector spaces. We set

$$
V_{1} \otimes \cdots \otimes V_{m}=\underline{L}\left(V_{1}^{*}, \ldots, V_{m}^{*} ; \mathbf{R}\right)
$$

and call this vector space the tensor product of V_{1}, \ldots, V_{m}. For each $\left(v_{1}, \ldots, v_{m}\right) \in$ $V_{1} \times \cdots \times V_{m}$ we set

$$
v_{1} \otimes \cdots \otimes v_{m}=\iota\left(v_{1}\right) \cdots \iota\left(v_{m}\right) \in V_{1} \otimes \cdots \otimes V_{m}
$$

and note that

$$
V_{1} \times \cdots \times V_{m} \ni\left(v_{1}, \ldots, v_{m}\right) \mapsto v_{1} \otimes \cdots \otimes v_{m} \in V_{1} \otimes \cdots \otimes V_{m}
$$

is multilinear.
0.13. Problem 9. Show that if V_{1}, \ldots, V_{m} are finite dimensional vector spaces and W is a vector space then
$\underline{\mathrm{L}}\left(V_{1} \otimes \cdots \otimes V_{m} ; W\right) \ni \mu \mapsto\left(V_{1} \times \cdots \times V_{m} \ni\left(v_{1}, \ldots, v_{m}\right) \mapsto \mu\left(v_{1} \otimes \cdots \otimes v_{m}\right) \in W\right) \in \mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$
carries $\underline{L}\left(V_{1} \otimes \cdots \otimes V_{m} ; W\right)$ isomorphically onto $\underline{L}\left(V_{1}, \ldots, V_{m} ; W\right)$. In particular, for any $\tilde{\mu} \in \mathrm{L}\left(V_{1}, \ldots, V_{m} ; W\right)$ there is one and only $\mu \in \mathrm{L}\left(V_{1} \otimes \cdots \otimes V_{m} ; W\right)$ such that

$$
\tilde{\mu}\left(v_{1}, \ldots, v_{m}\right)=\mu\left(v_{1} \otimes \cdots \otimes v_{m}\right), \quad v_{i} \in V_{i}, i=1, \ldots, m .
$$

This is called the universal property of the tensor product.
0.14. Problem 10. Suppose V and W are finite dimensional vector spaces. By the universal property of the tensor product there is a unique linear map

$$
\gamma: V^{*} \otimes W \rightarrow \mathrm{~L}(V ; W)
$$

such that $\gamma(\omega \otimes v)=\omega v$ whenever $\omega \in V^{*}$ and $w \in W$. Show that γ is an isomorphism by finding a basis of $V^{*} \otimes W$ which is carried to a basis of $\mathrm{L}(V ; W)$ by γ.
0.15. Problem 11. Suppose V and W are finite dimensional Euclidean spaces. Verify that

$$
\mathrm{L}(V ; W) \times \mathrm{L}(V ; W) \ni(K, L) \mapsto \operatorname{trace}\left(K^{*} \circ L\right)
$$

is an inner product.
Verify that

$$
|L| \leq \sqrt{\operatorname{dim} V}\|L\| \quad \text { and that } \quad\|L\| \leq|L|
$$

Note that equality occurs in the left hand inequality if $L^{*}=L^{-1}$ which is to say if L is orthogonal. Note that equality occurs in the right hand inequality if $\operatorname{dim} V=1$.

0.16.

0.17. Problem 12. Suppose V and W are finite dimensional Euclidean spaces. Suppose $L \in \underline{L}(V ; W)$. Show that

$$
\left\|L^{*}\right\|=\|L\|
$$

Do this by first showing that

$$
\|L\|=\sup \{|L(v) \bullet w|: v \in V,|v| \leq 1, w \in W,|w| \leq 1\}
$$

