
0.1. Definition. Suppose V1, . . . , Vm and W are vector spaces. We say a function

µ : V1 × · · · × Vm → W

is multilinear if it is linear in each of its m arguments when the other m− 1 are
held fixed. Let

L
¯
(V1, . . . , Vm;W )

be the set of such µ. Note that L
¯
(V1, . . . , Vm;W ) is a linear subspace of the vector

space of all W -valued functions on V1 × · · · × Vm and is thus a vector space with
respect to pointwise addition and scalar multiplication.

Suppose ωi ∈ V ∗
i , i = 1, . . . ,m and w ∈ W . Define

ω1 . . . ωmw : V1 × · · · × Vm → W

to have the value ω1(v1) · · ·ωm(vm)w at (v1, . . . , vm) ∈ V1× · · ·×Vm and note that

ω1 . . . ωmw ∈ L
¯
(V1, . . . , Vm;W ).

In case W = R and w = 1 one customarily writes

ω1 · · ·ωm

for ω1 · · ·ωmw.

0.2. Problem 1. Suppose for each i = 1, 2, Vi is a finite dimensional vector space
of dimension ni and with ordered basis vi. Let µ ∈ L

¯
(V1, V2;R) and let A ∈ M

¯
n1
n2

be such that
A(i, j) = µ(vi, vj), i = 1, . . . , n1, j = 1, . . . , n2.

Show that there are ωi ∈ V ∗
i , i = 1, 2, such that µ = ω1ω2 if and only if the rank

of A does not exceed 1.

0.3. Problem 2. Suppose V1, . . . , Vm and W are finite dimensional. Let Bi be a
basis for Vi, i = 1, . . . ,m and let C be a basis for W . Show that

µ =
∑

(v1,...,vm,w)∈B1×···×Bm×C}

w∗(µ(v1, . . . , vm)) v∗1 · · · v∗mw

for each µ ∈ L
¯
(V1, . . . , Vm;W ). Use this to show that

{v∗1 . . . v∗mw : (v1, . . . , vm, w) ∈ B1 × · · · ×Bm × C}
is a basis for L

¯
(V1, . . . , Vm;W ), concluding thereby that its dimension is n1 · · ·nm ·l.

0.4. Definition. Suppose now that Vi has norm | · |Vi
, i = 1, . . . ,m and that W has

norm | · |W . For each µ ∈ L
¯
(V1, . . . , Vm;W ) we let

||µ||V1,...,Vm;W = sup{|µ(v1, . . . , vm)|W : vi ∈ Vi and |vi|Vi
≤ 1}.

Very often one omits the subscripts on the norms relying on the context to resolve
the resulting ambiguities.

0.5. Problem 3.
(1) Suppose µ ∈ L

¯
(V1, . . . , Vm;W ) and M ∈ [0,∞). Then |µ(v1, . . . , vm)| ≤

M |v1| · · · |vm| whenever vi ∈ Vi, i = 1, . . . ,m if and only if ||µ|| ≤ M .
(2) ||µ+ ν|| ≤ ||µ||+ ||ν|| whenever µ, ν ∈ L

¯
(V1, . . . , Vm;W );

(3) ||cµ|| = |c|||µ|| whenever c ∈ R and µ ∈ L
¯
(V1, . . . , Vm;W );

(4) If µ ∈ L
¯
(V1, . . . , Vm;W ) then µ is continuous if and only if ||µ|| < ∞.
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0.6. Problem 4. Suppose U, V,W are normed vector spaces, L ∈ L
¯
(U ;V ) and

M ∈ L
¯
(V ;W ). Then

||M ◦ L|| ≤ ||M ||||L||.

0.7. Problem 5. Suppose V is a finite dimensional Euclidean space. Show that the
mapping

V ∋ v 7→ (V ∋ ṽ 7→ ṽ • v ∈ R) ∈ V ∗

carries V isomorphically onto V ∗. This map is called the polarity of the inner
product and we induce an inner product on V ∗ by requiring that it be an isometry.
Conversely, if β carries V isomorphically onto V ∗ and satisfies the conditions

(i) β(v)(w) = β(w)(v), v, w ∈ V and
(ii) β(v)(v) > 0 if v ∈ V ∼ {0

¯
}

then we may obtain an inner product on V by setting v•w = β(v)(w), /v, w ∈ V .

0.8. Problem 6. Verify that the adjoint mapping defined earlier is a linear isomor-
phism if V and W above are finite dimensional. Do this by showing that the adjoint
mapping is linear (this is trivial) and that if B is a basis for V and C is a basis for
W then {v∗w : v ∈ B and w ∈ C} is a basis for L

¯
(V,W ); {wv∗; v ∈ B and w ∈ C}

is a basis for L
¯
(W ∗, V ∗); and

(v∗w)∗ = wv∗ whenever v ∈ B and w ∈ C.

(Here we have written w instead of ι(w) for w ∈ W as we indicated we might do
so when ι was defined.)

0.9. Definition. Let V andW be finite dimensional Euclidean spaces with polarities
β and γ, respectively. Let

∗ = β−1 ◦ (·∗) ◦ γ
where the ∗ on the right is the adjoint introduced previously and where the one
on the left is being introduced now. Note that ∗ (on the left!), also called the
adjoint (sorry about that, you were warned!) carries L

¯
(V ;W ) isomorphically onto

L
¯
(W ;V ). Verify that if L ∈ L

¯
(V ;W ) and K ∈ L

¯
(W ;V ) then

L(v) • w = v •K(w) whenever v ∈ V, w ∈ W ⇔ K = L∗.

Verify that, under appropriate hypotheses,

(L ◦M)∗ = M∗ ◦ L∗.

Note an additional and rather significant ambiguity in the notation. If L : V →
W and W is a subspace of the inner product space Z then we have L∗ ∈ L

¯
(Z;V )

(same L but two L∗’s!). This same ambiguity was present when we first encountered
the adjoint.

0.10. Problem 7. Suppose V and W are finite dimensional Euclidean spaces and
L ∈ L

¯
(V ;W ). Then ||L|| is the square root of the largest eigenvalue of L∗ ◦ L.

0.11. Problem 8. Suppose V is a finite dimensional vector space. Let

ζ : L
¯
(V ;V ) → L

¯
(V ∗, V ;R)

be such that
ζ(L)(ω, v) = ω(L(v)), ω ∈ V ∗, v ∈ V.
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Verify that ζ is linear. Verify that it is an isomorphism by showing that if B is a
basis for V then ζ carries the basis ṽ∗v of L

¯
(V ;V ) to the basis ι(ṽ)v∗ of L

¯
(V ∗, V ;R).

0.12. Definition. Suppose V1, . . . , Vm are finite dimensional vector spaces. We set

V1 ⊗ · · · ⊗ Vm = L
¯
(V ∗

1 , . . . , V
∗
m;R)

and call this vector space the tensor product of V1, . . . , Vm. For each (v1, . . . , vm) ∈
V1 × · · · × Vm we set

v1 ⊗ · · · ⊗ vm = ι(v1) · · · ι(vm) ∈ V1 ⊗ · · · ⊗ Vm

and note that

V1 × · · · × Vm ∋ (v1, . . . , vm) 7→ v1 ⊗ · · · ⊗ vm ∈ V1 ⊗ · · · ⊗ Vm

is multilinear.

0.13. Problem 9. Show that if V1, . . . , Vm are finite dimensional vector spaces and
W is a vector space then

L
¯
(V1⊗· · ·⊗Vm;W ) ∋ µ 7→ (V1×· · ·×Vm ∋ (v1, . . . , vm) 7→ µ(v1⊗· · ·⊗vm) ∈ W ) ∈ L

¯
(V1, . . . , Vm;W )

carries L
¯
(V1 ⊗ · · · ⊗ Vm;W ) isomorphically onto L

¯
(V1, . . . , Vm;W ). In particular,

for any µ̃ ∈ L
¯
(V1, . . . , Vm;W ) there is one and only µ ∈ L

¯
(V1 ⊗ · · · ⊗ Vm;W ) such

that
µ̃(v1, . . . , vm) = µ(v1 ⊗ · · · ⊗ vm), vi ∈ Vi, i = 1, . . . ,m.

This is called the universal property of the tensor product.

0.14. Problem 10. Suppose V and W are finite dimensional vector spaces. By the
universal property of the tensor product there is a unique linear map

γ : V ∗ ⊗W → L
¯
(V ;W )

such that γ(ω ⊗ v) = ωv whenever ω ∈ V ∗ and w ∈ W . Show that γ is an
isomorphism by finding a basis of V ∗ ⊗W which is carried to a basis of L

¯
(V ;W )

by γ.

0.15. Problem 11. Suppose V and W are finite dimensional Euclidean spaces.
Verify that

L
¯
(V ;W )× L

¯
(V ;W ) ∋ (K,L) 7→ trace (K∗ ◦ L)

is an inner product.
Verify that

|L| ≤
√
dimV ||L|| and that ||L|| ≤ |L|.

Note that equality occurs in the left hand inequality if L∗ = L−1 which is to say if L
is orthogonal. Note that equality occurs in the right hand inequality if dimV = 1.

0.16.

0.17. Problem 12. Suppose V and W are finite dimensional Euclidean spaces.
Suppose L ∈ L

¯
(V ;W ). Show that

||L∗|| = ||L||.
Do this by first showing that

||L|| = sup{|L(v) • w| : v ∈ V, |v| ≤ 1, w ∈ W, |w| ≤ 1}.


