0.1. Definition. Suppose V1, ...,V,, and W are vector spaces. We say a function
pwVix-o-xVy, - W

is multilinear if it is linear in each of its m arguments when the other m — 1 are
held fixed. Let

LOVA,..., Vi W)
be the set of such . Note that L(V, ..., V,,; W) is a linear subspace of the vector
space of all W-valued functions on V; x --- x V,,, and is thus a vector space with
respect to pointwise addition and scalar multiplication.

Suppose w; € V*, i =1,...,m and w € W. Define

Wi wpw:Vp X xVy, =W
to have the value wy (v1) « - * Wi (U )w at (v1,...,0m) € Vi X -+ X V3, and note that

w1 ... wupw € L(Vy, ..., Vi W).
In case W = R and w = 1 one customarily writes

Wy Wi
for w1 - - wpw.
0.2. Problem 1. Suppose for each i = 1,2, V; is a finite dimensional vector space
of dimension n; and with ordered basis v;. Let € L(V1,V2;R) and let A € M7}
be such that
Aty ) = plvg,vy), i=1,...,n, j=1,...,no.

Show that there are w; € V;*, ¢ = 1,2, such that ;1 = wjws if and only if the rank
of A does not exceed 1.

0.3. Problem 2. Suppose Vi,...,V,, and W are finite dimensional. Let B; be a
basis for V;, i = 1,...,m and let C be a basis for W. Show that

= > W o,y
(V14ee sV, w)EBy X+ X By, X C'}

for each p € L(V4,...,V,,; W). Use this to show that
{v]...upw: (v1,...,V9m,w) € By X+ X By, x C}

is a basis for L(V4, ..., Vi,; W), concluding thereby that its dimension is 1y - - - 1, - 1.

0.4. Definition. Suppose now that V; has norm |-
norm |- |y. For each pn € L(Vy, ..., Vin; W) we let

v;, + =1,...,m and that W has

[ellva,... v = sup{|p(v1, - .., o) lw 2 v; € Vi and |uify; < 1},

Very often one omits the subscripts on the norms relying on the context to resolve
the resulting ambiguities.

0.5. Problem 3.
(1) Suppose pp € L(Vi,...,Vip; W) and M € [0,00). Then |u(v1,...,vm)| <
M|vq]|- - |vpm| whenever v; € V;, i =1,...,m if and only if ||u|| < M.
(2) |lp + v|| < ||pl| + ||v|| whenever p,v € L(Vi, ..., Vi W);
(3) lleul| = |e|l|p]| whenever ¢ € R and p € L(V4, ...,V W);
(4) It p € L(V1, ..., Vip; W) then p is continuous if and only if ||u|| < co.
1
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0.6. Problem 4. Suppose U,V,W are normed vector spaces, L € L(U;V) and
M € L(V;W). Then
|M o L|| < [[MI[||L]].

0.7. Problem 5. Suppose V is a finite dimensional Euclidean space. Show that the
mapping
Vov (Vai—oteveR)eV”

carries V' isomorphically onto V*. This map is called the polarity of the inner
product and we induce an inner product on V* by requiring that it be an isometry.
Conversely, if 8 carries V' isomorphically onto V* and satisfies the conditions

(i) B(v)(w) = B(w)(v), v,w € V and

(i) B(v)(v) > 0if v € V ~ {0}

then we may obtain an inner product on V by setting vew = B(v)(w), /v,w € V.

0.8. Problem 6. Verify that the adjoint mapping defined earlier is a linear isomor-
phism if V' and W above are finite dimensional. Do this by showing that the adjoint
mapping is linear (this is trivial) and that if B is a basis for V and C is a basis for
W then {v*w : v € B and w € C} is a basis for L(V,W); {wv*;v € B and w € C}
is a basis for L(W*,V*); and

(v*w)* = wv* whenever v € B and w € C.

(Here we have written w instead of ¢(w) for w € W as we indicated we might do
so when ¢ was defined.)

0.9. Definition. Let V and W be finite dimensional Euclidean spaces with polarities
[ and y, respectively. Let

=5 o() oy
where the * on the right is the adjoint introduced previously and where the one
on the left is being introduced now. Note that * (on the left!), also called the
adjoint (sorry about that, you were warned!) carries L(V; W) isomorphically onto
L(W;V). Verify that if L € L(V; W) and K € L(W;V) then

Lv)ew=ve K(w) wheneverveV, weW <« K=L"

*

Verify that, under appropriate hypotheses,
(LoM)*=M*oL".

Note an additional and rather significant ambiguity in the notation. If L : V —
W and W is a subspace of the inner product space Z then we have L* € L(Z;V)
(same L but two L*’s!). This same ambiguity was present when we first encountered
the adjoint.

0.10. Problem 7. Suppose V and W are finite dimensional Euclidean spaces and
L € L(V;W). Then ||L]| is the square root of the largest eigenvalue of L* o L.

0.11. Problem 8. Suppose V is a finite dimensional vector space. Let
C:L(V;V) = L(V*,V;R)

be such that
(D)w,0) = (L), weV*, veV.
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Verify that ( is linear. Verify that it is an isomorphism by showing that if B is a
basis for V then ¢ carries the basis 7*v of L(V; V) to the basis ¢«(0)v* of L(V*,V; R).

0.12. Definition. Suppose Vi, ..., V,, are finite dimensional vector spaces. We set
i@ -V, =LV ...,V :R)
and call this vector space the tensor product of V1, ..., V,,. Foreach (v1,...,v,) €

Vi x---xV, we set
VL@ @V = t(v1) (V) EVI® -+ @ Vi
and note that
Vix o xVyp3, . o) =201 Q- Quy Vi@V,
is multilinear.

0.13. Problem 9. Show that if Vi,...,V,, are finite dimensional vector spaces and
W is a vector space then

L(Vi® - @Vi; W) 3 o (Vi -xVin 3 (01, ., 0m) + (018 @) € W) € L(V4, ..

carries L(V} ® -+ ® V;,; W) isomorphically onto L(V4, ..., Vy,; W). In particular,
for any i € L(V4,..., Vip; W) there is one and only p € L(V; @ - -+ ® V,,,; W) such
that

vy, o) =p(v1 @ - Quy), v €V i=1,...,m.
This is called the universal property of the tensor product.

0.14. Problem 10. Suppose V and W are finite dimensional vector spaces. By the
universal property of the tensor product there is a unique linear map
v VW = L(V; W)
such that y(w ® v) = wv whenever w € V* and w € W. Show that v is an
isomorphism by finding a basis of V* ® W which is carried to a basis of L(V; W)
by 7.
0.15. Problem 11. Suppose V and W are finite dimensional Euclidean spaces.
Verify that
L(V;W) x L(V; W) > (K, L) — trace (K* o L)
is an inner product.
Verify that
|L| < vVdimV||L|| and that |[|L|| <|L|.
Note that equality occurs in the left hand inequality if L* = L~! which is to say if L
is orthogonal. Note that equality occurs in the right hand inequality if dimV = 1.

0.16.

0.17. Problem 12. Suppose V and W are finite dimensional Euclidean spaces.
Suppose L € L(V;W). Show that

L7 = [IL]-
Do this by first showing that
ILI| = sup{|L(v) s w| : v €V, [o| <1, w € W, Ju| < 1}.
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