
1. The natural numbers and arithmetic.

Theorem 1.1. Suppose, for each i = 1, 2, Xi is a nonempty set, <i well orders
Xi, Xi has no <i-limit point and no <i-greatest element.

Then there is one any only one f : X1 → X2 such that

x, y ∈ X1 and x <1 y ⇒ f(x) <2 f(y)

and rng f = X2.

Proof. We give a sketch and leave the details to the reader.
By virtue of the preceding theory of well ordered sets exactly one of the following

holds:

(i) There is an order preserving map f : X1 → X2 such that rng f = X2.
(ii) There is an order preserving map f : X1 → X2 such that rng f is an initial

segment of X2 not equal X2;
(iii) There is an order preserving map f : X2 → X1 such that rng f = X1 is an

initial segment of X1 not equal X1.

Exclude (ii) and (iii). □
1.1. The Peano postulates. Axiom. There is a nonempty well ordered set

N
with no limit points and no greatest element.

We let
<, 0, S

be the well ordering on N; least element of N; and the successor function of N,
respectively. We let

N+ = {n ∈ N : n > 0}.
The members of N are called natural numbers. We let 1 = S(0), 2 = S(1), 3 =
S(2), etc. (But what exactly does “etc.” mean here?) By virtue of the previous
Theorem we are assured that there is, up to the natural notion of isomorphism, one
such well ordered set.

Remark 1.1. Alternatively, we could have said that is a nonempty well ordered
set N with the property that the domain of the successor function is N and that
the range of the successor function is N ∼ {0}.

Theorem 1.2. Principle of induction. Suppose A is a subset of N such that
0 ∈ A and

n ∈ A ⇒ S(n) ∈ A.

Then A = N.

Proof. (Compare with the principle of transfinite induction.) Were it the case that
N ∼ A ̸= ∅, its least element, being nonzero, would be the successor of an element
of A. This contradicts the hypothesis that the successor of an element of A is a
member of A. □
Theorem 1.3. Defining a function by induction. Suppose

(i) Y is a set;
(ii) G = {g : for some n, n ∈ N and g : I(n) → Y };
(iii) G : G → Y .
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Then there is one and only one f such

f : N → Y

and such that

f(n) = G(f |I(n)) for each n in N.

Proof. This is a special case of defining a function by transfinite induction. □

Definition 1.1. A fundamental definition. Suppose X is a set.
X is finite if X ≈ I(n) for some n ∈ N;
X is countable if X is finite or X ≈ N;
X is infinite if X is not finite;
X is uncountable if X is not countable.

2. Basic theory of finite sets including arithmetic.

The following Theorem is basic to counting.

Theorem 2.1. Suppose m and n are natural numbers and I(m) ≈ I(n). Then
m=n.

Proof. We prove this by induction. Let A be the set of natural numbers n such
that if m is a natural number and I(m) ≈ I(n) then m=n.

It is evident that 0 ∈ A.
Suppose n ∈ A. We will show that S(n) ∈ A . The present theorem will then

follow by induction.
So suppose that m is a natural number and I(S(n)) ≈ I(m). Then, for some f ,

f : I(S(n)) → I(m),

f is univalent and the range of f equals I(m). Observe that m ̸= 0 so m = S(l) for
some natural number l.

Suppose f(n) = l. Then f |I(n) is univalent, has domain I(n) and has range I(l).
Since n ∈ A it follows that n = l so S(n) = m.

If, on the other hand, f(n) ̸= l we define

g : I(n) → I(l)

as follows. Let k be such that f(k) = l; note that k ∈ I(n). We let

g = {(k, f(n))} ∪ {(j, f(j)) : j ∈ I(n) ∼ {k}}.
One verifies that g is univalent and has range I(l). Since n ∈ A we infer that n = l
so S(n) = m. □

Definition 2.1. By virtue of the previous Theorem, for a finite set A we may set

|A| = n

where n is that natural number such that A ≈ I(n).

Theorem 2.2. Suppose A ⊂ B and B is finite. Then |A| ≤ |B| with equality only
if A = B.

Proof. Induct on |B| using an argument similar to that used in the proof of the
previous theorem. □

Theorem 2.3. Suppose A and B are finite sets. Then A ∪B is finite.
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Proof. Induct on |B| using the fact that if b ∈ B then A ∪ B = (A ∪ (B ∼ {b})) ∪
{b}. □

Theorem 2.4. Suppose A and B are finite sets. Then A×B is finite.

Proof. Induct on |B| using the previous theorem in conjunction with the fact that
if b ∈ B then A×B = (A× (B ∼ {b})) ∪ (A× {b}). □

Theorem 2.5. Suppose n ∈ N, f : I(n) → A, and rng f = A. Then A is finite.

Proof. Let B be the set of those m in I(n) which, for some a in A, are the least
members of f−1[{a}]. Then f |B is univalent and has range A. Thus A ≈ B and is
therefore finite because B ⊂ I(n). □

Definition 2.2. Definition of addition and substraction. Suppose m,n ∈ N.
Let

m+ n = |({0} × I(m)) ∪ ({1} × I(n))|
and let

mn = |I(m)× I(n)|.
We call these binary operations on N addition and multiplication, respectively.

Theorem 2.6. Addition and multiplication are associative and commutative.

Proof. This follows directly from the facts that {0} ×A) ∪ ({1} ×B ≈ {0} ×B) ∪
({1} ×A and A× (B × C) ≈ (A×B)× C whenever A,B,C are sets. □

Now all you have to do is remember your number facts and you’ll be promoted
to the third grade!

The following three Theorems follow directly from the definitions.

Theorem 2.7. n+ 0 = n for n ∈ N.

Theorem 2.8. S(n) = n+ 1 for n ∈ N.

Theorem 2.9. Suppose m,n ∈ N. Then

mn = 0 ⇔ 0 ∈ {m,n}.

Theorem 2.10. Suppose m and n are natural numbers. Then

m < n ⇔ m+ p = n for some positive natural number p.

Proof. Suppose m < n. Then P = {l ∈ N : m ≤ l < n} is finite and nonempty so
p = |P | > 0. Now

({0} × I(m)) ∪ ({1} × I(p)) ≈ I(m) ∪ P = I(n).

Thus m+ p = n.
On the other hand, suppose m+ p = n for some p > 0. Then

A = {0} × I(m) ⊂ ({0} × I(m)) ∪ ({1} × I(p)) = B

so m = |A| ≤ |B| = m+ p = n. Since B ∼ A is nonempty as p > 0, we infer from
Theorem 2.2 that m ̸= n. Thus m < n. □
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Theorem 2.11. Suppose m,n and p are natural numbers. Then

m+ n = m+ p ⇒ n = p.

Proof. Were it the case that n < p, we would have n+ q = p for some q > 0 so that

m+ n < (m+ n) + q = m+ (n+ q) = m+ p.

Similarly, one excludes n > p. □
Theorem 2.12. Suppose m,n and p are natural numbers and p > 0. Then

mn = mp ⇒ n = p.

Proof. Were it the case that n < p, we would have n+ q = p for some q > 0 so that

mn = m(p+ q) = mp+mq < mp

because mq > 0. Similarly, one excludes n > p. □
Theorem 2.13. The division algorithm. Suppose a ∈ N and b ∈ N ∼ {0}.
There is a unique member (q, r) of N× N such that

a = qb+ r and r < b.

Proof. For existence we induct on a. Indeed, if a, q, r ∈ N and a = qb+ r and r < b
then r + 1 ≤ b so

a+ 1 =

{
qb+ (r + 1) if r + 1 < b,

(q + 1)b if r + 1 = b.

For uniqueness, suppose qi, ri ∈ N and ri < b, i = 1, 2 and q1b+ r1 = q2b+ r2. If
q1 = q2 then r1 = r2 by cancellation. If q1 < q2 then q2 = q1 + s for some member
s of N ∼ {0} so sb + r1 = r2 by cancellation; this is impossible since that would
imply r2 = sb+ r2 ≥ sb ≥ b. One treats the case q2 < q1 similarly. □
Definition 2.3. For m,n ∈ N let

mn =
∣∣∣I(m)I(n)

∣∣∣ .
Exercise 2.1. Define e,o : N → N by setting

e(n) = 2n, o(n) = 2n+ 1, n ∈ N.
Show that e and o are univalent and that N is the disjoint union of their ranges.

Show that
N× N ∋ (m,n) 7→ 2mo(n) ∈ N

is univalent with range N ∼ {0}.
Use the foregoing to show that there is no natural number whose square is 2.


