
1. Metric spaces.

Definition 1.1. Let X be a set. We say ρ is a metric on X if

ρ : X ×X → {r ∈ R : r ≥ 0}
and

(i) ρ(x, y) = ρ(y, x) whenever x, y ∈ X;
(ii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) whenever x, y, z ∈ X.
(iii) If x, y ∈ X then ρ(x, y) = 0 if an only if x = y.

The inequality in (ii) is called the triangle inequality. A metric space is an
ordered pair (X, ρ) such that X is a set and ρ is a metric on X.

We now fix a set X and a metric ρ on X.
For each a ∈ X and each positive real number r we let

Ua(r) = {x ∈ X : ρ(x, a) < r} and we let Ba(r) = {x ∈ X : ρ(x, a) ≤ r}.
We say a subset U of X is open if for each a ∈ U there is a positive real number

ϵ such that Ua(ϵ) ⊂ U . We leave as an exercise to the reader the proof of the
fact that the family of open sets is a topology on X. This topology is called the
topology induced by the metric ρ; one proves this in exactly the same way we
proved the corresponding fact for Rn.

Suppose x is a sequence in X and b ∈ X. Note that

lim
ν→∞

xν = b

if and only if for each ϵ > 0 there is N ∈ N such that

ρ(xν , b) < ϵ whenever ν ∈ N and n ≥ N .

Theorem 1.1. Suppose a ∈ X and r is a positive real number. Then

Ua(r) is open and Ba(r) is closed.

Proof. Suppose b ∈ Ua(r). I claim that Ub(r − ρ(a, b)) ⊂ Ua(r). Indeed, suppose
x ∈ Ub(r − ρ(a, b)); then, by the triangle inequality and the fact that ρ(a, b) =
ρ(b, a),

ρ(x, a) ≤ ρ(x, b) + ρ(b, a) = ρ(x, a) + ρ(a, b) < (r − ρ(a, b)) + ρ(a, b) = r

so x ∈ Ua(r). Thus Ua(r) is open. The reader should verify that, in a similar
fashion, one may prove that X ∼ Ba(r) is open so that Ba(r) is closed. □

Theorem 1.2. Then the topology induced by the metric ρ is Hausdorff.

Proof. Suppose x, y ∈ X and x ̸= y. Let r = ρ(x, y)/2, note that r > 0 and let
U = Ux(r) and V = Uy(r). Then, by the previous theorem, U and V are open.
Suppose z ∈ U . Then, by the triangle inequality and the fact that ρ(x, z) = ρ(z, x),
we infer that

ρ(z, y) ≥ ρ(x, y)− ρ(x, z) = ρ(x, y)− ρ(z, x) > r − r/2 = r/2

so z ̸∈ V . Thus U ∩ V = ∅ and this proves that X is Hausdorff. □

Definition 1.2. Whenever A ⊂ X and x ∈ X we let

ρ(a,A) = inf{ρ(x, y) : y ∈ A}
and we call this number the distance from a to A.
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Theorem 1.3. Suppose A is a subset of X. Then

(i) |ρ(x,A)− ρ(y,A)| ≤ ρ(x, y) whenever x, y ∈ X;
(ii) clA = {x ∈ X : ρ(x,A) = 0};
(iii) intA = {x ∈ X : ρ(x,X ∼ A) > 0}.

Proof. We leave this as an exercise to the reader. In proving (i) one makes use of
the fact that if a, b and c are real numbers then

|a− b| ≤ c ⇔ a ≤ b+ c and b ≤ a+ c

which implies that
||a| − |b|| ≤ |a− b|.

□
Definition 1.3. Suppose A is a subset of X. We let

diamA = sup{ρ(x, y) : x, y ∈ A}
and call this number the diameter of A. We say A is bounded if diamA < ∞.

2. Completeness.

Definition 2.1. We say (X, ρ) is complete (or when it is clear from the context
what ρ is that X is complete) if ∩

C ≠ ∅

whenever C is a nonempty nested family of nonempty closed subsets of X such that

inf{diamC : C ∈ C} = 0.

Note that if C is as in the preceding definition then
∩
C has exactly one point.

A sequence x in X is a Cauchy sequence if

inf{diam {xm : m ∈ N and m ≥ n} : n ∈ N} = 0.

This is equivalent to the statement that for each positive real number ϵ there is a
nonnegative integer N such that

ρ(xl, xm) ≤ ϵ whenever l ≥ N and m ≥ N.

Proposition 2.1. X is complete if and only if every Cauchy sequence converges.

Proof. Suppose X is complete and x is a Cauchy sequence in X. For each positive
integer m let Cm = cl {xn : m ∈ N and m ≥ n} and note that C = {Cm : m ∈ N is
a nonempty nested family of closed subsets of X with the property that

inf{diamC : C ∈ C} = 0.

Because X is complete there is a unique member l of
∩

C. We now show that l is
the limit of the sequence x. Let ϵ > 0. Chooose N ∈ N such that diamCN ≤ ϵ.
If n ≥ N then both l and xn are members of Cn which is a subset of CN so
ρ(xn, l) ≤ diamCn ≤ diamCN ≤ ϵ.

On the other hand, suppose X is a metric space in which every Cauchy sequence
converges and let C be a nonempty nested family of nonempty closed sets with the
property that

inf{diamC : C ∈ C} = 0.

In case there is C ∈ C such that diamC = 0 then there is c ∈ X such that
C = {c} so ∩C = {c}. So suppose diamC > 0 for each C ∈ C. Choose a
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sequence C in C such that diamCν+1 < diamCν whenever ν ∈ N and such that
limν→∞ diamCν = 0. Note that Cν+1 ⊂ Cν whenever ν ∈ N for if this were not
the case for some ν ∈ N we would have Cν ⊂ Cν+1 since C is nested and this would
imply diamCν ≤ diamCν+1. Let x be a sequence in X such that xν ∈ Cν for
each m ∈ N. Note that we have used the Axiom of Choice twice. Evidently, x is a
Cauchy sequence. Let c be its limit and suppose B ∈ C. Choose ν ∈ N such that
diamCν < diamB. For any µ ∈ N with µ ≥ ν we have Cµ ⊂ Cν ⊂ B so, by a
preceding Theorem

dist (c,B) ≤ dist (c, Cµ) ≤ ρ(c, xµ) + dist (xµ, Cµ) = ρ(c, xµ) → 0 as ν → ∞.

Thus dist (c,B) = 0 so, again by a preceding Theorem, c ∈ clB = B Thus c ∈
∩C. □
Proposition 2.2. Suppose A ⊂ X and σ = ρ|(A×A). Then (A, σ) is complete if
and only if A is a closed subset of X.

Proof. Suppose (A, σ) is complete. Let b be a point of the ρ-closure of A. For each
ϵ > 0 let Cϵ = A ∩ {x ∈ X : ρ(x, b) ≤ ϵ} and note that Cϵ is σ-closed. Moreover,

∅ ≠ A∩{x ∈ X : ρ(x, b) < ϵ} ⊂ A∩Cϵ and diamCϵ ≤ 2ϵ whenever 0 < ϵ < ∞.

Thus C = {Cϵ : 0 < ϵ < ∞} is a nonempty family of nonempty σ-closed sets; thus
there is c ∈ A such that {c} = ∩C. It is evident that b = c so b ∈ A and, therefore,
A is ρ-closed.

Suppose A is ρ-closed. Let x be a Cauchy sequence in A. Evidently, x is a Cauchy
sequence in X. As (X, ρ) is complete there is b ∈ X such that limν→∞ xν = b. Since
A is ρ-closed we infer that b ∈ A. Thus (A, σ) is complete. □
Theorem 2.1. Rn is complete.

Proof. We have already proved this in the case n = 1.
Suppose x is a Cauchy sequence in Rn. For each i ∈ {1, . . . , n} let pi : Rn → R

assign to a ∈ Rn its ith coordinate; note that |pi(a)| ≤ |a| whenever a ∈ Rn. This
implies pi ◦ x is a Cauchy sequence in R for each i ∈ {1, . . . , n} which, therefore,
converges to some Li ∈ R. Let L ∈ Rn be such that pi(L) = Li for i ∈ {1, . . . , n}.
Then

|xν − L| ≤
√
nmax{|pi(x)− pi(L)| : i ∈ {1, . . . , n}} → 0 as ν → ∞.

That is, limν→∞ xν = L. □

3. The Lebesgue radius of an open covering.

Definition 3.1. Suppose U is a family of open subsets of X. X. For each x ∈ ∪U
we let

ιU (x) = {r : 0 < r < ∞ and Ux(r) ⊂ U for some U ∈ U};
evidently ιU (x) is a nonempty open interval with infimum 0. For each x ∈ ∪U we
let

ρU (x) = sup ιU (x)

and note that 0 < ρU (x) ≤ ∞. We let

lU = inf{ρU (x) : x ∈ X}.
We call lU the Lebesgue radius of U . Evidently,

0 < r < lU ⇔ for each a ∈ X there is U ∈ U such that Ua(r) ⊂ U.
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Lemma 3.1. Suppose U is an open covering of X and 0 < s < ∞. Then {x ∈ X :
ρU (x) > s} is open.

Proof. Let G = {x ∈ X : ρU (x) > s} and suppose a ∈ G. Choose t, u such that
s < t < u < ρU (a). Next, choose U ∈ U such that Ua(u) ⊂ U .

Suppose x ∈ Ua(u− t). Then

Ux(t) ⊂ Ua(u) ⊂ U

so ρU (x) ≥ t > s. That is, Ux(u− t) ⊂ G so G is open. □

Theorem 3.1. Suppose X is compact and U is an open covering of X. Then
lU > 0.

Proof. Let

W = {{x ∈ X : ρU (x) > s} : 0 < s < ∞}.

From the Lemma we infer that W is an open covering of X. Since X is compact
there is a finite subfamily of W whose union contains X. Since W is nested we
infer that some member of W contains X; that is, there is s such that 0 < s < ∞
and X ⊂ {x ∈ X : ρU (x) > s}; we have s ≤ lU for any such s. □

4. Uniform continuity.

Definition 4.1. Suppose (Y, σ) is a metric space, A ⊂ X and f : A → Y . We say
f is uniformly continuous if for each ϵ > 0 there is δ > 0 such that

a, x ∈ A and ρ(x, a) < δ ⇒ σ(f(x), f(a)) < ϵ.

Theorem 4.1. Suppose (X, ρ) and (Y, σ) are metric spaces, X is compact,

f : X → Y

and f is continuous.
Then f is uniformly continuous.

Proof. Let ϵ > 0. Let

U = {U : U is an open subset of X and diam f [U ] < ϵ}.

Suppose a ∈ X. Since f is continuous at a we may choose η > 0 such that
f [Ua(η)] ⊂ Uf(a)(ϵ/2). Thus, with U = Ua(η), diam f [U ] < ϵ so U is an open
covering of X.

Since X is compact lU is positive so we may choose δ such that 0 < δ < lU .
Suppose a ∈ X. There is U ∈ U such that Ua(δ) ⊂ U . Thus

diam f [Ua(δ)] ≤ diam f [U ] < ϵ.

Thus

x ∈ A and ρ(x, a) < δ ⇒ σ(f(x), f(a)) ≤ diam f [U ] < ϵ.

□
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5. Total boundedness.

Definition 5.1. X is totally bounded if for each ϵ > 0 there is a finite family F
of subsets of X such that

(1) X =
∪

F

and

(2) diamF ≤ ϵ whenever F ∈ F .

Theorem 5.1. X is compact if and only if it is complete and totally bounded.

Proof. We leave as an exercise for the reader the straightforward verification that
if X is compact then X is complete and totally bounded.

Suppose X is complete and totally bounded and let U be an open covering of X.
Call a subset A of X good if there is a finite subfamily of U whose union contains
A and call a subset A of X bad if it is not good. Note that the union of a finite
family of good sets is good. We want show that X is good.

Suppose X were bad. Let r1, r2, . . . be a sequence of positive real numbers with
limit zero. For each i = 1, 2, . . . let Fi be a finite subset of X such that

X = ∪{Bx(ri) : x ∈ Fi};

such sets exist because X is totally bounded. There would be x1 ∈ F1 such that
Bx1(r1) is bad; otherwise X would be the union of the finite family {Bx(r1) :
x ∈ F1} of good sets and would therefore be good. There would be x2 ∈ F2 such
that Bx1(r1) ∩Bx2(r2) is bad; otherwise Bx1(r1) would be the union of the family
{Bx1(r1)∩Bx(r2) : x ∈ F2} of good sets and would therefore be good. Continuing
in this way we would obtain a sequence x1, x2, . . . in X such that

Cm = ∩m
i=1Bri(xi) would be bad.

These sets would be nonempty since the empty set is good. By the completeness
of X there would be a point c ∈

∩∞
m=1 Cm. But c ∈ U for some U ∈ U and,

since diamCm tends to zero as m tends to infinity, we would have Cm ⊂ U for
sufficiently large m. For these m, Cm would be good. □

Corollary 5.1. A subset of Rn is compact if and only if it is closed and bounded.

Proof. Suppose A is a compact subset of Rn. Since Rn is Hausdorff, A is closed by
virtue of a previous Theorem. Moreover, {U0(r) : 0 < r < ∞} is an open covering
of Rn and therefore A; since A is compact, it has a finite subfamily whose union
contains A. It follows that A ⊂ U0(r) for some positive real number r so A is
bounded.

Suppose A is a closed and bounded subset of Rn. It follows easily from the
fact that Rn is complete and A is closed that A , considered as a metric space, is
complete. A is totally bounded as well; in fact, for any positive real number ϵ the
set A is contained in the union of a finite subfamily of the family

{Bϵz(
√
nϵ) : z ∈ Zn}

because A is bounded. It now follows from the previous Theorem that A is compact.
□



6

6. Lipschitz constants.

Suppose (Y, σ) is a metric space, A ⊂ X and

f : A → Y.

Proposition 6.1. f is continuous if and only if for each a ∈ X and each ϵ ∈ (0,∞)
there is δ ∈ (0,∞) such that

f [Ua(δ)] ⊂ Uf(a)(ϵ).

Proof. Proceed as we did in the case when X = Rn and Y = Rm □

Definition 6.1. We let
Lip(f)

be the infimum of the set of M ∈ [0,∞) such that

(1) σ(f(x), f(a)) ≤ Mρ(x, a) whenever x, a ∈ X.

note that (1) holds with M = Lip(f). We call this extended real number the
Lipschitz constant of f . We say f is Lipschitzian if Lip(f) < ∞. We say f is
locally Lipschitzian if Lip(f |B) < ∞ whenever B is a bounded subset of X.

Note that

(2) diam f [B] ≤ Lip(f)diamB whenever B ⊂ X.

Proposition 6.2. If f is locally Lipschitzian then f is continuous.

Proof. This follows directly from (2). □
Theorem 6.1. Suppose Y is complete and Lip(f) < ∞. Then f has a unique
continuous extension to clA and the Lipschitz constant of this extension equals the
Lipschitz constant of f .

Proof. Let F be the set of (a, b) ∈ (clA)× Y such that

b ∈
∩

0<δ<∞

cl f [Ua(δ)].

Since
f [Ua(δ)] ̸= ∅

and
diam f [Ua(δ)] ≤ Lip(f)diamUa(δ) ≤ 2δ for any a ∈ clA

and since Y is complete we infer that F is a function whose domain is the closure
of A. Since

f(a) ∈
∩

0<δ<∞

cl f [Ua(δ)]

for any a ∈ A we find that F |A = f .
Suppose ci ∈ clA, i = 1, 2, and let r and s be positive real numbers. Since

F (ci) ∈ cl f [Uci(r)] we may choose ai ∈ Uci(r) such that σ(F (ci), f(ai) < s,
i = 1, 2. Then

σ(F (c1), F (c2)) ≤ σ(F (c1), f(a1)) + σ(f(a1), f(a2)) + σ(f(a2), F (c2))

≤ s+ Lip(f)ρ(a1, a2) + s

≤ s+ Lip(f)(ρ(a1, c1) + ρ(c1, c2) + ρ(c2, a2)) + s

= 2s+ Lip(f)(2r + ρ(c1, c2));
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owing to the arbitrariness of r and s we infer that

σ(F (c1), F (c2)) ≤ Lip(f)ρ(c1, c2).

it follows that Lip(F ) ≤ Lip(f).
Finally, suppose that g : clA → Y is continuous, g|A = f and c ∈ clA. Let

ϵ > 0. Then there is δ > 0 such that

x ∈ Bc(δ) ∩ clA ⇒ g(x) ∈ Bg(c)(ϵ).

Let a ∈ A ∩Bc(min{δ, ϵ}); such an a exists because c ∈ clA. Then, since g(a) =
f(a) = F (a) we have

σ(g(c), F (c)) ≤ σ(g(c), g(a)) + σ(F (a), F (c)) ≤ ϵ+ Lip(F )ϵ.

Owing to the arbitrariness of ϵ we infer that g(c) = F (c). Thus g = F . □


