1. METRIC SPACES.

Definition 1.1. Let X be a set. We say p is a metric on X if
p:XxX—->{reR:r>0}
and

(i) p(z,y) = p(y,x) whenever z,y € X;
(i) p(z,2) < p(z,y) + p(y, 2) whenever z,y, 2 € X.
(iii) If z,y € X then p(x,y) =0 if an only if z = y.
The inequality in (ii) is called the triangle inequality. A metric space is an
ordered pair (X, p) such that X is a set and p is a metric on X.

We now fix a set X and a metric p on X.
For each a € X and each positive real number r we let

U%(r)={x € X :p(x,a) <r} and we let B*(r) = {x € X : p(x,a) < r}.

We say a subset U of X is open if for each a € U there is a positive real number
€ such that U%() C U. We leave as an exercise to the reader the proof of the
fact that the family of open sets is a topology on X. This topology is called the
topology induced by the metric p; one proves this in exactly the same way we
proved the corresponding fact for R”.

Suppose z is a sequence in X and b € X. Note that

lim z, =b
V—r00

if and only if for each € > 0 there is N € N such that
p(xy,b) < e whenever v € Nand n > N.

Theorem 1.1. Suppose a € X and r is a positive real number. Then
U?(r) is open and B®(r) is closed.

Proof. Suppose b € U%(r). 1 claim that U®(r — p(a, b)) C U%(r). Indeed, suppose
x € Ub(r — p(a,b)); then, by the triangle inequality and the fact that p(a,b) =
p(b, a),

p(z,a) < p(z,b) + p(b,a) = p(x,a) + p(a,b) < (r — p(a,b)) + pla,b) =r
so x € U*(r). Thus U%r) is open. The reader should verify that, in a similar
fashion, one may prove that X ~ B®(r) is open so that B*(r) is closed. O
Theorem 1.2. Then the topology induced by the metric p is Hausdorff.

Proof. Suppose z,y € X and = # y. Let r = p(x,y)/2, note that r > 0 and let
U = U*(r) and V = U¥Y(r). Then, by the previous theorem, U and V are open.
Suppose z € U. Then, by the triangle inequality and the fact that p(z, 2) = p(z, ),
we infer that

p(z,y) = p(z,y) — plx, 2) = p(x,y) — p(z,2) >r—r/2=71/2
so z & V. Thus UNV = () and this proves that X is Hausdorff. O

Definition 1.2. Whenever A C X and z € X we let
pla, A) = inf{p(z,y) : y € A}

and we call this number the distance from a to A.
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Theorem 1.3. Suppose A is a subset of X. Then
(i) |p(z, A) — p(y, A)| < p(x,y) whenever z,y € X;
(ii) clA={z € X : p(z, A) = 0};
(i) int A={x € X : p(x, X ~ A) > 0}.
Proof. We leave this as an exercise to the reader. In proving (i) one makes use of
the fact that if a,b and ¢ are real numbers then
la—bl<c & a<b4+candb<a+c

which implies that
lla| = [b]] < a —b].

Definition 1.3. Suppose A is a subset of X. We let
diam A = sup{p(z,y) : z,y € A}
and call this number the diameter of A. We say A is bounded if diam A < oc.

2. COMPLETENESS.

Definition 2.1. We say (X, p) is complete (or when it is clear from the context
what p is that X is complete) if
(c#0

whenever C is a nonempty nested family of nonempty closed subsets of X such that
inf{diamC : C € C} =0.

Note that if C is as in the preceding definition then [ C has exactly one point.
A sequence z in X is a Cauchy sequence if

inf{diam {z,,, : m € Nand m >n}:n € N} =0.

This is equivalent to the statement that for each positive real number € there is a
nonnegative integer N such that

p(xy, ) < € whenever [ > N and m > N.
Proposition 2.1. X is complete if and only if every Cauchy sequence converges.

Proof. Suppose X is complete and « is a Cauchy sequence in X. For each positive
integer m let C, = cl{z,, : m € N and m > n} and note that C = {C,, : m € N is
a nonempty nested family of closed subsets of X with the property that

inf{diamC : C € C} =0.

Because X is complete there is a unique member [ of (|C. We now show that [ is
the limit of the sequence x. Let € > 0. Chooose N € N such that diam Cy < e.
If n > N then both [ and z, are members of C, which is a subset of Cn so
p(n,l) <diam C,, < diamCy <e.

On the other hand, suppose X is a metric space in which every Cauchy sequence
converges and let C be a nonempty nested family of nonempty closed sets with the
property that

inf{diamC : C € C} = 0.
In case there is C' € C such that diamC = 0 then there is ¢ € X such that
C = {c} so NC = {c}. So suppose diamC > 0 for each C' € C. Choose a
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sequence C' in C such that diam C,; < diam C, whenever v € N and such that
lim, _, o diam C),, = 0. Note that C,;; C C, whenever v € N for if this were not
the case for some v € N we would have C,, C C, 41 since C is nested and this would
imply diam C,, < diamC, ;. Let = be a sequence in X such that x, € C, for
each m € N. Note that we have used the Axiom of Choice twice. Evidently, x is a
Cauchy sequence. Let ¢ be its limit and suppose B € C. Choose v € N such that
diam C, < diam B. For any u € N with ¢ > v we have C, C C,, C B so, by a
preceding Theorem

dist (¢, B) < dist (¢,C},) < p(c, x,) + dist (z,,C,) = p(c,z,) -0 as v — oo.

Thus dist (¢, B) = 0 so, again by a preceding Theorem, ¢ € ¢l B = B Thus ¢ €
NC. O

Proposition 2.2. Suppose A C X and o = p|(A x A). Then (4, o) is complete if
and only if A is a closed subset of X.

Proof. Suppose (A, o) is complete. Let b be a point of the p-closure of A. For each
e>01let Cc=AN{x e X :p(x,b) < e} and note that C. is o-closed. Moreover,

0+ An{z € X : p(x,b) < e} C ANC. and diamC, < 2¢ whenever 0 < € < oco.

Thus C = {C : 0 < € < oo} is a nonempty family of nonempty o-closed sets; thus
there is ¢ € A such that {c} = NC. It is evident that b = ¢ so b € A and, therefore,
A is p-closed.

Suppose A is p-closed. Let x be a Cauchy sequence in A. Evidently, x is a Cauchy
sequence in X. As (X, p) is complete there is b € X such that lim,_, ., x, = b. Since
A is p-closed we infer that b € A. Thus (A, o) is complete. O

Theorem 2.1. R” is complete.

Proof. We have already proved this in the case n = 1.

Suppose x is a Cauchy sequence in R™. For each i € {1,...,n} let p; : R" = R
assign to @ € R™ its ith coordinate; note that |p;(a)| < |a| whenever a € R™. This
implies p; o z is a Cauchy sequence in R for each i € {1,...,n} which, therefore,
converges to some L; € R. Let L € R™ be such that p;(L) = L; for i € {1,...,n}.
Then

|z, — L| < Vnmax{|p;(x) —p;(L)| :i € {1,...,n}} -0 asv— oo.

That is, lim, .z, = L. [l

3. THE LEBESGUE RADIUS OF AN OPEN COVERING.

Definition 3.1. Suppose U is a family of open subsets of X. X. For each x € UU
we let
wi(x) ={r:0<r <ooand U*(r) C U for some U € U};

evidently ¢ (z) is a nonempty open interval with infimum 0. For each z € WU we
let

pu(x) = sup ()
and note that 0 < py(z) < co. We let
Iy = inf{py(z) : 2z € X}.
We call [;; the Lebesgue radius of U/. Evidently,
0<r<ly & foreach a € X there is U € U such that U*(r) C U.
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Lemma 3.1. Suppose U is an open covering of X and 0 < s < co. Then {z € X :
pu(x) > s} is open.

Proof. Let G = {z € X : py(x) > s} and suppose a € G. Choose t,u such that
s <t<wu< py(a). Next, choose U € U such that U*(u) C U.
Suppose z € U%(u — t). Then

U*(t) cU%u) CU
so pu(z) >t >s. That is, U (u —t) C G so G is open. O
Theorem 3.1. Suppose X is compact and U/ is an open covering of X. Then
lyy > 0.
Proof. Let
W={{zeX: pylx)>s}:0<s <00}

From the Lemma we infer that W is an open covering of X. Since X is compact
there is a finite subfamily of WW whose union contains X. Since W is nested we
infer that some member of W contains X; that is, there is s such that 0 < s < 00
and X C {z € X : py(x) > s}; we have s < [y for any such s. O

4. UNIFORM CONTINUITY.

Definition 4.1. Suppose (Y, o) is a metric space, A C X and f: A — Y. We say
f is uniformly continuous if for each € > 0 there is § > 0 such that

a,z € Aand p(z,a) < = o(f(x), f(a)) <e.
Theorem 4.1. Suppose (X, p) and (Y, o) are metric spaces, X is compact,
f:X—=Y

and f is continuous.
Then f is uniformly continuous.

Proof. Let € > 0. Let
U ={U : U is an open subset of X and diam f[U] < ¢}.

Suppose a € X. Since f is continuous at a we may choose 7 > 0 such that
f[U%(n)] € UF@(e/2). Thus, with U = U?(y), diam f[U] < € so U is an open
covering of X.
Since X is compact [y, is positive so we may choose § such that 0 < d < Iyy.
Suppose a € X. There is U € U such that U*(§) C U. Thus

diam f[U%(4)] < diam f[U] < e.

Thus
x € Aand p(z,a) <d = o(f(x), f(a)) < diam f[U] <e.



5. TOTAL BOUNDEDNESS.

Definition 5.1. X is totally bounded if for each € > 0 there is a finite family F
of subsets of X such that

(1) x=r

and

(2) diam F' < e whenever F € F.

Theorem 5.1. X is compact if and only if it is complete and totally bounded.

Proof. We leave as an exercise for the reader the straightforward verification that
if X is compact then X is complete and totally bounded.

Suppose X is complete and totally bounded and let U be an open covering of X.
Call a subset A of X good if there is a finite subfamily of ¢/ whose union contains
A and call a subset A of X bad if it is not good. Note that the union of a finite
family of good sets is good. We want show that X is good.

Suppose X were bad. Let r1,79,... be a sequence of positive real numbers with
limit zero. For each i = 1,2, ... let F; be a finite subset of X such that

X =U{B*(ry) : x € F; };

such sets exist because X is totally bounded. There would be z; € F; such that
B”1(ry) is bad; otherwise X would be the union of the finite family {B*(r;) :
x € F1} of good sets and would therefore be good. There would be zo € Fy such
that B**(r1) N B*2(ry) is bad; otherwise B**(r1) would be the union of the family
{B®1(r1) NB*(r) : « € Fy} of good sets and would therefore be good. Continuing
in this way we would obtain a sequence x1, xs, ... in X such that

Cpm = N2 By, (x;) would be bad.

These sets would be nonempty since the empty set is good. By the completeness
of X there would be a point ¢ € ()-_; Cp,. But ¢ € U for some U € U and,
since diam C,,, tends to zero as m tends to infinity, we would have C,, C U for
sufficiently large m. For these m, C), would be good. O

Corollary 5.1. A subset of R” is compact if and only if it is closed and bounded.

Proof. Suppose A is a compact subset of R™. Since R™ is Hausdorff, A is closed by
virtue of a previous Theorem. Moreover, {U°(r) : 0 < r < oo} is an open covering
of R™ and therefore A; since A is compact, it has a finite subfamily whose union
contains A. It follows that A C U°(r) for some positive real number r so A is
bounded.

Suppose A is a closed and bounded subset of R™. It follows easily from the
fact that R™ is complete and A is closed that A , considered as a metric space, is
complete. A is totally bounded as well; in fact, for any positive real number € the
set A is contained in the union of a finite subfamily of the family

{B“*(V/ne) : z € Z"}

because A is bounded. It now follows from the previous Theorem that A is compact.
O



6. LIPSCHITZ CONSTANTS.
Suppose (Y, 0) is a metric space, A C X and
fiA=Y.

Proposition 6.1. f is continuous if and only if for each a € X and each € € (0, 00)
there is § € (0, 00) such that

FIU(8)] c U/ (e).
Proof. Proceed as we did in the case when X = R" and Y = Rm ([l

Definition 6.1. We let

Lip(f)
be the infimum of the set of M € [0, 00) such that
(1) o(f(x), f(a)) < Mp(z,a) whenever z,a € X.

note that (1) holds with M = Lip(f). We call this extended real number the
Lipschitz constant of f. We say f is Lipschitzian if Lip(f) < co. We say f is
locally Lipschitzian if Lip(f|B) < oo whenever B is a bounded subset of X.

Note that
(2) diam f[B] < Lip(f)diam B whenever B C X.
Proposition 6.2. If f is locally Lipschitzian then f is continuous.

Proof. This follows directly from (2). O

Theorem 6.1. Suppose Y is complete and Lip(f) < oco. Then f has a unique
continuous extension to cl A and the Lipschitz constant of this extension equals the
Lipschitz constant of f.

Proof. Let F be the set of (a,b) € (cl A) x Y such that
be [ clfu*s).
0<6<00
Since
fIU“0)] #0
and
diam f[U%($)] < Lip(f)diam U*(4) < 26 for any a € c1 A
and since Y is complete we infer that F' is a function whose domain is the closure

of A. Since
flaye [ e f[us()
0<d<o0
for any a € A we find that F|A = f.

Suppose ¢; € clA, i = 1,2, and let r and s be positive real numbers. Since
F(c;) € cl f[U%(r)] we may choose a; € U (r) such that o(F(¢;), f(a;) < s,
i=1,2. Then

o(F(c1), F(e2)) < o(F(er), far)) + o (f(a1), flaz)) + o(f(az), F(c2))
< s+ Lip(f)p(a1,az2) + s
< s+ Lip(f)(p(a1, c1) + plcr, c2) + plez, az)) + s
)

2s + Lip(f)(2r + p(c1,¢2));



owing to the arbitrariness of r and s we infer that

o(F(c1), F(c2)) < Lip(f)p(er, c2).
it follows that Lip(F) < Lip(f).
Finally, suppose that g : clA — Y is continuous, g|A = f and ¢ € cl A. Let
€ > 0. Then there is § > 0 such that

reB)NclA = g(z) e B (e).

Let a € ANB°(min{d, €}); such an a exists because ¢ € cl A. Then, since g(a) =
f(a) = F(a) we have

a(g(c), F(c)) < a(g(e), g(a)) + o(F(a), F(c)) < e + Lip(F)e.
Owing to the arbitrariness of € we infer that g(c¢) = F'(c). Thus g = F. O



