1. Metric spaces.

Definition 1.1. Let X be a set. We say ρ is a **metric on** X if

 $\rho: X \times X \to \{r \in \mathbb{R} : r \ge 0\}$

and

(i) $\rho(x, y) = \rho(y, x)$ whenever $x, y \in X$;

(ii) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ whenever $x, y, z \in X$.

(iii) If $x, y \in X$ then $\rho(x, y) = 0$ if an only if x = y.

The inequality in (ii) is called the **triangle inequality**. A **metric space** is an ordered pair (X, ρ) such that X is a set and ρ is a metric on X.

We now fix a set X and a metric ρ on X.

For each $a \in X$ and each positive real number r we let

$$\mathbf{U}^{a}(r) = \{x \in X : \rho(x, a) < r\}$$
 and we let $\mathbf{B}^{a}(r) = \{x \in X : \rho(x, a) \le r\}.$

We say a subset U of X is **open** if for each $a \in U$ there is a positive real number ϵ such that $\mathbf{U}^{a}(\epsilon) \subset U$. We leave as an exercise to the reader the proof of the fact that the family of open sets is a topology on X. This topology is called the **topology induced by the metric** ρ ; one proves this in exactly the same way we proved the corresponding fact for \mathbb{R}^{n} .

Suppose x is a sequence in X and $b \in X$. Note that

$$\lim_{\nu \to \infty} x_{\nu} = b$$

if and only if for each $\epsilon > 0$ there is $N \in \mathbb{N}$ such that

 $\rho(x_{\nu}, b) < \epsilon$ whenever $\nu \in \mathbb{N}$ and $n \ge N$.

Theorem 1.1. Suppose $a \in X$ and r is a positive real number. Then

 $\mathbf{U}^{a}(r)$ is open and $\mathbf{B}^{a}(r)$ is closed.

Proof. Suppose $b \in \mathbf{U}^a(r)$. I claim that $\mathbf{U}^b(r - \rho(a, b)) \subset \mathbf{U}^a(r)$. Indeed, suppose $x \in \mathbf{U}^b(r - \rho(a, b))$; then, by the triangle inequality and the fact that $\rho(a, b) = \rho(b, a)$,

$$\rho(x, a) \le \rho(x, b) + \rho(b, a) = \rho(x, a) + \rho(a, b) < (r - \rho(a, b)) + \rho(a, b) = r$$

so $x \in \mathbf{U}^a(r)$. Thus $\mathbf{U}^a(r)$ is open. The reader should verify that, in a similar fashion, one may prove that $X \sim \mathbf{B}^a(r)$ is open so that $\mathbf{B}^a(r)$ is closed. \Box

Theorem 1.2. Then the topology induced by the metric ρ is Hausdorff.

Proof. Suppose $x, y \in X$ and $x \neq y$. Let $r = \rho(x, y)/2$, note that r > 0 and let $U = \mathbf{U}^x(r)$ and $V = \mathbf{U}^y(r)$. Then, by the previous theorem, U and V are open. Suppose $z \in U$. Then, by the triangle inequality and the fact that $\rho(x, z) = \rho(z, x)$, we infer that

$$\rho(z,y) \ge \rho(x,y) - \rho(x,z) = \rho(x,y) - \rho(z,x) > r - r/2 = r/2$$

so $z \notin V$. Thus $U \cap V = \emptyset$ and this proves that X is Hausdorff.

Definition 1.2. Whenever $A \subset X$ and $x \in X$ we let

$$\rho(a, A) = \inf\{\rho(x, y) : y \in A\}$$

and we call this number the **distance from** a **to** A.

Theorem 1.3. Suppose A is a subset of X. Then

- (i) $|\rho(x, A) \rho(y, A)| \le \rho(x, y)$ whenever $x, y \in X$;
- (ii) $\mathbf{cl} A = \{x \in X : \rho(x, A) = 0\};$
- (iii) int $A = \{x \in X : \rho(x, X \sim A) > 0\}.$

Proof. We leave this as an exercise to the reader. In proving (i) one makes use of the fact that if a, b and c are real numbers then

$$|a-b| \leq c \iff a \leq b+c \text{ and } b \leq a+c$$

which implies that

$$||a| - |b|| \le |a - b|.$$

Definition 1.3. Suppose A is a subset of X. We let

$$\operatorname{diam} A = \sup\{\rho(x, y) : x, y \in A\}$$

and call this number the **diameter of** A. We say A is **bounded** if **diam** $A < \infty$.

2. Completeness.

Definition 2.1. We say (X, ρ) is **complete** (or when it is clear from the context what ρ is that X is **complete**) if

$$\bigcap \mathcal{C} \neq \emptyset$$

whenever C is a nonempty nested family of nonempty closed subsets of X such that

 $\inf\{\operatorname{diam} C: C \in \mathcal{C}\} = 0.$

Note that if C is as in the preceding definition then $\bigcap C$ has exactly one point. A sequence x in X is a **Cauchy sequence** if

 $\inf \{ \operatorname{diam} \{ x_m : m \in \mathbb{N} \text{ and } m \ge n \} : n \in \mathbb{N} \} = 0.$

This is equivalent to the statement that for each positive real number ϵ there is a nonnegative integer N such that

 $\rho(x_l, x_m) \leq \epsilon$ whenever $l \geq N$ and $m \geq N$.

Proposition 2.1. X is complete if and only if every Cauchy sequence converges.

Proof. Suppose X is complete and x is a Cauchy sequence in X. For each positive integer m let $C_m = \operatorname{cl} \{x_n : m \in \mathbb{N} \text{ and } m \geq n\}$ and note that $\mathcal{C} = \{C_m : m \in \mathbb{N} \text{ is a nonempty nested family of closed subsets of X with the property that$

$$\inf\{\operatorname{diam} C: C \in \mathcal{C}\} = 0.$$

Because X is complete there is a unique member l of $\bigcap C$. We now show that l is the limit of the sequence x. Let $\epsilon > 0$. Chooses $N \in \mathbb{N}$ such that diam $C_N \leq \epsilon$. If $n \geq N$ then both l and x_n are members of C_n which is a subset of C_N so $\rho(x_n, l) \leq \operatorname{diam} C_n \leq \operatorname{diam} C_N \leq \epsilon$.

On the other hand, suppose X is a metric space in which every Cauchy sequence converges and let C be a nonempty nested family of nonempty closed sets with the property that

$$\inf\{\operatorname{diam} C: C \in \mathcal{C}\} = 0.$$

In case there is $C \in \mathcal{C}$ such that $\operatorname{diam} C = 0$ then there is $c \in X$ such that $C = \{c\}$ so $\cap \mathcal{C} = \{c\}$. So suppose $\operatorname{diam} C > 0$ for each $C \in \mathcal{C}$. Choose a

sequence C in C such that $\operatorname{diam} C_{\nu+1} < \operatorname{diam} C_{\nu}$ whenever $\nu \in \mathbb{N}$ and such that $\lim_{\nu \to \infty} \operatorname{diam} C_{\nu} = 0$. Note that $C_{\nu+1} \subset C_{\nu}$ whenever $\nu \in \mathbb{N}$ for if this were not the case for some $\nu \in \mathbb{N}$ we would have $C_{\nu} \subset C_{\nu+1}$ since C is nested and this would imply $\operatorname{diam} C_{\nu} \leq \operatorname{diam} C_{\nu+1}$. Let x be a sequence in X such that $x_{\nu} \in C_{\nu}$ for each $m \in \mathbb{N}$. Note that we have used the Axiom of Choice twice. Evidently, x is a Cauchy sequence. Let c be its limit and suppose $B \in C$. Choose $\nu \in \mathbb{N}$ such that $\operatorname{diam} C_{\nu} < \operatorname{diam} B$. For any $\mu \in \mathbb{N}$ with $\mu \geq \nu$ we have $C_{\mu} \subset C_{\nu} \subset B$ so, by a preceding Theorem

 $\operatorname{dist} (c, B) \leq \operatorname{dist} (c, C_{\mu}) \leq \rho(c, x_{\mu}) + \operatorname{dist} (x_{\mu}, C_{\mu}) = \rho(c, x_{\mu}) \to 0 \quad \text{as} \quad \nu \to \infty.$ Thus $\operatorname{dist} (c, B) = 0 \text{ so, again by a preceding Theorem, } c \in \operatorname{cl} B = B \text{ Thus } c \in \cap \mathcal{C}.$

Proposition 2.2. Suppose $A \subset X$ and $\sigma = \rho|(A \times A)$. Then (A, σ) is complete if and only if A is a closed subset of X.

Proof. Suppose (A, σ) is complete. Let b be a point of the ρ -closure of A. For each $\epsilon > 0$ let $C_{\epsilon} = A \cap \{x \in X : \rho(x, b) \le \epsilon\}$ and note that C_{ϵ} is σ -closed. Moreover, $\emptyset \neq A \cap \{x \in X : \rho(x, b) < \epsilon\} \subset A \cap C_{\epsilon}$ and **diam** $C_{\epsilon} \le 2\epsilon$ whenever $0 < \epsilon < \infty$. Thus $\mathcal{C} = \{C_{\epsilon} : 0 < \epsilon < \infty\}$ is a nonempty family of nonempty σ -closed sets; thus there is $c \in A$ such that $\{c\} = \cap \mathcal{C}$. It is evident that b = c so $b \in A$ and, therefore, A is ρ -closed.

Suppose A is ρ -closed. Let x be a Cauchy sequence in A. Evidently, x is a Cauchy sequence in X. As (X, ρ) is complete there is $b \in X$ such that $\lim_{\nu \to \infty} x_{\nu} = b$. Since A is ρ -closed we infer that $b \in A$. Thus (A, σ) is complete.

Theorem 2.1. \mathbb{R}^n is complete.

Proof. We have already proved this in the case n = 1.

Suppose x is a Cauchy sequence in \mathbb{R}^n . For each $i \in \{1, \ldots, n\}$ let $p_i : \mathbb{R}^n \to \mathbb{R}$ assign to $a \in \mathbb{R}^n$ its *i*th coordinate; note that $|p_i(a)| \leq |a|$ whenever $a \in \mathbb{R}^n$. This implies $p_i \circ x$ is a Cauchy sequence in \mathbb{R} for each $i \in \{1, \ldots, n\}$ which, therefore, converges to some $L_i \in \mathbb{R}$. Let $L \in \mathbb{R}^n$ be such that $p_i(L) = L_i$ for $i \in \{1, \ldots, n\}$. Then

$$|x_{\nu} - L| \le \sqrt{n} \max\{|p_i(x) - p_i(L)| : i \in \{1, \dots, n\}\} \to 0 \text{ as } \nu \to \infty.$$

That is, $\lim_{\nu \to \infty} x_{\nu} = L$.

3. The Lebesgue radius of an open covering.

Definition 3.1. Suppose \mathcal{U} is a family of open subsets of X. X. For each $x \in \cup \mathcal{U}$ we let

$$\iota_{\mathcal{U}}(x) = \{r : 0 < r < \infty \text{ and } \mathbf{U}^x(r) \subset U \text{ for some } U \in \mathcal{U}\}$$

evidently $\iota_{\mathcal{U}}(x)$ is a nonempty open interval with infimum 0. For each $x \in \cup \mathcal{U}$ we let

$$\rho_{\mathcal{U}}(x) = \sup \iota_{\mathcal{U}}(x)$$

and note that $0 < \rho_{\mathcal{U}}(x) \leq \infty$. We let

$$l_{\mathcal{U}} = \inf\{\rho_{\mathcal{U}}(x) : x \in X\}.$$

We call $l_{\mathcal{U}}$ the **Lebesgue radius of** \mathcal{U} . Evidently,

 $0 < r < l_{\mathcal{U}} \Leftrightarrow$ for each $a \in X$ there is $U \in \mathcal{U}$ such that $\mathbf{U}^{a}(r) \subset U$.

Lemma 3.1. Suppose \mathcal{U} is an open covering of X and $0 < s < \infty$. Then $\{x \in X : \rho_{\mathcal{U}}(x) > s\}$ is open.

Proof. Let $G = \{x \in X : \rho_{\mathcal{U}}(x) > s\}$ and suppose $a \in G$. Choose t, u such that $s < t < u < \rho_{\mathcal{U}}(a)$. Next, choose $U \in \mathcal{U}$ such that $\mathbf{U}^{a}(u) \subset U$. Suppose $x \in \mathbf{U}^{a}(u-t)$. Then

 $\mathbf{U}^x(t) \subset \mathbf{U}^a(u) \subset U$

so $\rho_{\mathcal{U}}(x) \ge t > s$. That is, $\mathbf{U}^x(u-t) \subset G$ so G is open.

Theorem 3.1. Suppose X is compact and \mathcal{U} is an open covering of X. Then $l_{\mathcal{U}} > 0$.

Proof. Let

$$\mathcal{W} = \{ \{ x \in X : \rho_{\mathcal{U}}(x) > s \} : 0 < s < \infty \}.$$

From the Lemma we infer that \mathcal{W} is an open covering of X. Since X is compact there is a finite subfamily of \mathcal{W} whose union contains X. Since \mathcal{W} is nested we infer that some member of \mathcal{W} contains X; that is, there is s such that $0 < s < \infty$ and $X \subset \{x \in X : \rho_{\mathcal{U}}(x) > s\}$; we have $s \leq l_{\mathcal{U}}$ for any such s.

4. UNIFORM CONTINUITY.

Definition 4.1. Suppose (Y, σ) is a metric space, $A \subset X$ and $f : A \to Y$. We say f is **uniformly continuous** if for each $\epsilon > 0$ there is $\delta > 0$ such that

$$a, x \in A \text{ and } \rho(x, a) < \delta \implies \sigma(f(x), f(a)) < \epsilon.$$

Theorem 4.1. Suppose (X, ρ) and (Y, σ) are metric spaces, X is compact,

 $f: X \to Y$

and f is continuous.

Then f is uniformly continuous.

Proof. Let $\epsilon > 0$. Let

$$\mathcal{U} = \{U : U \text{ is an open subset of } X \text{ and } \operatorname{diam} f[U] < \epsilon\}.$$

Suppose $a \in X$. Since f is continuous at a we may choose $\eta > 0$ such that $f[\mathbf{U}^a(\eta)] \subset \mathbf{U}^{f(a)}(\epsilon/2)$. Thus, with $U = \mathbf{U}^a(\eta)$, $\operatorname{diam} f[U] < \epsilon$ so \mathcal{U} is an open covering of X.

Since X is compact $l_{\mathcal{U}}$ is positive so we may choose δ such that $0 < \delta < l_{\mathcal{U}}$. Suppose $a \in X$. There is $U \in \mathcal{U}$ such that $\mathbf{U}^a(\delta) \subset U$. Thus

$$\operatorname{diam} f[\mathbf{U}^a(\delta)] \leq \operatorname{diam} f[U] < \epsilon.$$

Thus

$$x \in A \text{ and } \rho(x,a) < \delta \Rightarrow \sigma(f(x), f(a)) \leq \operatorname{diam} f[U] < \epsilon.$$

Definition 5.1. X is **totally bounded** if for each $\epsilon > 0$ there is a finite family \mathcal{F} of subsets of X such that

(1)
$$X = \bigcup \mathcal{F}$$

and

(2)
$$\operatorname{diam} F \leq \epsilon \quad \text{whenever } F \in \mathcal{F}.$$

Theorem 5.1. X is compact if and only if it is complete and totally bounded.

Proof. We leave as an exercise for the reader the straightforward verification that if X is compact then X is complete and totally bounded.

Suppose X is complete and totally bounded and let \mathcal{U} be an open covering of X. Call a subset A of X **good** if there is a finite subfamily of \mathcal{U} whose union contains A and call a subset A of X **bad** if it is not good. Note that the union of a finite family of good sets is good. We want show that X is good.

Suppose X were bad. Let r_1, r_2, \ldots be a sequence of positive real numbers with limit zero. For each $i = 1, 2, \ldots$ let F_i be a finite subset of X such that

$$X = \bigcup \{ \mathbf{B}^x(r_i) : x \in F_i \};$$

such sets exist because X is totally bounded. There would be $x_1 \in F_1$ such that $\mathbf{B}^{x_1}(r_1)$ is bad; otherwise X would be the union of the finite family $\{\mathbf{B}^x(r_1) : x \in F_1\}$ of good sets and would therefore be good. There would be $x_2 \in F_2$ such that $\mathbf{B}^{x_1}(r_1) \cap \mathbf{B}^{x_2}(r_2)$ is bad; otherwise $\mathbf{B}^{x_1}(r_1)$ would be the union of the family $\{\mathbf{B}^{x_1}(r_1) \cap \mathbf{B}^x(r_2) : x \in F_2\}$ of good sets and would therefore be good. Continuing in this way we would obtain a sequence x_1, x_2, \ldots in X such that

$$C_m = \bigcap_{i=1}^m \mathbf{B}_{r_i}(x_i)$$
 would be bad.

These sets would be nonempty since the empty set is good. By the completeness of X there would be a point $c \in \bigcap_{m=1}^{\infty} C_m$. But $c \in U$ for some $U \in \mathcal{U}$ and, since **diam** C_m tends to zero as m tends to infinity, we would have $C_m \subset U$ for sufficiently large m. For these m, C_m would be good.

Corollary 5.1. A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Proof. Suppose A is a compact subset of \mathbb{R}^n . Since \mathbb{R}^n is Hausdorff, A is closed by virtue of a previous Theorem. Moreover, $\{\mathbf{U}^0(r) : 0 < r < \infty\}$ is an open covering of \mathbb{R}^n and therefore A; since A is compact, it has a finite subfamily whose union contains A. It follows that $A \subset \mathbf{U}^0(r)$ for some positive real number r so A is bounded.

Suppose A is a closed and bounded subset of \mathbb{R}^n . It follows easily from the fact that \mathbb{R}^n is complete and A is closed that A, considered as a metric space, is complete. A is totally bounded as well; in fact, for any positive real number ϵ the set A is contained in the union of a finite subfamily of the family

$$\{\mathbf{B}^{\epsilon z}(\sqrt{n}\epsilon): z \in \mathbb{Z}^n\}$$

because A is bounded. It now follows from the previous Theorem that A is compact. $\hfill \Box$

6. LIPSCHITZ CONSTANTS.

Suppose (Y, σ) is a metric space, $A \subset X$ and

$$f: A \to Y.$$

Proposition 6.1. f is continuous if and only if for each $a \in X$ and each $\epsilon \in (0, \infty)$ there is $\delta \in (0, \infty)$ such that

$$f[\mathbf{U}^a(\delta)] \subset \mathbf{U}^{f(a)}(\epsilon).$$

Proof. Proceed as we did in the case when $X = \mathbb{R}^n$ and $Y = \mathbb{R}m$

Definition 6.1. We let

$\mathbf{Lip}(f)$

be the infimum of the set of $M \in [0, \infty)$ such that

(1)
$$\sigma(f(x), f(a)) \le M\rho(x, a)$$
 whenever $x, a \in X$.

note that (1) holds with M = Lip(f). We call this extended real number the Lipschitz constant of f. We say f is Lipschitzian if $\text{Lip}(f) < \infty$. We say f is locally Lipschitzian if $\text{Lip}(f|B) < \infty$ whenever B is a bounded subset of X.

Note that

(2)
$$\operatorname{diam} f[B] \leq \operatorname{Lip}(f)\operatorname{diam} B$$
 whenever $B \subset X$.

Proposition 6.2. If f is locally Lipschitzian then f is continuous.

Proof. This follows directly from (2).

Theorem 6.1. Suppose Y is complete and $\operatorname{Lip}(f) < \infty$. Then f has a unique continuous extension to cl A and the Lipschitz constant of this extension equals the Lipschitz constant of f.

Proof. Let F be the set of $(a, b) \in (\mathbf{cl} A) \times Y$ such that

$$b \in \bigcap_{0 < \delta < \infty} \mathbf{cl} f[\mathbf{U}^a(\delta)].$$

Since

$$f[\mathbf{U}^a(\delta)] \neq \emptyset$$

and

$$\operatorname{diam} f[\mathbf{U}^{a}(\delta)] \leq \operatorname{Lip}(f)\operatorname{diam} \mathbf{U}^{a}(\delta) \leq 2\delta \quad \text{for any } a \in \operatorname{cl} A$$

and since Y is complete we infer that F is a function whose domain is the closure of A. Since

$$f(a) \in \bigcap_{0 < \delta < \infty} \mathbf{cl} f[\mathbf{U}^a(\delta)]$$

for any $a \in A$ we find that F|A = f.

Suppose $c_i \in \mathbf{cl} A$, i = 1, 2, and let r and s be positive real numbers. Since $F(c_i) \in \mathbf{cl} f[\mathbf{U}^{c_i}(r)]$ we may choose $a_i \in \mathbf{U}^{c_i}(r)$ such that $\sigma(F(c_i), f(a_i) < s, i = 1, 2$. Then

$$\begin{aligned} \sigma(F(c_1), F(c_2)) &\leq \sigma(F(c_1), f(a_1)) + \sigma(f(a_1), f(a_2)) + \sigma(f(a_2), F(c_2)) \\ &\leq s + \operatorname{Lip}(f)\rho(a_1, a_2) + s \\ &\leq s + \operatorname{Lip}(f)(\rho(a_1, c_1) + \rho(c_1, c_2) + \rho(c_2, a_2)) + s \\ &= 2s + \operatorname{Lip}(f)(2r + \rho(c_1, c_2)); \end{aligned}$$

 $\mathbf{6}$

owing to the arbitrariness of r and s we infer that

$$\sigma(F(c_1), F(c_2)) \leq \operatorname{Lip}(f)\rho(c_1, c_2).$$

it follows that $\operatorname{Lip}(F) \leq \operatorname{Lip}(f)$.

Finally, suppose that $g : \mathbf{cl} A \to Y$ is continuous, g|A = f and $c \in \mathbf{cl} A$. Let $\epsilon > 0$. Then there is $\delta > 0$ such that

$$x \in \mathbf{B}^{c}(\delta) \cap \mathbf{cl} A \Rightarrow g(x) \in \mathbf{B}^{g(c)}(\epsilon).$$

Let $a \in A \cap \mathbf{B}^{c}(\min\{\delta, \epsilon\})$; such an *a* exists because $c \in \mathbf{cl} A$. Then, since g(a) = f(a) = F(a) we have

$$\sigma(g(c), F(c)) \le \sigma(g(c), g(a)) + \sigma(F(a), F(c)) \le \epsilon + \operatorname{Lip}(F)\epsilon.$$

Owing to the arbitrariness of ϵ we infer that g(c) = F(c). Thus g = F.