Matrices.

0.1. Definition. Whenever m and n are positive integers we let

$$\mathbf{M}_n^m = \mathbf{R}^{\{1,\dots,m\} \times \{1,\dots,n\}}$$

and note that \mathbf{M}_n^m is a vector space. If $A \in \mathbf{M}_n^m$ we frequently depict A as a rectangular array with m rows and n columns:

$$\begin{bmatrix} A(1,1) & A(1,2) & \cdots & A(1,n) \\ A(2,1) & A(2,2) & \cdots & A(2,n) \\ \vdots & \vdots & \ddots & \vdots \\ A(m,1) & A(m,2) & \cdots & A(m,n) \end{bmatrix}.$$

We frequently write $A_{i,j}$ for A(i,j). It is a common practice to write A_{ij} for A(i,j); we shall avoid this because it is clearly ambiguous. We define maps

$$\underline{\mathbf{l}}: \mathbf{M}_n^m \to \underline{\mathbf{L}}(\mathbf{R}^n; \mathbf{R}^m)$$
 and $\underline{\mathbf{m}}: \underline{\mathbf{L}}(\mathbf{R}^n; \mathbf{R}^m) \to \mathbf{M}_n^m$

by setting

$$\underline{\mathbf{l}}(A) = \sum_{i=1}^{m} \sum_{i=1}^{n} A(i,j)\underline{\mathbf{e}}^{j}\underline{\mathbf{e}}_{i}, \quad A \in \mathbf{M}_{n}^{m},$$

and, for each $L \in \underline{L}(\mathbf{R}^n, \mathbf{R}^m)$, letting

$$\underline{\mathbf{m}}(L)(i,j) = \underline{\mathbf{e}}^{i}(L(\underline{\mathbf{e}}_{i})), (i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}.$$

It is a simple matter to verify that these maps are linear isomorphisms which are inverse to one another.

In case m = n we define the **identity matrix** I by setting

$$I = \underline{\mathbf{m}}(\underline{\mathbf{i}}_{\mathbf{R}^n})$$

and verify that

$$I(i,j) = \delta_{i,j}, \ i,j = 1, \dots, n,$$

where we have set

$$\delta_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{else.} \end{cases}$$

0.2. Example. Suppose $a \in \mathbb{R}^3 \sim \{\underline{0}\}$ and let L be reflection of \mathbb{R}^3 across $P = \{x \in \mathbb{R}^3 : x \bullet a = 0\}$. We have

$$L(x) = x - 2 \frac{x \bullet a}{|a|^2} a, \quad x \in \mathbf{R}^3.$$

In particular,

$$L(\underline{\mathbf{e}}_j) = \underline{\mathbf{e}}_j - 2\frac{a_j}{|a|^2}a, \ j = 1, 2, 3,$$

so

$$M(i,j) = \underline{e}^{i}(L(\underline{e}_{j})) = \delta_{i,j} - 2\frac{a_{i}a_{j}}{|a|^{2}}, \ i, j = 1, 2, 3.$$

Thus

$$M = \frac{1}{|a|^2} \begin{bmatrix} |a|^2 - 2a_1a_1 & -2a_1a_2 & -2a_1a_3 \\ -2a_2a_1 & |a|^2 - 2a_2a_2 & -2a_2a_3 \\ -2a_3a_1 & -2a_3a_2 & |a|^2 - 2a_3a_3 \end{bmatrix}.$$

0.3. Definition. Matrix Multiplication. Suppose l, m, n are positive integers. We define **matrix multiplication** to be the map from $\mathbf{M}_m^l \times \mathbf{M}_n^m$ to \mathbf{M}_n^l which assigns

$$\underline{\mathbf{m}}(\underline{\mathbf{l}}(A) \circ \underline{\mathbf{l}}(B)) \in \mathbf{M}_n^l$$
 to $(A, B) \in \mathbf{M}_m^l \times \mathbf{M}_n^m$.

As a consequence of these definitions we find that the algebraic properties of composition of linear maps, like associativity, carry over to multiplication of matrices.

0.4. Proposition. Suppose $A \in \mathbf{M}_n^m$ and $B \in \mathbf{M}_n^n$. Then

$$A \cdot B(i,j) = \sum_{k=1}^{n} A(i,k)B(k,j), \ i = 1, \dots, m, \ j = 1, \dots, p.$$

Proof. This is a straightforward calculation which we leave to the reader.

0.5. Definition. The Inverse of a Matrix. We say $A \in \mathbf{M}_n^m$ is **invertible** if $\underline{\mathbf{l}}(A)$ is invertible in which case we set

$$A^{-1} = \underline{\mathbf{m}}(\underline{\mathbf{l}}(A)^{-1}).$$

Note that if A is invertible then m = n.

0.6. Definition. Suppose V is a vector space and $n = \dim V < \infty$. By an **ordered** basis for V we mean a mapping from $\{1, \ldots, n\}$ into V whose range is a basis for V. Whenever v is an ordered basis for V and $i \in \{1, \ldots, n\}$ we will frequently write v_i for v(i). We will frequently write v^i for v_i^* , $i = 1, \ldots, n$. Recall that

$$v^{i}(v_{j}) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{else,} \end{cases}$$
 $i, j \in \{1, \dots, n\}.$

We will frequently write v^i for $v^*(i)$.

$$x = \sum_{i=1}^{n} v^{i}(x)v_{i}, \ x \in V \quad \text{and} \quad \omega = \sum_{i=1}^{n} \omega(v_{i})v^{i}, \ \omega \in V^{*}.$$

We let

$$i_n:^R n \to V$$

be the linear map which carries v_j to $\underline{\mathbf{e}}_j$, $j=1,\ldots,n$; evidently, $\underline{\mathbf{i}}_v$ carries V isomorpically onto Rn .

0.7. Definition. The Matrix of an Abstract Linear Transformation. Suppose V and W are vector spaces of dimension n and m and v and w are ordered basis for V and W, respectively. For each $L \in \underline{L}(V; W)$ we define

$$m(w, L, v) \in \mathbf{M}_n^m$$

the matrix of L with respect to v and w, by setting

$$\mathbf{m}(w, L, v)(i, j) = \mathbf{m}(\mathbf{i}_{vv}^{-1} \circ L \circ \mathbf{i}_{v}).$$

It is a simple matter to verify that $\underline{\mathbf{L}}(V;W)\ni L\mapsto \underline{\mathbf{m}}(w,L,v)\in \mathbf{M}_n^m$ is a linear isomorphism as it is obviously linear and univalent. It is evident that

$$\underline{\mathbf{m}}(w, L, v)(i, j) = w^{i}(L(v_{i})), i = 1, \dots, m, j = 1, \dots, n.$$

0.8. Proposition. Suppose V is a finite dimensional vector space with ordered basis v. Then

$$\underline{\mathbf{m}}(w,\underline{\mathbf{i}}_V,v)=I \iff v=w.$$

Proof. Immediate consequence of the definition.

0.9. Proposition. Suppose U, V and W are vector spaces of dimensions l, m and n with ordered bases u, v and w, respectively. Then

$$\underline{\mathbf{m}}(w, M \circ L, u) = \underline{\mathbf{m}}(w, M, v) \cdot \underline{\mathbf{m}}(v, L, u), \quad L \in \underline{\mathbf{L}}(U; V), \ M \in \underline{\mathbf{L}}(V; W).$$

Proof. Exercise for the reader.

0.10. Definition. Transposes. Suppose $A \in \mathbf{M}_n^m$. We define

$$A^t \in \mathbf{M}_m^n$$

by setting

$$A^t = \underline{\mathbf{m}}(\underline{\mathbf{e}}^*, \underline{\mathbf{l}}(A)^*, \underline{\mathbf{e}}^*)$$

where \underline{e}^* on the left of $\underline{l}(A)^*$ is the basis of \mathbf{R}_n dual to the standard basis of \mathbb{R}^n and \underline{e}^* to the left of $\underline{l}(A)^*$ is the basis of \mathbf{R}_m dual to the standard basis of $\mathbb{R}m$.

0.11. Proposition. Suppose $A \in \mathbf{M}_n^m$. Then

$$A^{t}(i,j) = A(j,i), i = 1,...,m, j = 1,...,n.$$

Proof. Straightforward exercise for the reader.

0.12. Proposition. Suppose V and W are finite dimensional vector spaces with ordered bases v and w, respectively, and $L \in L(V; W)$. Then

$$m(v^*, L^*, w^*) = m(w, L, v)^t$$
.

Proof. Straightforward exercise for the reader.

0.13. Proposition. Suppose V and W are finite dimensional vector spaces with ordered orthonormal bases v and w, respectively, and $L \in \underline{L}(V; W)$. then

$$\underline{\mathbf{m}}(v, L^*, w) = \underline{\mathbf{m}}(w, L, v)^t,$$

where L^* here is the adjoint in the sense of innerproducts.

Proof. Straightforward exercise for the reader.

0.14. Exercise. Let v and w be the ordered bases of \mathbb{R}^3 such that

$$v_1 = (1, 0, 1), \ v_2 = (3, 1, 0), \ v_3 = (2, 1, 2)$$

and

$$w_1 = (0,0,3), w_2 = (1,1,2), w_3 = (4,0,0).$$

(i) Determine $\underline{\mathbf{m}}(\underline{\mathbf{e}},\underline{\mathbf{i}}_{\mathbf{R}^3},v)$ and $\underline{\mathbf{m}}(\underline{\mathbf{e}},\underline{\mathbf{i}}_{\mathbf{R}^3},w)$.

Use the preceding results, and *only* the preceding results, to do the following:

- (ii) Write formulae for v^1, v^2, v^3 and w^1, w^2, w^3 .
- (iii) Express v_1, v_2, v_3 in terms of w_1, w_2, w_3 and w_1, w_2, w_3 in terms of v_1, v_2, v_3 . (iv) Express v^1, v^2, v^3 in terms of w^1, w^2, w^3 and w^1, w^2, w^3 in terms of v^1, v^2, v^3 .

Be clever about this by using the fact that the adjoint of the identity map of a vector space is the identity map of its dual space.