Matrices.

0.1. Definition. Whenever m and n are positive integers we let

$$
\mathbf{M}_{n}^{m}=\mathbf{R}^{\{1, \ldots, m\} \times\{1, \ldots, n\}}
$$

and note that \mathbf{M}_{n}^{m} is a vector space. If $A \in \mathbf{M}_{n}^{m}$ we frequently depict A as a rectangular array with m rows and n columns:

$$
\left[\begin{array}{cccc}
A(1,1) & A(1,2) & \cdots & A(1, n) \\
A(2,1) & A(2,2) & \cdots & A(2, n) \\
\vdots & \vdots & \ddots & \vdots \\
A(m, 1) & A(m, 2) & \cdots & A(m, n)
\end{array}\right]
$$

We frequently write $A_{i, j}$ for $A(i, j)$. It is a common practice to write $A_{i j}$ for $A(i, j)$; we shall avoid this because it is clearly ambiguous. We define maps

$$
\underline{\mathrm{l}}: \mathbf{M}_{n}^{m} \rightarrow \underline{\mathrm{~L}}\left(\mathbf{R}^{n} ; \mathbf{R}^{m}\right) \quad \text { and } \quad \underline{\mathrm{m}}: \underline{\mathrm{L}}\left(\mathbf{R}^{n} ; \mathbf{R}^{m}\right) \rightarrow \mathbf{M}_{n}^{m}
$$

by setting

$$
\underline{\mathrm{l}}(A)=\sum_{i=1}^{m} \sum_{j=1}^{n} A(i, j) \underline{\mathrm{e}}^{j} \underline{\mathrm{e}}_{i}, \quad A \in \mathbf{M}_{n}^{m}
$$

and, for each $L \in \underline{L}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$, letting

$$
\underline{\mathrm{m}}(L)(i, j)=\underline{\mathrm{e}}^{i}\left(L\left(\underline{\mathrm{e}}_{j}\right)\right),(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}
$$

It is a simple matter to verify that these maps are linear isomorphisms which are inverse to one another.

In case $m=n$ we define the identity matrix I by setting

$$
I=\underline{m}\left(\underline{\mathrm{i}}_{\mathbf{R}^{n}}\right)
$$

and verify that

$$
I(i, j)=\delta_{i, j}, i, j=1, \ldots, n
$$

where we have set

$$
\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

0.2. Example. Suppose $a \in \mathbf{R}^{3} \sim\{\underline{0}\}$ and let L be reflection of \mathbf{R}^{3} across $P=$ $\left\{x \in \mathbf{R}^{3}: x \bullet a=0\right\}$. We have

$$
L(x)=x-2 \frac{x \bullet a}{|a|^{2}} a, \quad x \in \mathbf{R}^{3}
$$

In particular,

$$
L\left(\underline{\mathrm{e}}_{j}\right)=\underline{\mathrm{e}}_{j}-2 \frac{a_{j}}{|a|^{2}} a, j=1,2,3
$$

so

$$
M(i, j)=\underline{\mathrm{e}}^{i}\left(L\left(\underline{\mathrm{e}}_{j}\right)\right)=\delta_{i, j}-2 \frac{a_{i} a_{j}}{|a|^{2}}, i, j=1,2,3 .
$$

Thus

$$
M=\frac{1}{|a|^{2}}\left[\begin{array}{ccc}
|a|^{2}-2 a_{1} a_{1} & -2 a_{1} a_{2} & -2 a_{1} a_{3} \\
-2 a_{2} a_{1} & |a|^{2}-2 a_{2} a_{2} & -2 a_{2} a_{3} \\
-2 a_{3} a_{1} & -2 a_{3} a_{2} & |a|^{2}-2 a_{3} a_{3}
\end{array}\right]
$$

0.3. Definition. Matrix Multiplication. Suppose l, m, n are positive integers. We define matrix multiplication to be the map from $\mathbf{M}_{m}^{l} \times \mathbf{M}_{n}^{m}$ to \mathbf{M}_{n}^{l} which assigns

$$
\underline{\mathrm{m}}(\underline{\mathrm{l}}(A) \circ \underline{\mathrm{l}}(B)) \in \mathbf{M}_{n}^{l} \quad \text { to } \quad(A, B) \in \mathbf{M}_{m}^{l} \times \mathbf{M}_{n}^{m}
$$

As a consequence of these definitions we find that the algebraic properties of composition of linear maps, like associativity, carry over to multiplication of matrices.
0.4. Proposition. Suppose $A \in \mathbf{M}_{n}^{m}$ and $B \in \mathbf{M}_{p}^{n}$. Then

$$
A \cdot B(i, j)=\sum_{k=1}^{n} A(i, k) B(k, j), i=1, \ldots, m, j=1, \ldots, p
$$

Proof. This is a straightforward calculation which we leave to the reader.
0.5. Definition. The Inverse of a Matrix. We say $A \in \mathbf{M}_{n}^{m}$ is invertible if $\underline{l}(A)$ is invertible in which case we set

$$
A^{-1}=\mathrm{m}\left(\underline{\mathrm{l}}(A)^{-1}\right)
$$

Note that if A is invertible then $m=n$.
0.6. Definition. Suppose V is a vector space and $n=\operatorname{dim} V<\infty$. By an ordered basis for V we mean a mapping from $\{1, \ldots, n\}$ into V whose range is a basis for V. Whenever v is an ordered basis for V and $i \in\{1, \ldots, n\}$ we will frequently write v_{i} for $v(i)$. We will frequently write v^{i} for $v_{i}{ }^{*}, i=1, \ldots, n$. Recall that

$$
v^{i}\left(v_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=j, \\
0 & \text { else, }
\end{array} \quad i, j \in\{1, \ldots, n\}\right.
$$

We will frequently write v^{i} for $v^{*}(i)$.

$$
x=\sum_{i=1}^{n} v^{i}(x) v_{i}, x \in V \quad \text { and } \quad \omega=\sum_{i=1}^{n} \omega\left(v_{i}\right) v^{i}, \omega \in V^{*}
$$

We let

$$
\underline{\underline{i}}_{v}:{ }^{R} n \rightarrow V
$$

be the linear map which carries v_{j} to $\underline{\mathrm{e}}_{j}, j=1, \ldots, n$; evidently, $\underline{\mathrm{i}}_{v}$ carries V isomorpically onto ${ }^{R} n$.
0.7. Definition. The Matrix of an Abstract Linear Transformation. Suppose V and W are vector spaces of dimension n and m and v and w are ordered basis for V and W, respectively. For each $L \in \underline{L}(V ; W)$ we define

$$
\underline{\mathrm{m}}(w, L, v) \in \mathbf{M}_{n}^{m}
$$

the matrix of L with respect to v and w, by setting

$$
\underline{\mathrm{m}}(w, L, v)(i, j)=\underline{\mathrm{m}}\left(\underline{\mathrm{i}}_{w}^{-1} \circ L \circ \underline{\mathrm{i}}_{v}\right) .
$$

It is a simple matter to verify that $\underline{\mathrm{L}}(V ; W) \ni L \mapsto \underline{m}(w, L, v) \in \mathbf{M}_{n}^{m}$ is a linear isomorphism as it is obviously linear and univalent. It is evident that

$$
\underline{\mathrm{m}}(w, L, v)(i, j)=w^{i}\left(L\left(v_{j}\right)\right), i=1, \ldots, m, j=1, \ldots, n
$$

0.8. Proposition. Suppose V is a finite dimensional vector space with ordered basis v. Then

$$
\underline{\mathrm{m}}\left(w, \underline{\mathrm{i}}_{V}, v\right)=I \Leftrightarrow v=w
$$

Proof. Immediate consequence of the definition.
0.9. Proposition. Suppose U, V and W are vector spaces of dimensions l, m and n with ordered bases u, v and w, respectively. Then

$$
\underline{\mathrm{m}}(w, M \circ L, u)=\underline{\mathrm{m}}(w, M, v) \cdot \underline{\mathrm{m}}(v, L, u), \quad L \in \underline{\mathrm{~L}}(U ; V), M \in \mathrm{~L}(V ; W) .
$$

Proof. Exercise for the reader.
0.10. Definition. Transposes. Suppose $A \in \mathbf{M}_{n}^{m}$. We define

$$
A^{t} \in \mathbf{M}_{m}^{n}
$$

by setting

$$
A^{t}=\underline{\mathrm{m}}\left(\underline{\mathrm{e}}^{*}, \underline{\mathrm{l}}(A)^{*}, \underline{\mathrm{e}}^{*}\right)
$$

where $\underline{\mathrm{e}}^{*}$ on the left of $\underline{\underline{l}}(A)^{*}$ is the basis of \mathbf{R}_{n} dual to the standard basis of $\mathbb{R} n$ and $\underline{\mathrm{e}}^{*}$ to the left of $\underline{\mathrm{l}}(A)^{*}$ is the basis of \mathbf{R}_{m} dual to the standard basis of $\mathbb{R} m$.
0.11. Proposition. Suppose $A \in \mathbf{M}_{n}^{m}$. Then

$$
A^{t}(i, j)=A(j, i), i=1, \ldots, m, j=1, \ldots, n
$$

Proof. Straightforward exercise for the reader.
0.12. Proposition. Suppose V and W are finite dimensional vector spaces with ordered bases v and w, respectively, and $L \in \mathrm{~L}(V ; W)$. Then

$$
\underline{\mathrm{m}}\left(v^{*}, L^{*}, w^{*}\right)=\underline{\mathrm{m}}(w, L, v)^{t}
$$

Proof. Straightforward exercise for the reader.
0.13. Proposition. Suppose V and W are finite dimensional vector spaces with ordered orthonormal bases v and w, respectively, and $L \in \underline{L}(V ; W)$. then

$$
\mathrm{m}\left(v, L^{*}, w\right)=\mathrm{m}(w, L, v)^{t}
$$

where L^{*} here is the adjoint in the sense of innerproducts.
Proof. Straightforward exercise for the reader.
0.14. Exercise. Let v and w be the ordered bases of \mathbf{R}^{3} such that

$$
v_{1}=(1,0,1), v_{2}=(3,1,0), v_{3}=(2,1,2)
$$

and

$$
w_{1}=(0,0,3), w_{2}=(1,1,2), w_{3}=(4,0,0)
$$

(i) Determine $\underline{m}\left(\underline{e}, \underline{\mathrm{i}}_{\mathbf{R}^{3}}, v\right)$ and $\underline{m}\left(\underline{e}, \underline{\mathrm{i}}_{\mathbf{R}^{3}}, w\right)$.

Use the preceding results, and only the preceding results, to do the following:
(ii) Write formulae for v^{1}, v^{2}, v^{3} and w^{1}, w^{2}, w^{3}.
(iii) Express v_{1}, v_{2}, v_{3} in terms of w_{1}, w_{2}, w_{3} and w_{1}, w_{2}, w_{3} in terms of v_{1}, v_{2}, v_{3}.
(iv) Express v^{1}, v^{2}, v^{3} in terms of w^{1}, w^{2}, w^{3} and w^{1}, w^{2}, w^{3} in terms of v^{1}, v^{2}, v^{3}.

Be clever about this by using the fact that the adjoint of the identity map of a vector space is the identity map of its dual space.

