
Matrices.

0.1. Definition. Whenever m and n are positive integers we let

Mm
n = R{1,...,m}×{1,...,n}

and note that Mm
n is a vector space. If A ∈ Mm

n we frequently depict A as a
rectangular array with m rows and n columns:

A(1, 1) A(1, 2) · · · A(1, n)
A(2, 1) A(2, 2) · · · A(2, n)

...
...

. . .
...

A(m, 1) A(m, 2) · · · A(m,n)

 .

We frequently write Ai,j for A(i, j). It is a common practice to write Aij for A(i, j);
we shall avoid this because it is clearly ambiguous. We define maps

l
¯
: Mm

n → L
¯
(Rn;Rm) and m

¯
: L
¯
(Rn;Rm) → Mm

n

by setting

l
¯
(A) =

m∑
i=1

n∑
j=1

A(i, j)e
¯
je
¯i
, A ∈ Mm

n ,

and, for each L ∈ L
¯
(Rn,Rm), letting

m
¯
(L)(i, j) = e

¯
i(L(e

¯j
)), (i, j) ∈ {1, . . . ,m} × {1, . . . , n}.

It is a simple matter to verify that these maps are linear isomorphisms which are
inverse to one another.

In case m = n we define the identity matrix I by setting

I = m
¯
(i
¯R

n)

and verify that

I(i, j) = δi,j , i, j = 1, . . . , n,

where we have set

δi,j =

{
1 if i = j,

0 else.

0.2. Example. Suppose a ∈ R3 ∼ {0
¯
} and let L be reflection of R3 across P =

{x ∈ R3 : x • a = 0}. We have

L(x) = x− 2
x • a
|a|2

a, x ∈ R3.

In particular,

L(e
¯j
) = e

¯j
− 2

aj
|a|2

a, j = 1, 2, 3,

so

M(i, j) = e
¯
i(L(e

¯j
)) = δi,j − 2

aiaj
|a|2

, i, j = 1, 2, 3.

Thus

M =
1

|a|2

|a|2 − 2a1a1 −2a1a2 −2a1a3
−2a2a1 |a|2 − 2a2a2 −2a2a3
−2a3a1 −2a3a2 |a|2 − 2a3a3

 .
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0.3. Definition. Matrix Multiplication. Suppose l,m, n are positive integers. We
define matrix multiplication to be the map from Ml

m×Mm
n to Ml

n which assigns

m
¯
(l
¯
(A) ◦ l

¯
(B)) ∈ Ml

n to (A,B) ∈ Ml
m ×Mm

n .

As a consequence of these definitions we find that the algebraic properties of com-
position of linear maps, like associativity, carry over to multiplication of matrices.

0.4. Proposition. Suppose A ∈ Mm
n and B ∈ Mn

p . Then

A ·B(i, j) =

n∑
k=1

A(i, k)B(k, j), i = 1, . . . ,m, j = 1, . . . , p.

Proof. This is a straightforward calculation which we leave to the reader. □

0.5. Definition. The Inverse of a Matrix. We say A ∈ Mm
n is invertible if l

¯
(A) is

invertible in which case we set

A−1 = m
¯
(l
¯
(A)−1).

Note that if A is invertible then m = n.

0.6. Definition. Suppose V is a vector space and n = dimV < ∞. By an ordered
basis for V we mean a mapping from {1, . . . , n} into V whose range is a basis for
V . Whenever v is an ordered basis for V and i ∈ {1, . . . , n} we will frequently write
vi for v(i). We will frequently write vi for vi

∗, i = 1, . . . , n. Recall that

vi(vj) =

{
1 if i = j,

0 else,
i, j ∈ {1, . . . , n}.

We will frequently write vi for v∗(i).

x =
n∑

i=1

vi(x)vi, x ∈ V and ω =
n∑

i=1

ω(vi)v
i, ω ∈ V ∗.

We let

i
¯v

:R n → V

be the linear map which carries vj to e
¯j
, j = 1, . . . , n; evidently, i

¯v
carries V

isomorpically onto Rn.

0.7. Definition. The Matrix of an Abstract Linear Transformation. Suppose V
and W are vector spaces of dimension n and m and v and w are ordered basis for
V and W , respectively. For each L ∈ L

¯
(V ;W ) we define

m
¯
(w,L, v) ∈ Mm

n ,

the matrix of L with respect to v and w, by setting

m
¯
(w,L, v)(i, j) = m

¯
(i
¯
−1
w ◦ L ◦ i

¯v
).

It is a simple matter to verify that L
¯
(V ;W ) ∋ L 7→ m

¯
(w,L, v) ∈ Mm

n is a linear
isomorphism as it is obviously linear and univalent. It is evident that

m
¯
(w,L, v)(i, j) = wi(L(vj)), i = 1, . . . ,m, j = 1, . . . , n.
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0.8. Proposition. Suppose V is a finite dimensional vector space with ordered basis
v. Then

m
¯
(w, i

¯V
, v) = I ⇔ v = w.

Proof. Immediate consequence of the definition. □

0.9. Proposition. Suppose U , V and W are vector spaces of dimensions l, m and
n with ordered bases u, v and w, respectively. Then

m
¯
(w,M ◦ L, u) = m

¯
(w,M, v) ·m

¯
(v, L, u), L ∈ L

¯
(U ;V ), M ∈ L

¯
(V ;W ).

Proof. Exercise for the reader. □

0.10. Definition. Transposes. Suppose A ∈ Mm
n . We define

At ∈ Mn
m

by setting
At = m

¯
(e
¯
∗, l
¯
(A)∗, e

¯
∗)

where e
¯
∗ on the left of l

¯
(A)∗ is the basis of Rn dual to the standard basis of Rn

and e
¯
∗ to the left of l

¯
(A)∗ is the basis of Rm dual to the standard basis of Rm.

0.11. Proposition. Suppose A ∈ Mm
n . Then

At(i, j) = A(j, i), i = 1, . . . ,m, j = 1, . . . , n.

Proof. Straightforward exercise for the reader.

0.12. Proposition. Suppose V and W are finite dimensional vector spaces with
ordered bases v and w, respectively, and L ∈ L

¯
(V ;W ). Then

m
¯
(v∗, L∗, w∗) = m

¯
(w,L, v)t.

Proof. Straightforward exercise for the reader. □

0.13. Proposition. Suppose V and W are finite dimensional vector spaces with
ordered orthonormal bases v and w, respectively, and L ∈ L

¯
(V ;W ). then

m
¯
(v, L∗, w) = m

¯
(w,L, v)t,

where L∗ here is the adjoint in the sense of innerproducts.

Proof. Straightforward exercise for the reader. □

0.14. Exercise. Let v and w be the ordered bases of R3 such that

v1 = (1, 0, 1), v2 = (3, 1, 0), v3 = (2, 1, 2)

and
w1 = (0, 0, 3), w2 = (1, 1, 2), w3 = (4, 0, 0).

(i) Determine m
¯
(e
¯
, i
¯R

3 , v) and m
¯
(e
¯
, i
¯R

3 , w).
Use the preceding results, and only the preceding results, to do the following:
(ii) Write formulae for v1, v2, v3 and w1, w2, w3.
(iii) Express v1, v2, v3 in terms of w1, w2, w3 and w1, w2, w3 in terms of v1, v2, v3.
(iv) Express v1, v2, v3 in terms of w1, w2, w3 and w1, w2, w3 in terms of v1, v2, v3.
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Be clever about this by using the fact that the adjoint of the identity map of a
vector space is the identity map of its dual space.


