Submanifolds.

Let n be a positive integer.

0.1. Definition. We say f is an n-diffeomorphism if

(1) f is function whose domain and range of f are open subsets of ${}^{R}n$;

(2) f is smooth;

(3) f is univalent and, for each $x \in \mathbf{dmn} f$, $\partial f(x)$ carries ${}^{R}n$ isomorphically onto itself.

Whenever U and V are open subsets of ^{R}n we let

Diffeo_n

be the set of ordered triples (U, F, V) such that F is an n-diffeomorphism with domain U and range V.

0.2. Proposition. We have

(1) \emptyset is an *n*-diffeomorphism;

(2) if F is an n-diffeormorphism and W is an open subset of $\mathbb{R}n$ then F|W is an n-diffeormorphism;

(3) if \mathcal{U} is a family of open subsets of ${}^{R}n$, $F : \bigcup \mathcal{U} \to^{R} n$, F is univalent and F|U is a *n*-diffeormorphism for each $U \in \mathcal{U}$ then F is an *n*-diffeormorphism;

(4) if F is an n-diffeormorphism then F^{-1} is an n-diffeomorphism;

(5) if F, G are *n*-diffeomorphisms then $F \circ G$ is an *n*-diffeormorphism.

Proof. Exercise for the reader. It will be necessary to use the Inverse Function Theorem and its Corollaries, the Chain Rule and the fact the inversion on $\mathbf{GL}({}^{R}n)$ is smooth.

Suppose m is an integer and $0 \le m \le n$.

0.3. Definition.

$$\underline{\mathbf{R}}^{m,n} = \{ x \in \mathbb{R} n : x_i = 0 \text{ whenever } i < m \le n \}.$$

Let

$$\underline{\mathbf{p}}_{m,n}, \ \underline{\mathbf{q}}_{m,n}, \ \underline{\mathbf{i}}_{m,n}, \ \underline{\mathbf{j}}_{m,n}$$

be defined by the following requirements:

$$\begin{split} \underline{\mathbf{p}}_{m,n} &: {}^{R} n \to {}^{R} m, \\ \underline{\mathbf{q}}_{m,n} &: {}^{R} n \to {}^{R} n - m, \\ \underline{\mathbf{i}}_{m,n} &: {}^{R} m \to \underline{\mathbf{R}}^{m,n}, \\ \underline{\mathbf{j}}_{m,n} &: {}^{R} n - m \to \left(\underline{\mathbf{R}}^{m,n}\right)^{\perp}; \end{split}$$

if m = 0 then

$$\underline{\mathbf{p}}_{m,n} = 0 \quad \text{and} \quad \underline{\mathbf{q}}_{m,n} = \underline{\mathbf{i}}_{R_n};$$

if 1 < m < n then

$$\underline{\mathbf{p}}_{m,n}(x) = \sum_{i=1}^{m} x_i \underline{\mathbf{e}}_i, \ x \in^R m \quad \text{and} \quad \underline{\mathbf{q}}_{m,n}(y) = \sum_{j=1}^{n-m} y_j \underline{\mathbf{e}}_{m+j}, \ y \in^R n-m;$$

$$\underline{\mathbf{p}}_{m,n} = \underline{\mathbf{i}}_{R_n} \quad \text{and} \quad \underline{\mathbf{q}}_{m,n} = 0;$$

and

$$\underline{\mathbf{i}}_{^{R}n} = \underline{\mathbf{i}}_{m,n} \circ \underline{\mathbf{p}}_{m,n} + \underline{\mathbf{j}}_{m,n} \circ \underline{\mathbf{q}}_{m,n}.$$

We let

$$\underline{\mathbf{U}}^{n} = \{ x \in^{R} n : |x| < 1 \}$$

and we let

$$\underline{\mathbf{U}}^{m,n} = \underline{\mathbf{U}}^n \cap \underline{\mathbf{R}}^{m,n}.$$

Whenever $m \ge 1$ we let

$$\underline{\mathbf{U}}^{m,n,+} = \{ x \in \underline{\mathbf{U}}^{m,n} : x_m > 0 \}.$$

0.4. Definition. Suppose V is an open subset of ${}^{R}n$. We let

 $\mathbf{M}_m(V)$

be the family of nonempty subsets M of V such that

(1) if $a \in M$ there is $(\mathbf{U}^n, \Phi, U) \in \mathbf{Diffeo}_n$ such that $a \in U \subset V$, $\Phi(0) = a$ and $U \cap M = \Phi[\mathbf{U}^{m,n}]$.

(2) if $m \ge 1$ and $b \in (V \sim \operatorname{cl} M) \sim M$ there is $(\mathbf{U}^n, \Phi, U) \in \operatorname{Diffeo}_n$ such that $b \in U \subset V, \ \Phi(0) = b$ and $U \cap M = \Phi[\mathbf{U}^{m,n,+}].$

We call the members of $\mathbf{M}_m(V)$ smooth *m*-dimensional submanifolds of *V*. For each $M \in \underline{M}_{m,n}(V)$ we set

$$\partial M = (V \cap \mathbf{cl} M) \sim M.$$

0.5. Theorem. Suppose V is an open subset of ${}^{R}n$ and M is a nonempty subset of V. Then

(1) $M \in \underline{M}_0(V)$ if and only if M is a nonempty subset of V which meets any compact subset of V in a finite set.

(2) if $M \in \underline{M}_0(V)$ then $\partial M = \emptyset$.

(3) $M \in \underline{\mathbf{M}}_n(V)$ and $\partial M = \emptyset$ if and only if each connected component of M is a connected component of V.

(4) if $m \ge 1$ and $M \in \underline{M}_m(V)$ then $\partial M \in \underline{M}_{m-1}(V)$ and $\partial(\partial M) = \emptyset$.

Proof. These are straightforward consequences of the definitions.

0.6. Theorem. Suppose V is an open subset of $\mathbb{R}n$, $(V, F, F[V]) \in \text{Diffeo}_n$ and $M \in \underline{M}_m(V)$. Then $F[M] \in \underline{M}_m(F[V])$ and $\partial F[M] = F[\partial M]$.

Proof. This is an immediate consequence of the definition of submanifold and the properties of diffeomorphisms. $\hfill \Box$

0.7. Theorem. Suppose $1 \le m < n, V$ is an open subset of ${}^{R}n$ and M is a nonempty subset of V. Then $M \in \underline{M}_{m}(V)$ if and only if

(1) for each $a \in M$ there are an open subset U of V and a smooth map $F: U \to^R n-m$ such that

$$\dim \operatorname{\mathbf{rng}} \partial f(a) = n - m$$

 $\mathbf{2}$

and

$$M \cap U = \{x \in V : F(x) = F(a)\};$$

(2) for each $b \in (V \cap \operatorname{\mathbf{cl}} M) \sim M$ there are an open subset U of V and smooth maps

$$F: U \to^R n - m \text{ and } g: U \to \mathbf{R}$$

such that

$$\dim \operatorname{rng} \partial f(a) = n - m, \qquad \partial g(a) \notin \operatorname{span} \left\{ \partial F^{i}(a) : i = 1, \dots, n - m \right\}$$

and

$$U \cap M = \{x \in U : F(x) = F(a) \text{ and } g(x) > g(a)\}$$

0.8. Remark. Note that if (2) holds there is an open subset T of U such that $a \in T$ and

$$T \cap \operatorname{cl} M = \{ x \in T : F(x) = F(a) \text{ and } g(x) \ge g(a) \}$$

and

$$T \cap \partial M = \{ x \in T : F(x) = F(a) \text{ and } g(x) = g(a) \}.$$

Proof. Exercise for the reader. Use the Implicit Function Theorem.

0.9. Theorem. Suppose V is an open subset of ${}^{R}n$ and M is a nonempty subset of V. Then $M \in \underline{M}_{n}(V)$ if and only if for each $b \in (V \cap \mathbf{cl} M) \sim M$ there are an open subset U of V and a smooth map

$$q: U \to \mathbf{R}$$

such that

 $\partial g(a) \neq 0$

and

$$U \cap \operatorname{cl} M = \{ x \in U : g(x) > g(a) \}.$$

0.10. Remark. Note that if g is as above then there is an open subset T of U such that $a \in T$ and

$$T \cap \partial M = \{ x \in T : g(x) = g(a) \}.$$

Proof. Exercise for the reader. Use the Implicit Function Theorem.

Immersions.

0.11. Definition. Suppose T is an open subset of ${}^{R}m$ and V is an open subset of ${}^{R}n$. By a **proper immersion of** T **into** V we mean a smooth univalent map $\phi: T \to V$ such that

$$\dim \operatorname{rng} \partial \phi(t) = m \quad \text{whenever } t \in T$$

and

$$\phi^{-1}[K]$$
 is a compact subset of T whenever K is a compact subset of V.

We let

$\mathbf{Imm}_{m,n}$

be the set of ordered triples (T, ϕ, V) such that T is an open subset of ${}^{R}m$, V is an open subset of ${}^{R}n$ and ϕ is a proper immersions of T into V.

0.12. Theorem. Suppose T is an open subset of ${}^{R}m$, V is an open subset of ${}^{R}n$ and $\phi: T \to V$ is a smooth univalent map such that

$$\dim \operatorname{rng} \partial \phi(t) = m \quad \text{whenever } t \in T.$$

Let $M = \operatorname{rng} \phi$. Then the following conditions are equivalent:

(1)
$$(T, \phi, U) \in \operatorname{Imm}_m$$

(2)
$$M \in \underline{\mathbf{M}}_m(V) \text{ and } \partial M = \emptyset$$

Proof. Let $M = \operatorname{rng} \phi$.

Part One. Suppose (1) holds and $a \in V \cap \operatorname{cl} M$. Let

$$\mathcal{K} = \{ \phi^{-1}[\mathbf{B}^a(r)] : 0 < r < \infty \text{ and } \mathbf{B}^a(r) \subset V \}$$

Then \mathcal{K} is a nested family of nonempty compact subsets of T any point of whose nonvoid intersection is carried to a by ϕ . Since ϕ is univalent there is $c \in T$ such that $\bigcap \mathcal{K} = \{c\}$ and $\phi(c) = a$. Thus

for any open subset S of T such that $c \in S$ there is r > 0 such that $\phi^{-1}[\mathbf{U}^a(r)] \subset S$.

In particular,

$$V \cap \mathbf{cl} M = V \cap M.$$

Choose $l \in \bigotimes({}^{R}n - m, {}^{R}n)$ such that

$$\operatorname{\mathbf{rng}} \partial \phi(c) + \operatorname{\mathbf{rng}} l =^{R} n.$$

and let

$$G(t, u) = \phi(t) + l(u), \ (t, u) \in T \times^R n - m.$$

Since $\operatorname{rng} \partial G(c,0) =^{R} n$ we may apply the Inverse Function Theorem to obtain open subsets S of T and W of ${}^{R}n - m$ such that $(c, 0) \in S \times W$ and $H = G|(S \times W)$ is an *n*-diffeomorphism. Now choose r > 0 such that if $U = \mathbf{U}^{a}(r)$ then

$$U \subset \operatorname{\mathbf{rng}} H$$
 and $\phi^{-1}[U] \subset S$.

Let q(t, u) = u for $(t, u) \in {}^{R} m \times {}^{R} n - m$ and set

$$F = (q \circ H^{-1})|U.$$

Since F(H(t, u)) = u for whenever $(t, u) \in S \times W$ and $H(t, u) \in U$ we find that

$$\operatorname{\mathbf{rng}} \partial F(c) = n - m.$$

Suppose $x \in M \cap U$. Then $x = \phi(t)$ for some $t \in S$. Since H(t, 0) = x we find that F(x) = 0. Thus

$$\{x \in U : F(x) = F(a)\} = M \cap U$$

and (2) holds.

Part Two. Suppose (2) holds and $a \in M$. It will suffice to show that there is r > 0 such that $\phi^{-1}[\mathbf{B}^a(r)]$ is a compact subset of T. Let $(\underline{U}^n, \Phi, U) \in \text{Diffeo}_n$ be such that $a \in U \subset V$

$$U \cap M = \Phi[\underline{U}^{m,n}].$$

 $U\cap M=\Phi[\underline{\mathbb{U}}^{m,n}].$ Set $S=\phi^{-1}[U]$ and set $\psi=(\underline{\mathbf{p}}_{m,n}\circ\Phi^{-1}\circ\phi)|S.$ Note that

$$\mathbf{rng}\,\partial\psi(t) =^R m, \ t \in S$$

Thus $(S, \psi, \psi[S])$ is an *m*-diffeomorphism by earlier results. It follow that $\psi^{-1}[L]$ is a compact subset of S whenever L is a compact subset of $\psi[S]$. Choose r > 0 such that $\mathbf{B}^{a}(r) \subset U$. Then $L = \underline{p}_{m,n} \circ \Phi^{-1}[\mathbf{B}^{a}(r)]$ is a compact subset of $\psi[S]$ and

$$\phi^{-1}[\mathbf{B}^a(r)] = \psi^{-1}[L$$

so $\phi^{-1}[\mathbf{B}^a(r)]$ is a compact subset of S, as desired.

0.13. Theorem. Suppose

$$(T_i, \phi_i, V_i) \in \operatorname{Imm}_m, \ i = 1, 2$$

and

$$V_2 \cap \operatorname{\mathbf{rng}} \phi_1 = V_1 \cap \operatorname{\mathbf{rng}} \phi_2.$$

Then

$$(\phi_1^{-1}[V_2], \phi_2^{-1} \circ \phi_1, \phi_2^{-1}[V_1]) \in \text{Diffeo}_m.$$

Proof. Suppose $c_1 \in \phi^{-1}[V_2]$. Since $\operatorname{rng} \phi_1 \in \underline{\mathrm{M}}_m(V_1)$ we may choose $(\underline{\mathrm{U}}^n, \Phi, U) \in \mathrm{Diffeo}_n$ such that $\phi_1(t_1) \in U \subset V_1 \cap V_2$ and such that $U \cap \operatorname{rng} \phi_1 = \Phi[\underline{\mathrm{U}}^{m,n}]$. Let

$$\psi_i = \underline{\mathbf{p}}_{m,n} \circ \Phi^{-1} \circ \phi_i, i = 1, 2$$

Evidently, ψ_i is a smooth univalent map carrying the open subset $\phi_i^{-1}[U_i]$ of Rm onto the open subset $(\underline{\mathbf{p}}_{m,n} \circ \Phi^{-1})[U]$ of Rm , i = 1, 2 and

$$(\phi_2^{-1} \circ \phi_1) | \phi_1^{-1}[U] = \psi_2^{-1} \circ \psi_1$$

Since $c_1 \in \phi_1^{-1}[U]$ the proof will be complete if we can show that

$$(\phi_i^{-1}[U],\psi_i,(\underline{\mathbf{p}}_{m,n}\circ\Phi^{-1})[U])\in\mathrm{Diffeo}_m,\ i=1,2,$$

and this will follow if we can show that

$$\operatorname{rng} \partial \psi_i(t_i) =^R m, \ t_i \in \phi_i^{-1}[U], \ i = 1, 2.$$

So suppose $i \in \{1, 2\}$ and $t_i \in \phi_i^{-1}[U]$. Then $\dim \operatorname{rng} \partial(\Phi^{-1} \circ \phi_i)(t) = m$ by the Chain Rule. But as the range of $\Phi^{-1} \circ \phi_i$ is a subset of $\mathbb{R}^{m,n}$ we find that

$$\operatorname{\mathbf{rng}}\psi_i = \operatorname{\mathbf{rng}}\partial(\underline{\mathbf{p}}_{m,n} \circ \Phi^{-1} \circ \phi_i)(t_i) = \underline{\mathbf{p}}_{m,n}[\operatorname{\mathbf{rng}}\partial(\Phi^{-1} \circ \phi_i)(t_i)] =^R m.$$

0.14. Definition. Suppose V is an open subset of ^Rn and $M \in \underline{M}_m(V)$. We say ϕ is a **local parameter for** M if there are T and U such that $U \subset V$, $(T, \phi, U) \in \operatorname{Imm}_m$ and

$$U \cap M = \mathbf{rng}\,\phi$$

We have just shown that if ϕ_i , i = 1, 2 are local parameters for M then $\phi_2^{-1} \circ \phi_1 \in \text{Diffeo}_m$.