
Linear Algebra

Definition. A vector space (over R) is an ordered quadruple

(V,0, α, µ)

such that V is a set; 0 ∈ V ;

α : V × V → V and µ : R× V → V ;

and the following eight axioms hold:

(i) α(α(u, v), w) = α(u, α(v, w)), u, v, w ∈ V ;
(ii) α(v,0) = v = α(0, v), v ∈ V ;
(iii) for each v ∈ V there is w ∈ V such that α(v, w) = 0 = α(w, v);
(iv) α(u, v) = α(v, u), u, v ∈ V ;
(v) µ(c + d, v) = µ(c, v) + µ(d, v), c, d ∈ R, v ∈ V ;
(vi) µ(c, α(u, v)) = α(µ(c, u), µ(c, v)), c ∈ R, u, v ∈ V ;
(vii) µ(c, µ(d, v)) = µ(cd, v), c, d ∈ R, v ∈ V ;
(viii) µ(1, v) = v, v ∈ V .

Axioms (i),(ii),(iii) say that (V,0, α) is an Abelian group. Axiom (iv) says that this group is Abelian.
One calls the elements of V vectors. From now on we write

u + v

for α(u, v) and call this operation vector addition, and we write

cv

for µ(c, v), with the latter binding more tightly than the former, and call this operation scalar multiplica-
tion. If 0i, i = 1, 2 satisfy Axiom (ii) with 0 there replaced by 0i, i = 1, 2, respectively, then

01 = 01 + 02 = 02

so this element is unique; we call it the zero element of V . If wi, i = 1, 2 satisfy Axiom (iii) for a given
v ∈ V with w there replaced by wi, i = 1, 2, respectively, then

w1 = w1 + 0 = w1 + (v + w2) = (w1 + v) + w2 = 0 + w2 = w2

so the element w is uniquely determined; we denote it

−v.

We also write
u− v

for u + (−v), u, v ∈ V . For any v ∈ V we have

0v = 0 + 0v = (−0v + 0v) + 0v = −0v + (0v + 0v) = −0v + (0 + 0)v = −0v + 0v = 0;

that is
0v = 0, v ∈ V.
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Example. Suppose S is a nonempty set. Then RS is a vector space where, given f, g ∈ RS and c ∈ R, we
set

(f + g)(s) = f(s) + g(s) and (cf)(s) = cf(s), s ∈ S.

We call these operations pointwise addition and pointwise scalar multiplication, respectively.

Example. Since Rn = R{1,...,n}, it is a vector space by virtue of the previous Example.

Example. R is a vector space where vector addition is addition and where scalar multiplication is
multiplication.

Example. Suppose V is a vector space and S is a nonempty set. Then V S is a vector space where, given
f, g ∈ V S and c ∈ R, we set

(f + g)(s) = f(s) + g(s) and (cf)(s) = cf(s), s ∈ S.

We call these operations pointwise addition and pointwise scalar multiplication, respectively.

Definition. Suppose V is a vector space. We say a subset U of V is a linear subspace (of V )
(i) if 0 ∈ U ;
(ii) u + v ∈ U whenever u, v ∈ U ;
(iii) cu ∈ U whenever c ∈ R and u ∈ U .
Note that (U,0, α|(U × U), µ|(R× U)) is a vector space.

Proposition. Suppose V is a vector space and U is a nonempty family of linear subspaces of V . Then⋂U is a linear subspace of V .
Remark. If U = ∅ then

⋃U = ∅ and
⋂U is problematic.

Proof. Simple exercise for the reader.

Definition. Suppose V and W are vector spaces and L : V → W . We say L is linear if
(i) L(v + w) = L(v) + L(w) whenever v, w ∈ V ;
(ii) L(cv) = cL(v) whenever c ∈ R and v ∈ V .

Note that the operations on the left are with respect to V and the operations on the right are with
respect to W . We say L carries V isomorphically onto W if L is univalent and rng L = W .

We set
kerL = {v ∈ V : L(v) = 0}

and call this subset of V the kernel or null space of L.
We let

L(V ; W )

be the set of linear maps from V into W . Note that L(V ; W ) is a linear subspace of WV and is therefore a
vector space with respect to the operations of pointwise addition and scalar multiplication.

Of particular importance is the case when W = R. We set

V ∗ = L(V ;R)

and call this vector space the dual space of V .
Suppose ω ∈ V ∗ and w ∈ W . Define ωw : V → W by setting

ωw(v) = ω(v)w, v ∈ V.

Note that ωw is linear.

Proposition. Suppose V and W are vector spaces and L : V → W is linear. Then
(i) L(0) = 0;
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(ii) kerL is a linear subspace of V ;
(iii) L is univalent if and only if kerL = 0;
(iv) rng L is a linear subspace of W .

Proof. Simple exercise which for the reader.

Definition. Suppose V is a vector space and S is a nonempty set. For each f ∈ V S we set

spt f = {s ∈ S : f(s) 6= 0}

and call the set the support of f . We let

(V S)0 = {f ∈ V S : spt f is finite}.

Note that
V ∅ = (V ∅)0 = ∅.

Remark. Suppose V is a vector space and S is a nonempty set. Since V is an Abelian group we know that

(V S)0 = {f ∈ V S : spt f is finite}

is a subgroup of the Abelian group V S and that there is one and only group homomorphism
∑

· : (V S)0 → V

such that
∑

(s, v) = v whenever (s, v) ∈ S × V . It is immediate that (V S)0 is a linear subspace of V S . We
leave as a straightforward exercise for the reader to prove by induction that

∑ · is linear.

Definition. Suppose V is a vector space and S ⊂ V . In case S 6= ∅ we define

s : (RS)0 → V

by setting
s(f) =

∑

s∈S

f(s)s, f ∈ (RS)0.

Note that s is linear because it is the composition of
∑

with the linear map (RS)0 3 f 7→ (S 3 s 7→ f(s)s ∈
V ) ∈ (V S)0. We let

spanS =

{ {0} if S = ∅,
rng s else

and call this linear subspace of V the (linear) span of S. We say S is independent if either S = ∅ or
S 6= ∅ and s is univalent. We say S is dependent if S is not independent. We say S is basis for V if S is
independent and V = spanS. Evidently,

(i) the empty set is independent;
(ii) if 0 ∈ S then S is dependent;
(iii) a superset of a dependent set is dependent;
(iv) a subset of an independent set is independent.

Proposition. Suppose V is a vector space and S ⊂ V . Then

spanS =
⋂
{U : U is a linear subspace of V and S ⊂ U}.

Proof. If U is a linear subspace of V and S ⊂ U then spanS ⊂ U . On the other hand, spanS is a linear
subspace of V and S ⊂ spanS.
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Definition. Suppose V is a vector space and U is a family of linear subspaces of V . Let

∑
U = span

⋃
U .

Proposition. Suppose V is a vector space and S ⊂ V . Then S is dependent if and only if there is s0 ∈ S
such that s0 ∈ span (S ∼ {s0}).
Proof. Suppose S is dependent. Then S 6= ∅ and there is f ∈ (RS)0 such that f in nonzero and∑

s∈S f(s)s = 0. For any s0 ∈ spt f we have

f(s0)s0 +
∑

s∈S∼{s0}
f(s)s = 0

so that
s0 = − 1

f(s0)

∑

s∈S∼{s0}
f(s) ∈ spanS ∼ {s0}.

On the other hand, if s0 ∈ S and s0 ∈ span (S ∼ {s0}) then s0 =
∑

s∈S∼{s0} g(s)s for some g ∈
(RS∼{s0})0. Let f ∈ (RS)0 be such that

f(s) =

{−1 if s = s0,

g(s) if s ∈ S ∼ {s0}.

Then f is nonzero and
∑

s∈S f(s)s = 0 so f ∈ ker s. Thus S is dependent.
Proposition. Suppose V is a vector space S is an independent subset of V and v ∈ V ∼ spanS. Then
S ∪ {v} is independent.
Proof. Were S ∪ {v} dependent there would be c ∈ R and f ∈ (RS)0 such that not both c and f are zero
and

cv +
∑

s∈S

f(s)s = 0.

But c 6= 0 since S is independent. Thus

v = −1
c

∑

s∈S

f(s)s ∈ spanS

which is a contradiction.

Corollary. Suppose V is a vector space. Any maximal independent subset of V is a basis for V .
Proof. This is immediate.
Theorem. Suppose V is a vector space. Then V has a basis.
Proof. Suppose S is a nested family of independent subsets of V . Then

⋃S is independent. Thus, by the
Hausdorff Maximal Principle, there is a maximal independent subset of V .
Remark. Suppose V = spanS where S is a finite subset of V . Then S has a maximal independent subset
which, by the previous Proposition is a basis for V . Thus, in this case, we can avoid using the Hausdorff
Maximal Principle to show that V has a basis.
Corollary. Suppose V is a vector space and S is an independent subset of V then S is a subset of a basis
for V .
Proof. Argue as in the proof of the preceding Corollary that there is a maximal independent subset of V
which contains S.

Definition. Suppose V is a nontrivial vector space and S is a basis for V . We define

·∗ : S → V ∗
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at s ∈ S by requiring that
s∗(s(f)) = f(s), f ∈ (RS)0.

One easily verifies that that for any v ∈ spanS the set {s ∈ S : s∗(v) 6= 0} is finite and that

(2) v =
∑

s∈S

s∗(v)s, v ∈ V ;

simply represent v by s(f) for some f ∈ (RS)0.
If the set S is indexed by the set A we will frequently write

sa for sa
∗ whenever a ∈ A.

Theorem. Suppose V is a vector space and T is a finite independent subset of V . If S ⊂ spanT and
cardS > cardT then S is dependent.
Proof. We induct on cardT . The Theorem holds trivially in case cardT = 0.

Suppose cardT > 0 and choose t̃ ∈ B. Then

(3) v = t̃∗(v)t̃ +
∑

t∈T∼{t̃}
t∗(v)t, v ∈ spanT.

In case t̃∗(s) = 0 for all s ∈ S we infer from (3) that S ⊂ span (T ∼ {t̃}) which implies by the inductive
hypothesis that S is dependent.

So suppose s̃ ∈ S and t̃∗(s̃) 6= 0. Define F : S ∼ {s̃} → V by letting

F (s) = s− t̃∗(s)
t̃∗(s̃)

s̃, s ∈ S ∼ {s̃};

we infer from (3) and the linearity of t̃∗ that

(4) S′ ⊂ span (T ∼ {t̃}).

where we have set S′ = rng F .
Suppose F is not univalent. Choose si ∈ S, i = 1, 2, such that s1 6= s2 and F (s1) = F (s2). Then

s1 − s2 − t̃∗(s1 − s2)
t̃∗(s̃)

s̃ = 0

which implies S is dependent.
Suppose F is univalent. Then

cardS′ = cardS − 1 > cardT − 1 = card (T ∼ {t̃}).

By (4) and the inductive hypothesis we infer that S′ is dependent. Thus there is f ∈ (RS∼{s̃}) such that f
is nonzero and ∑

s∈S∼{s̃}
f(s′)F (s) = 0.

But this implies that
∑

s∈S∼{s̃}
f(s)s−

t̃∗(
∑

s∈S∼{s̃} f(s)s)

t̃∗(s̃)
s̃ = 0

so S is dependent.

Theorem. Suppose V is a vector space. Then any two bases have the same cardinality.
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Remark. An infinite basis is not a very useful thing. At least that’s my opinion.
Proof. This is a direct consequence of the previous Theorem if V has a finite basis.

More generally, Suppose A and B are bases for V and B is infinite. Let F be the set of finite subsets
of B. Define f : A → F by letting

f(a) = {b ∈ B : b∗(a) 6= 0}, a ∈ A.

By the preceding Theorem we find that

card {a ∈ A : f(a) = F} ≤ cardF.

That cardA ≤ cardB now follows from the theory of cardinal arithmetic.

Definition. Suppose V is a vector space. We let dimV be the cardinality of a basis for V . We say V is
finite dimensional if dimV is finite.
Remark. If S is a finite subset of V and spanS = V then V is finite dimensional.

Corollary. Suppose V is a finite dimensional vector space and S is an independent subset of V . Then

cardS ≤ dimV

with equality only if S is a basis for V .
Proof. The inequality follows directly from the preceding Theorem.

Suppose cardS ≤ dimV . Were there v ∈ V ∼ spanS then S ∪ {v} would be an independent subset
of V with cardinality exceeding dimV .

Corollary. Suppose V is finite dimensional and U is a linear subspace of V . Then U is finite dimensional.
Proof. Let S be a maximal independent subset of U ; such an S exists because any independent subset of
V has at most dimV elements. Were there v ∈ U ∼ spanS then S ∪ {v} would be an independent subset
of U with cardinality exceeding that of S.

Corollary. Suppose V and W are vector spaces and L ∈ L(V ;W ). Then there are ω ∈ V ∗ and w ∈ W ∼
{0} such that L = ωw if and only if dimrng L = 1.
Proof. If there are ω ∈ V ∗ and w ∈ W ∼ {0} such that L = ωw then {w} is a basis for rng L.

Suppose dimrng L = 1. Let w ∈ W be such that {w} is a basis for rng L. Then, as L(v) = w∗(L(v))w
for v ∈ V we can take ω = w∗ ◦ L.

Theorem. Suppose V and W are vector spaces, L : V → W is linear and V is finite dimensional. Then
rng L is finite dimensional and

dimV = dimkerL + dimrng L.

Proof. Let A be a basis for kerL. Let B be a maximal independent subset of V containing A and note
that B is a basis for V . Note that L|(B ∼ A) is univalent and that C = {L(v) : v ∈ B ∼ A} is a basis for
rng L. The assertion to be proved follows from that fact that

cardB = cardA + cardC.

Definition. Suppose V is a finite dimensional vector space and B is a basis for V . Then

B∗ = {b∗ : b ∈ B}
is a basis for V ∗ which we call the dual basis (to B); the independence of this set is clear and the fact that
it spans V ∗ follows from the fact that

ω =
∑

b∈B

ω(b)b∗, ω ∈ V ∗,
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which follows immediately from (2). In particular, dimV ∗ = dimV .

Remark. The ·∗ notation is quite effective but must be used with care because of the following ambiguity.
Suppose V is a finite dimensional vector space and Bi, i = 1, 2 are two different bases for V . Show that if
b ∈ B1 ∩B2 then the v∗’s corresponding to B1 and B2 are different if spanB1 ∼ {b} 6= spanB2 ∼ {b}.

Remark. Suppose S is a nonempty set. We have linear maps

RS 3 g 7→ ((RS)0 3 f 7→
∑

s∈S

f(s)g(s)) ∈ (RS)0
∗

and
(RS)0

∗ 3 ω 7→ (S 3 s 7→ ω(δs)) ∈ RS .

These maps are easily seen to be linear and inverse to each other. Thus (RS)0
∗ is isomorphic to RS . Now

suppose S is a basis for the vector space V . Since s carries (RS)0 isomorphically onto V we find that

V ∗ ≡ (RS)0
∗ ≡ RS .

Chasing through the above isomorphisms one finds that {b∗ : b ∈ B} is independent but, in case S is infinite,
does not span V ∗. In fact, V ∗ is not of much use when V is not finite dimensional.

Definition. Let
ι : V → V ∗∗

be the map
V 3 v 7→ (V ∗ 3 ω 7→ ω(v)) ∈ V ∗∗.

Evidently, this map is linear and univalent.
Now suppose V is finite dimensional. Let B be a basis for V . One easily verifies that

ι(b) = b∗∗, b ∈ B.

Thus, since ι carries the basis B to the basis B∗∗ it must be an isomorphism. It is called the canonical
isomorphism from V onto V ∗∗.

Definition. Suppose U is a linear subspace of the vector space V . We let

U⊥ = {ω ∈ V ∗ : ω|U = 0}

and note that U⊥ is a linear subspace of V ∗.

Theorem. Suppose U is a linear subspace of the finite dimensional vector space V . Then

dimU⊥ = dimV − dimU.

Proof. Let B be a basis for U and let C be a basis for V such that B ⊂ C. Evidently, {b∗ : b ∈ C ∼ B} ⊂ U⊥.
Moreover, for any ω ∈ U⊥ we have

ω =
∑

b∈c

ω(b)b∗ =
∑

b∈C∼B

ω(b)b∗.

Definition. Suppose V and W are vector spaces and L : V → W is linear. We define

L∗ ∈ L(W ∗; V ∗)
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by letting
L∗(ω) = ω ◦ L, ω ∈ W ∗.

One easily verifies that ·∗ carries L(V ; W ) linearly into L(W ∗; V ∗) and that, under appropriate hypotheses,
(i) L∗∗ = L and
(ii) (L ◦M)∗ = M∗ ◦ L∗.
The map ·∗ is called the adjoint. Note that this term is used in the context of inner product spaces in

a similar but different way and that it occurs in the theory of determinants in a totally different way.

Theorem. Suppose V and W are finite dimensional vector spaces and L : V → W is linear. Then

(rng L)⊥ = kerL∗ and (kerL)⊥ = rng L∗.

Remark. It is evident that the right hand side in each case is contained in the left hand side.
Proof. Let C be a basis for rng L and let D be a basis for W containing C. Let A be a subset of V such
that {L(v) : v ∈ A} = C and note that A is independent. Let B be the union of A with a basis for kerL
and note that B is a basis for V .

Note that {d∗ : d ∈ D ∼ C} is a basis for (rng L)⊥ and that {b∗ : b ∈ A} is a basis for (kerL)⊥.
For any d ∈ D we have

L∗(d∗) =
∑

b∈B

L∗(d∗)(b)b∗

=
∑

b∈B

d∗(L(b))b∗

=
∑

b∈B∼A

d∗(L(b))b∗

=

{
b∗ if d = L(b) for some b ∈ A,

0 else.

Thus {b∗ : b ∈ A} is a basis for rng L∗ and {d∗; d ∈ D ∼ C} is a basis for kerL∗.

Theorem. Suppose V is a finite dimensional vector space. There is one and only one

trace ∈ L(V ; V )∗

such that

(5) trace (ω(v)) = ω(v), ω ∈ V ∗, v ∈ V.

Moreover, if B is a basis for V then

(6) traceL =
∑

b∈B

b∗(L(b)).

Proof. Let B be a basis for V . Then the formula in (6) defines a member of L(V ;V ) which satisfies (5).

Theorem. Suppose U and W are subspaces of V . Then

dimU + W + dimU ∩W = dimU + dimW.

Proof. Let A be a basis for U ∩W . Extend A to a basis B for U and a basis C for W . Verify that A∪B∪C
is a basis for U + W .
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