Linear Algebra

Definition. A vector space (over R) is an ordered quadruple
(V,0,a, )
such that V is a set; 0 € V;
a:VxV -V and p:RxV =V,
and the following eight axioms hold:

i) a(a(u,v),w) = a(u, a(v,w)), u,v,w e V;
i) a(v,0) = v =«(0,v), veV;

(

(

(iii) for each v € V there is w € V such that a(v,w) = 0 = a(w, v);
(iv) afu,v) = alv,u), wu,veV;

(v) ple+d,v) = p(c,v) + p(d,v), c,deR, veV;

(vi) p(e, a(u, v)) = a(u(e, u), u(e,v)), ceR, u,veV;

(vii) p(c, p(d,v)) = p(ed,v), c,deR, veV,

(viii) pu(1,v) =v, veV.

Axioms (i),(ii),(iii) say that (V,0,«) is an Abelian group. Axiom (iv) says that this group is Abelian.
One calls the elements of V' vectors. From now on we write

u+v
for a(u,v) and call this operation vector addition, and we write
cv

for p(c,v), with the latter binding more tightly than the former, and call this operation scalar multiplica-
tion. If 0;, ¢ = 1,2 satisfy Axiom (ii) with O there replaced by 0;, ¢ = 1,2, respectively, then

0; =0, +02 =0

so this element is unique; we call it the zero element of V. If w;, i = 1,2 satisfy Axiom (iii) for a given
v € V with w there replaced by w;, ¢ = 1,2, respectively, then

wy =w; +0=w; + (v+wz) = (w1 +v)+ws =0+ wy =ws
so the element w is uniquely determined; we denote it
—.

We also write

for u + (—v), u,v € V. For any v € V we have
0v =0+ 0v = (—0v + 0v) + 0v = —0v + (0v + 0v) = —0v + (0 + 0)v = —0v + Ov = O;

that is
Ov=0, velV.



Example. Suppose S is a nonempty set. Then R® is a vector space where, given f,g € R¥ and ¢ € R, we
set

(f+9)(s) = f(s)+g(s) and (cf)(s) =cf(s), s€S5.

We call these operations pointwise addition and pointwise scalar multiplication, respectively.
Example. Since R" = R} it is a vector space by virtue of the previous Example.

Example. R is a vector space where vector addition is addition and where scalar multiplication is
multiplication.

Example. Suppose V is a vector space and S is a nonempty set. Then V* is a vector space where, given
f,g€V? and c € R, we set

(f+9)(s) = f(s)+g(s) and (cf)(s) =cf(s), s€S.
We call these operations pointwise addition and pointwise scalar multiplication, respectively.

Definition. Suppose V is a vector space. We say a subset U of V is a linear subspace (of V)
(i) if 0 € U;
(ii) w4+ v € U whenever u,v € U,
(iii) cu € U whenever ¢ € R and u € U.
Note that (U,0,a|(U x U), p|(R x U)) is a vector space.

Proposition. Suppose V is a vector space and U is a nonempty family of linear subspaces of V. Then
(U is a linear subspace of V.

Remark. If i =0 then JU = 0 and U is problematic.

Proof. Simple exercise for the reader. O

Definition. Suppose V and W are vector spaces and L : V — W. We say L is linear if
(i) L(v 4+ w) = L(v) + L(w) whenever v,w € V;
(ii) L(cv) = cL(v) whenever c€e R and v € V.

Note that the operations on the left are with respect to V' and the operations on the right are with
respect to W. We say L carries V isomorphically onto W if L is univalent and rng L = W.
We set
kerL ={veV:L(v)=0}

and call this subset of V' the kernel or null space of L.
We let
L(V; W)

be the set of linear maps from V into W. Note that L(V; W) is a linear subspace of W" and is therefore a
vector space with respect to the operations of pointwise addition and scalar multiplication.
Of particular importance is the case when W = R. We set

V*=L(V;R)

and call this vector space the dual space of V.
Suppose w € V* and w € W. Define ww : V. — W by setting

ww() =w)w, vev.
Note that ww is linear.

Proposition. Suppose V and W are vector spaces and L : V — W is linear. Then
(i) L(0) = 0;



(ii) ker L is a linear subspace of V;

(iii) L is univalent if and only if ker L = 0;

(iv) rng L is a linear subspace of W.
Proof. Simple exercise which for the reader.

Definition. Suppose V is a vector space and S is a nonempty set. For each f € V° we set
spt f={s€5: f(s) # 0}
and call the set the support of f. We let
(Vo = {f € V5 :spt f is finite}.

Note that
vl =, =0.

Remark. Suppose V is a vector space and S is a nonempty set. Since V' is an Abelian group we know that
(VS)O ={fe VS sptfis finite}

is a subgroup of the Abelian group V*° and that there is one and only group homomorphism

Z'i(VS)OAV

such that 3" (s,v) = v whenever (s,v) € S x V. It is immediate that (V) is a linear subspace of V. We
leave as a straightforward exercise for the reader to prove by induction that »_ - is linear.

Definition. Suppose V is a vector space and S C V. In case S # () we define
s:(R%)y =V

by setting
s(f)=>_f(s)s, f € (R

ses

Note that s is linear because it is the composition of > with the linear map (R%)g 3 f — (S 2 s+ f(s)s €
V) € (V). We let
{0} if S=0,
span S =

rngs else

and call this linear subspace of V the (linear) span of S. We say S is independent if either S = @ or
S # () and s is univalent. We say S is dependent if S is not independent. We say S is basis for V if S is
independent and V' = span S. Evidently,

(i) the empty set is independent;

(ii) if 0 € S then S is dependent;

(iii) a superset of a dependent set is dependent;

(iv) a subset of an independent set is independent.

Proposition. Suppose V is a vector space and S C V. Then
span S = ﬂ{U : U is a linear subspace of V and S C U}.

Proof. If U is a linear subspace of V and S C U then span.S C U. On the other hand, span S is a linear
subspace of V and S C spanS. O



Definition. Suppose V is a vector space and U is a family of linear subspaces of V. Let
ZL{ = span UL{ .

Proposition. Suppose V is a vector space and S C V. Then S is dependent if and only if there is sg € S
such that sg € span (S ~ {so}).

Proof. Suppose S is dependent. Then S # () and there is f € (R%)g such that f in nonzero and
> scg f(5)s = 0. For any sy € spt f we have

flso)so+ Y f(s)s=0

seS~{so}

so that

S0 = — ! Z f(s) € span S ~ {s¢}.
}

f(SO) seS~{so

On the other hand, if so € S and so € span (S ~ {so}) then so = > g (5,3 9(s)s for some g €
(RS~1s0})y. Let f € (R%)g be such that

-1 if s = sq,
g(s) ifseS~{so}

Then f is nonzero and ) g f(s)s =0 so f € kers. Thus S is dependent. 0O

Proposition. Suppose V is a vector space S is an independent subset of V' and v € V ~ spanS. Then
S U {v} is independent.

Proof. Were S U {v} dependent there would be ¢ € R and f € (R¥)g such that not both ¢ and f are zero

and
cv+ Zf(s)s =0.

ses

But ¢ # 0 since S is independent. Thus

v = —é Zf(s)s € span S

seS
which is a contradiction. O

Corollary. Suppose V is a vector space. Any maximal independent subset of V' is a basis for V.

Proof. This is immediate. O

Theorem. Suppose V is a vector space. Then V has a basis.

Proof. Suppose S is a nested family of independent subsets of V. Then |JS§ is independent. Thus, by the
Hausdorff Maximal Principle, there is a maximal independent subset of V. O

Remark. Suppose V = span S where S is a finite subset of V. Then S has a maximal independent subset
which, by the previous Proposition is a basis for V. Thus, in this case, we can avoid using the Hausdorff
Maximal Principle to show that V has a basis.

Corollary. Suppose V is a vector space and S is an independent subset of V' then S is a subset of a basis
for V.

Proof. Argue as in the proof of the preceding Corollary that there is a maximal independent subset of V/
which contains S. O

Definition. Suppose V is a nontrivial vector space and S is a basis for V. We define
FLS -V
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at s € S by requiring that
s*(s(f) = f(s), fe @R
One easily verifies that that for any v € span S the set {s € S : s*(v) # 0} is finite and that

(2) v = Z s*(v)s, veV;

ses

simply represent v by s(f) for some f € (R%),.
If the set S is indexed by the set A we will frequently write

s* for s,* whenever a € A.

Theorem. Suppose V is a vector space and T is a finite independent subset of V. If S C spanT and
card S > cardT then S is dependent.
Proof. We induct on card T. The Theorem holds trivially in case card T = 0.

Suppose card T > 0 and choose ¢t € B. Then

(3) v=t"(v)t+ Z t*(v)t, vespanT.
teT~{t}

In case t*(s) = 0 for all s € S we infer from (3) that S C span (T ~ {t}) which implies by the inductive
hypothesis that S is dependent.
So suppose 5 € S and t*(3) # 0. Define F': S ~ {5} — V by letting

F(s)=s—=—=5, se&S~{s}

~~

*
—

V33
—

we infer from (3) and the linearity of £* that
(4) S" C span (T ~ {t}).

where we have set S’ =rng F.
Suppose F' is not univalent. Choose s; € S, i = 1,2, such that s; # s and F(s1) = F(s2). Then

tN* (81 — 52)

e o0

51— 82 —

which implies S is dependent.
Suppose F' is univalent. Then

card S’ =card S — 1 > cardT — 1 = card (T ~ {t}).
By (4) and the inductive hypothesis we infer that S’ is dependent. Thus there is f € (RS~15}) such that f

is nonzero and
S F(s)F(s) =o.
seS~{5}

But this implies that

F(Sesin [5)5)
Z f(s)s— (5) $=0

seS~{s}

so S is dependent. O

Theorem. Suppose V is a vector space. Then any two bases have the same cardinality.
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Remark. An infinite basis is not a very useful thing. At least that’s my opinion.
Proof. This is a direct consequence of the previous Theorem if V' has a finite basis.

More generally, Suppose A and B are bases for V and B is infinite. Let F' be the set of finite subsets
of B. Define f: A — F by letting

fla)={be B:b"(a) #0}, a € A.
By the preceding Theorem we find that
card{a € A: f(a) = F} < card F.
That card A < card B now follows from the theory of cardinal arithmetic. O

Definition. Suppose V is a vector space. We let dim V' be the cardinality of a basis for V. We say V is
finite dimensional if dim V is finite.
Remark. If S is a finite subset of V and span S = V then V is finite dimensional.

Corollary. Suppose V is a finite dimensional vector space and S is an independent subset of V. Then
card S <dimV

with equality only if S is a basis for V.
Proof. The inequality follows directly from the preceding Theorem.

Suppose card S < dim V. Were there v € V ~ span .S then S U {v} would be an independent subset
of V with cardinality exceeding dimV. O

Corollary. Suppose V is finite dimensional and U is a linear subspace of V. Then U is finite dimensional.
Proof. Let S be a maximal independent subset of U; such an S exists because any independent subset of
V has at most dim V' elements. Were there v € U ~ span S then S U {v} would be an independent subset
of U with cardinality exceeding that of S. O

Corollary. Suppose V and W are vector spaces and L € L(V;W). Then there are w € V* and w € W ~
{0} such that L = ww if and only if dimrng L = 1.
Proof. If there are w € V* and w € W ~ {0} such that L = ww then {w} is a basis for rng L.

Suppose dimrng L = 1. Let w € W be such that {w} is a basis for rng L. Then, as L(v) = w*(L(v))w
for v e V we can take w =w*o L. O

Theorem. Suppose V and W are vector spaces, L : V' — W is linear and V is finite dimensional. Then
rng L is finite dimensional and
dimV =dimker L + dimrng L.

Proof. Let A be a basis for ker L. Let B be a maximal independent subset of V' containing A and note
that B is a basis for V. Note that L|(B ~ A) is univalent and that C = {L(v) : v € B ~ A} is a basis for
rng L. The assertion to be proved follows from that fact that

card B = card A + card C.
O
Definition. Suppose V is a finite dimensional vector space and B is a basis for V. Then
B* ={b":be B}

is a basis for V* which we call the dual basis (to B); the independence of this set is clear and the fact that
it spans V* follows from the fact that

w= Zw(b)b*, wevVr
beB



which follows immediately from (2). In particular, dim V* = dim V.

Remark. The -* notation is quite effective but must be used with care because of the following ambiguity.
Suppose V is a finite dimensional vector space and B;, i = 1,2 are two different bases for V. Show that if
b € By N By then the v*’s corresponding to By and By are different if span By ~ {b} # span By ~ {b}.

Remark. Suppose S is a nonempty set. We have linear maps

R¥2 g (R%)0> f— Y fls)g(s)) € RS)o"

seS

and
Ry 3w~ (S35~ w(d,)) eRS.

These maps are easily seen to be linear and inverse to each other. Thus (R* )0* is isomorphic to R®. Now
suppose S is a basis for the vector space V. Since s carries (R®)g isomorphically onto V we find that

*

V*=(R%), =R

Chasing through the above isomorphisms one finds that {b* : b € B} is independent but, in case S is infinite,
does not span V*. In fact, V* is not of much use when V is not finite dimensional.

Definition. Let
1V =V

be the map
Vove (VFow—w)) e V7.

Evidently, this map is linear and univalent.
Now suppose V is finite dimensional. Let B be a basis for V. One easily verifies that

u(b) = b, beB.

Thus, since ¢ carries the basis B to the basis B** it must be an isomorphism. It is called the canonical
isomorphism from V onto V*x.

Definition. Suppose U is a linear subspace of the vector space V. We let
Ut ={weV*:uw|lU=0}

and note that U” is a linear subspace of V*.

Theorem. Suppose U is a linear subspace of the finite dimensional vector space V. Then
dimU* =dimV — dimU.

Proof. Let B be a basis for U and let C be a basis for V such that B C C. Evidently, {b* : b€ C ~ B} Cc U*.
Moreover, for any w € U+ we have

w=Y wbb = Y wbpb".

bee beC~B

O
Definition. Suppose V and W are vector spaces and L : V' — W is linear. We define
L* e L(W*; V™)
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by letting
L"(w)=woL, weW™

One easily verifies that -* carries L(V; W) linearly into L(W™*; V*) and that, under appropriate hypotheses,
(i) L** = L and
(ii) (Lo M)* = M* o L*.
The map -* is called the adjoint. Note that this term is used in the context of inner product spaces in
a similar but different way and that it occurs in the theory of determinants in a totally different way.

Theorem. Suppose V and W are finite dimensional vector spaces and L : V — W is linear. Then
(rng L)* =ker L* and (ker L): =rngL*.

Remark. It is evident that the right hand side in each case is contained in the left hand side.
Proof. Let C be a basis for rng L and let D be a basis for W containing C. Let A be a subset of V' such
that {L(v) : v € A} = C and note that A is independent. Let B be the union of A with a basis for ker L
and note that B is a basis for V.

Note that {d* :d € D ~ C} is a basis for (rng L) and that {b* : b € A} is a basis for (ker L) .

For any d € D we have

L*(d*) =Y L*(d*)(b)b*

beB

=Y d* (L))"

beB
= > d(LO)
bEB~A
{ b* if d = L(b) for some b € A,
0 else.
Thus {b* : b € A} is a basis for rng L* and {d*;d € D ~ C} is a basis for ker L*. O
Theorem. Suppose V is a finite dimensional vector space. There is one and only one
trace € L(V;V)*
such that

(5) trace (w(v)) =w(v), weV* veW

Moreover, if B is a basis for V then

(6) trace L = » b*(L(b)).

beB
Proof. Let B be a basis for V. Then the formula in (6) defines a member of L(V; V') which satisfies (5). O
Theorem. Suppose U and W are subspaces of V. Then
dimU+ W +dimUNW =dimU + dim W.

Proof. Let A be a basis for UNW. Extend A to a basis B for U and a basis C for W. Verify that AUBUC
is a basis for U + W. O



