Linear Algebra

Definition. A vector space (over R) is an ordered quadruple

$$
(V, \mathbf{0}, \alpha, \mu)
$$

such that V is a set; $\mathbf{0} \in V$;

$$
\alpha: V \times V \rightarrow V \quad \text { and } \quad \mu: \mathbf{R} \times V \rightarrow V
$$

and the following eight axioms hold:
(i) $\alpha(\alpha(u, v), w)=\alpha(u, \alpha(v, w)), \quad u, v, w \in V$;
(ii) $\alpha(v, \mathbf{0})=v=\alpha(\mathbf{0}, v), \quad v \in V$;
(iii) for each $v \in V$ there is $w \in V$ such that $\alpha(v, w)=\mathbf{0}=\alpha(w, v)$;
(iv) $\alpha(u, v)=\alpha(v, u), \quad u, v \in V$;
(v) $\mu(c+d, v)=\mu(c, v)+\mu(d, v), \quad c, d \in \mathbf{R}, v \in V$;
(vi) $\mu(c, \alpha(u, v))=\alpha(\mu(c, u), \mu(c, v)), \quad c \in \mathbf{R}, u, v \in V$;
(vii) $\mu(c, \mu(d, v))=\mu(c d, v), \quad c, d \in \mathbf{R}, v \in V$;
(viii) $\mu(1, v)=v, \quad v \in V$.

Axioms (i),(ii),(iii) say that $(V, \mathbf{0}, \alpha)$ is an Abelian group. Axiom (iv) says that this group is Abelian. One calls the elements of V vectors. From now on we write

$$
u+v
$$

for $\alpha(u, v)$ and call this operation vector addition, and we write

cv

for $\mu(c, v)$, with the latter binding more tightly than the former, and call this operation scalar multiplication. If $\mathbf{0}_{i}, i=1,2$ satisfy Axiom (ii) with $\mathbf{0}$ there replaced by $\mathbf{0}_{i}, i=1,2$, respectively, then

$$
\mathbf{0}_{1}=\mathbf{0}_{1}+\mathbf{0}_{2}=\mathbf{0}_{2}
$$

so this element is unique; we call it the zero element of V. If $w_{i}, i=1,2$ satisfy Axiom (iii) for a given $v \in V$ with w there replaced by $w_{i}, i=1,2$, respectively, then

$$
w_{1}=w_{1}+\mathbf{0}=w_{1}+\left(v+w_{2}\right)=\left(w_{1}+v\right)+w_{2}=\mathbf{0}+w_{2}=w_{2}
$$

so the element \mathbf{w} is uniquely determined; we denote it

$$
-v
$$

We also write

$$
u-v
$$

for $u+(-v), u, v \in V$. For any $v \in V$ we have

$$
0 v=\mathbf{0}+0 v=(-0 v+0 v)+0 v=-0 v+(0 v+0 v)=-0 v+(0+0) v=-0 v+0 v=\mathbf{0}
$$

that is

$$
0 v=\mathbf{0}, \quad v \in V
$$

Example. Suppose S is a nonempty set. Then \mathbf{R}^{S} is a vector space where, given $f, g \in \mathbf{R}^{S}$ and $c \in \mathbf{R}$, we set

$$
(f+g)(s)=f(s)+g(s) \quad \text { and } \quad(c f)(s)=c f(s), \quad s \in S
$$

We call these operations pointwise addition and pointwise scalar multiplication, respectively.
Example. Since $\mathbf{R}^{n}=\mathbf{R}^{\{1, \ldots, n\}}$, it is a vector space by virtue of the previous Example.
Example. $\quad \mathbf{R}$ is a vector space where vector addition is addition and where scalar multiplication is multiplication.

Example. Suppose V is a vector space and S is a nonempty set. Then V^{S} is a vector space where, given $f, g \in V^{S}$ and $c \in \mathbf{R}$, we set

$$
(f+g)(s)=f(s)+g(s) \quad \text { and } \quad(c f)(s)=c f(s), \quad s \in S
$$

We call these operations pointwise addition and pointwise scalar multiplication, respectively.
Definition. Suppose V is a vector space. We say a subset U of V is a linear subspace (of V)
(i) if $\mathbf{0} \in U$;
(ii) $u+v \in U$ whenever $u, v \in U$;
(iii) $c u \in U$ whenever $c \in \mathbf{R}$ and $u \in U$.

Note that $(U, \mathbf{0}, \alpha|(U \times U), \mu|(\mathbf{R} \times U))$ is a vector space.
Proposition. Suppose V is a vector space and \mathcal{U} is a nonempty family of linear subspaces of V. Then $\bigcap \mathcal{U}$ is a linear subspace of V.
Remark. If $\mathcal{U}=\emptyset$ then $\bigcup \mathcal{U}=\emptyset$ and $\bigcap \mathcal{U}$ is problematic.
Proof. Simple exercise for the reader.
Definition. Suppose V and W are vector spaces and $L: V \rightarrow W$. We say L is linear if
(i) $L(v+w)=L(v)+L(w)$ whenever $v, w \in V$;
(ii) $L(c v)=c L(v)$ whenever $c \in \mathbf{R}$ and $v \in V$.

Note that the operations on the left are with respect to V and the operations on the right are with respect to W. We say L carries V isomorphically onto W if L is univalent and $\mathbf{r n g} L=W$.

We set

$$
\operatorname{ker} L=\{v \in V: L(v)=\mathbf{0}\}
$$

and call this subset of V the kernel or null space of L.
We let

$$
\mathbf{L}(V ; W)
$$

be the set of linear maps from V into W. Note that $\mathbf{L}(V ; W)$ is a linear subspace of W^{V} and is therefore a vector space with respect to the operations of pointwise addition and scalar multiplication.

Of particular importance is the case when $W=\mathbf{R}$. We set

$$
V^{*}=\mathbf{L}(V ; \mathbf{R})
$$

and call this vector space the dual space of V.
Suppose $\omega \in V^{*}$ and $w \in W$. Define $\omega w: V \rightarrow W$ by setting

$$
\omega w(v)=\omega(v) w, \quad v \in V
$$

Note that ωw is linear.
Proposition. Suppose V and W are vector spaces and $L: V \rightarrow W$ is linear. Then
(i) $L(\mathbf{0})=\mathbf{0}$;
(ii) $\operatorname{ker} L$ is a linear subspace of V;
(iii) L is univalent if and only if $\operatorname{ker} L=\mathbf{0}$;
(iv) $\mathbf{r n g} L$ is a linear subspace of W.

Proof. Simple exercise which for the reader.

Definition. Suppose V is a vector space and S is a nonempty set. For each $f \in V^{S}$ we set

$$
\operatorname{spt} f=\{s \in S: f(s) \neq \mathbf{0}\}
$$

and call the set the support of f. We let

$$
\left(V^{S}\right)_{0}=\left\{f \in V^{S}: \mathbf{s p t} f \text { is finite }\right\} .
$$

Note that

$$
V^{\emptyset}=\left(V^{\emptyset}\right)_{0}=\emptyset
$$

Remark. Suppose V is a vector space and S is a nonempty set. Since V is an Abelian group we know that

$$
\left(V^{S}\right)_{0}=\left\{f \in V^{S}: \mathbf{s p t} f \text { is finite }\right\}
$$

is a subgroup of the Abelian group V^{S} and that there is one and only group homomorphism

$$
\sum \cdot:\left(V^{S}\right)_{0} \rightarrow V
$$

such that $\sum(s, v)=v$ whenever $(s, v) \in S \times V$. It is immediate that $\left(V^{S}\right)_{0}$ is a linear subspace of V^{S}. We leave as a straightforward exercise for the reader to prove by induction that \sum. is linear.

Definition. Suppose V is a vector space and $S \subset V$. In case $S \neq \emptyset$ we define

$$
\mathbf{s}:\left(\mathbf{R}^{S}\right)_{0} \rightarrow V
$$

by setting

$$
\mathbf{s}(f)=\sum_{s \in S} f(s) s, f \in\left(\mathbf{R}^{S}\right)_{0}
$$

Note that \mathbf{s} is linear because it is the composition of \sum with the linear map $\left(\mathbf{R}^{S}\right)_{0} \ni f \mapsto(S \ni s \mapsto f(s) s \in$ $V) \in\left(V^{S}\right)_{0}$. We let

$$
\operatorname{span} S= \begin{cases}\{0\} & \text { if } S=\emptyset \\ \text { rngs } & \text { else }\end{cases}
$$

and call this linear subspace of V the (linear) span of S. We say S is independent if either $S=\emptyset$ or $S \neq \emptyset$ and s is univalent. We say S is dependent if S is not independent. We say S is basis for V if S is independent and $V=\boldsymbol{\operatorname { s p a n }} S$. Evidently,
(i) the empty set is independent;
(ii) if $\mathbf{0} \in S$ then S is dependent;
(iii) a superset of a dependent set is dependent;
(iv) a subset of an independent set is independent.

Proposition. Suppose V is a vector space and $S \subset V$. Then

$$
\operatorname{span} S=\bigcap\{U: U \text { is a linear subspace of } V \text { and } S \subset U\}
$$

Proof. If U is a linear subspace of V and $S \subset U$ then $\operatorname{span} S \subset U$. On the other hand, span S is a linear subspace of V and $S \subset \operatorname{span} S$.

Definition. Suppose V is a vector space and \mathcal{U} is a family of linear subspaces of V. Let

$$
\sum \mathcal{U}=\operatorname{span} \bigcup \mathcal{U}
$$

Proposition. Suppose V is a vector space and $S \subset V$. Then S is dependent if and only if there is $s_{0} \in S$ such that $s_{0} \in \operatorname{span}\left(S \sim\left\{s_{0}\right\}\right)$.
Proof. Suppose S is dependent. Then $S \neq \emptyset$ and there is $f \in\left(\mathbf{R}^{S}\right)_{0}$ such that f in nonzero and $\sum_{s \in S} f(s) s=\mathbf{0}$. For any $s_{0} \in \operatorname{spt} f$ we have

$$
f\left(s_{0}\right) s_{0}+\sum_{s \in S \sim\left\{s_{0}\right\}} f(s) s=\mathbf{0}
$$

so that

$$
s_{0}=-\frac{1}{f\left(s_{0}\right)} \sum_{s \in S \sim\left\{s_{0}\right\}} f(s) \in \operatorname{span} S \sim\left\{s_{0}\right\}
$$

On the other hand, if $s_{0} \in S$ and $s_{0} \in \operatorname{span}\left(S \sim\left\{s_{0}\right\}\right)$ then $s_{0}=\sum_{s \in S \sim\left\{s_{0}\right\}} g(s) s$ for some $g \in$ $\left(\mathbf{R}^{S \sim\left\{s_{0}\right\}}\right)_{0}$. Let $f \in\left(\mathbf{R}^{S}\right)_{0}$ be such that

$$
f(s)= \begin{cases}-1 & \text { if } s=s_{0} \\ g(s) & \text { if } s \in S \sim\left\{s_{0}\right\} .\end{cases}
$$

Then f is nonzero and $\sum_{s \in S} f(s) s=\mathbf{0}$ so $f \in \operatorname{ker}$. Thus S is dependent.
Proposition. Suppose V is a vector space S is an independent subset of V and $v \in V \sim \operatorname{span} S$. Then $S \cup\{v\}$ is independent.
Proof. Were $S \cup\{v\}$ dependent there would be $c \in \mathbf{R}$ and $f \in\left(\mathbf{R}^{S}\right)_{0}$ such that not both c and f are zero and

$$
c v+\sum_{s \in S} f(s) s=\mathbf{0}
$$

But $c \neq 0$ since S is independent. Thus

$$
v=-\frac{1}{c} \sum_{s \in S} f(s) s \in \operatorname{span} S
$$

which is a contradiction.
Corollary. Suppose V is a vector space. Any maximal independent subset of V is a basis for V.
Proof. This is immediate.
Theorem. Suppose V is a vector space. Then V has a basis.
Proof. Suppose \mathcal{S} is a nested family of independent subsets of V. Then $\cup \mathcal{S}$ is independent. Thus, by the Hausdorff Maximal Principle, there is a maximal independent subset of V.
Remark. Suppose $V=\operatorname{span} S$ where S is a finite subset of V. Then S has a maximal independent subset which, by the previous Proposition is a basis for V. Thus, in this case, we can avoid using the Hausdorff Maximal Principle to show that V has a basis.
Corollary. Suppose V is a vector space and S is an independent subset of V then S is a subset of a basis for V.
Proof. Argue as in the proof of the preceding Corollary that there is a maximal independent subset of V which contains S.

Definition. Suppose V is a nontrivial vector space and S is a basis for V. We define

$$
.^{*}: S \rightarrow V^{*}
$$

at $s \in S$ by requiring that

$$
s^{*}(\mathbf{s}(f))=f(s), \quad f \in\left(\mathbf{R}^{S}\right)_{0}
$$

One easily verifies that that for any $v \in \operatorname{span} S$ the set $\left\{s \in S: s^{*}(v) \neq 0\right\}$ is finite and that

$$
\begin{equation*}
v=\sum_{s \in S} s^{*}(v) s, \quad v \in V \tag{2}
\end{equation*}
$$

simply represent v by $\mathbf{s}(f)$ for some $f \in\left(\mathbf{R}^{S}\right)_{0}$.
If the set S is indexed by the set A we will frequently write

$$
s^{a} \text { for } s_{a}^{*} \quad \text { whenever } a \in A \text {. }
$$

Theorem. Suppose V is a vector space and T is a finite independent subset of V. If $S \subset$ span T and $\operatorname{card} S>\operatorname{card} T$ then S is dependent.
Proof. We induct on card T. The Theorem holds trivially in case card $T=0$.
Suppose card $T>0$ and choose $\tilde{t} \in B$. Then

$$
\begin{equation*}
v=\tilde{t}^{*}(v) \tilde{t}+\sum_{t \in T \sim\{\tilde{t}\}} t^{*}(v) t, \quad v \in \operatorname{span} T \tag{3}
\end{equation*}
$$

In case $\tilde{t}^{*}(s)=0$ for all $s \in S$ we infer from (3) that $S \subset \operatorname{span}(T \sim\{\tilde{t}\})$ which implies by the inductive hypothesis that S is dependent.

So suppose $\tilde{s} \in S$ and $\tilde{t}^{*}(\tilde{s}) \neq 0$. Define $F: S \sim\{\tilde{s}\} \rightarrow V$ by letting

$$
F(s)=s-\frac{\tilde{t}^{*}(s)}{\tilde{t^{*}}(\tilde{s})} \tilde{s}, \quad s \in S \sim\{\tilde{s}\}
$$

we infer from (3) and the linearity of \tilde{t}^{*} that

$$
\begin{equation*}
S^{\prime} \subset \operatorname{span}(T \sim\{\tilde{t}\}) \tag{4}
\end{equation*}
$$

where we have set $S^{\prime}=\mathbf{r n g} F$.
Suppose F is not univalent. Choose $s_{i} \in S, i=1,2$, such that $s_{1} \neq s_{2}$ and $F\left(s_{1}\right)=F\left(s_{2}\right)$. Then

$$
s_{1}-s_{2}-\frac{\tilde{t}^{*}\left(s_{1}-s_{2}\right)}{\tilde{t^{*}}(\tilde{s})} \tilde{s}=\mathbf{0}
$$

which implies S is dependent.
Suppose F is univalent. Then

$$
\operatorname{card} S^{\prime}=\operatorname{card} S-1>\operatorname{card} T-1=\operatorname{card}(T \sim\{\tilde{t}\})
$$

By (4) and the inductive hypothesis we infer that S^{\prime} is dependent. Thus there is $f \in\left(\mathbf{R}^{S \sim\{\tilde{s}\}}\right)$ such that f is nonzero and

$$
\sum_{s \in S \sim\{\tilde{s}\}} f\left(s^{\prime}\right) F(s)=\mathbf{0}
$$

But this implies that

$$
\sum_{s \in S \sim\{\tilde{s}\}} f(s) s-\frac{\tilde{t}^{*}\left(\sum_{s \in S \sim\{\tilde{s}\}} f(s) s\right)}{\tilde{t}^{*}(\tilde{s})} \tilde{s}=\mathbf{0}
$$

so S is dependent.
Theorem. Suppose V is a vector space. Then any two bases have the same cardinality.

Remark. An infinite basis is not a very useful thing. At least that's my opinion.
Proof. This is a direct consequence of the previous Theorem if V has a finite basis.
More generally, Suppose A and B are bases for V and B is infinite. Let F be the set of finite subsets of B. Define $f: A \rightarrow F$ by letting

$$
f(a)=\left\{b \in B: b^{*}(a) \neq 0\right\}, a \in A
$$

By the preceding Theorem we find that

$$
\operatorname{card}\{a \in A: f(a)=F\} \leq \operatorname{card} F
$$

That card $A \leq \operatorname{card} B$ now follows from the theory of cardinal arithmetic.
Definition. Suppose V is a vector space. We let $\operatorname{dim} V$ be the cardinality of a basis for V. We say V is finite dimensional if $\operatorname{dim} V$ is finite.
Remark. If S is a finite subset of V and $\operatorname{span} S=V$ then V is finite dimensional.
Corollary. Suppose V is a finite dimensional vector space and S is an independent subset of V. Then

$$
\operatorname{card} S \leq \operatorname{dim} V
$$

with equality only if S is a basis for V.
Proof. The inequality follows directly from the preceding Theorem.
Suppose card $S \leq \operatorname{dim} V$. Were there $v \in V \sim \operatorname{span} S$ then $S \cup\{v\}$ would be an independent subset of V with cardinality exceeding $\operatorname{dim} V$.

Corollary. Suppose V is finite dimensional and U is a linear subspace of V. Then U is finite dimensional. Proof. Let S be a maximal independent subset of U; such an S exists because any independent subset of V has at most $\operatorname{dim} V$ elements. Were there $v \in U \sim \operatorname{span} S$ then $S \cup\{v\}$ would be an independent subset of U with cardinality exceeding that of S.

Corollary. Suppose V and W are vector spaces and $L \in \mathbf{L}(V ; W)$. Then there are $\omega \in V^{*}$ and $w \in W \sim$ $\{0\}$ such that $L=\omega w$ if and only if $\operatorname{dim} \operatorname{rng} L=1$.
Proof. If there are $\omega \in V^{*}$ and $w \in W \sim\{\mathbf{0}\}$ such that $L=\omega w$ then $\{w\}$ is a basis for $\mathbf{r n g} L$.
Suppose $\operatorname{dim} \operatorname{rng} L=1$. Let $w \in W$ be such that $\{w\}$ is a basis for $\mathbf{r n g} L$. Then, as $L(v)=w^{*}(L(v)) w$ for $v \in V$ we can take $\omega=w^{*} \circ L$.

Theorem. Suppose V and W are vector spaces, $L: V \rightarrow W$ is linear and V is finite dimensional. Then $\mathbf{r n g} L$ is finite dimensional and

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker} L+\operatorname{dim} \operatorname{rng} L
$$

Proof. Let A be a basis for $\operatorname{ker} L$. Let B be a maximal independent subset of V containing A and note that B is a basis for V. Note that $L \mid(B \sim A)$ is univalent and that $C=\{L(v): v \in B \sim A\}$ is a basis for $\mathbf{r n g} L$. The assertion to be proved follows from that fact that

$$
\operatorname{card} B=\operatorname{card} A+\operatorname{card} C
$$

Definition. Suppose V is a finite dimensional vector space and B is a basis for V. Then

$$
B^{*}=\left\{b^{*}: b \in B\right\}
$$

is a basis for V^{*} which we call the dual basis (to B); the independence of this set is clear and the fact that it spans V^{*} follows from the fact that

$$
\omega=\sum_{b \in B} \omega(b) b^{*}, \quad \omega \in V^{*}
$$

which follows immediately from (2). In particular, $\operatorname{dim} V^{*}=\operatorname{dim} V$.
Remark. The .* notation is quite effective but must be used with care because of the following ambiguity. Suppose V is a finite dimensional vector space and $B_{i}, i=1,2$ are two different bases for V. Show that if $b \in B_{1} \cap B_{2}$ then the v^{*} s corresponding to B_{1} and B_{2} are different if $\operatorname{span} B_{1} \sim\{b\} \neq \operatorname{span} B_{2} \sim\{b\}$.

Remark. Suppose S is a nonempty set. We have linear maps

$$
\mathbf{R}^{S} \ni g \mapsto\left(\left(\mathbf{R}^{S}\right)_{0} \ni f \mapsto \sum_{s \in S} f(s) g(s)\right) \in\left(\mathbf{R}^{S}\right)_{0}{ }^{*}
$$

and

$$
\left(\mathbf{R}^{S}\right)_{0}^{*} \ni \omega \mapsto\left(S \ni s \mapsto \omega\left(\delta_{s}\right)\right) \in \mathbf{R}^{S}
$$

These maps are easily seen to be linear and inverse to each other. Thus $\left(\mathbf{R}^{S}\right)_{0}{ }^{*}$ is isomorphic to \mathbf{R}^{S}. Now suppose S is a basis for the vector space V. Since \mathbf{s} carries $\left(\mathbf{R}^{S}\right)_{0}$ isomorphically onto V we find that

$$
V^{*} \equiv\left(\mathbf{R}^{S}\right)_{0}^{*} \equiv \mathbf{R}^{S}
$$

Chasing through the above isomorphisms one finds that $\left\{b^{*}: b \in B\right\}$ is independent but, in case S is infinite, does not span V^{*}. In fact, V^{*} is not of much use when V is not finite dimensional.

Definition. Let

$$
\iota: V \rightarrow V^{* *}
$$

be the map

$$
V \ni v \mapsto\left(V^{*} \ni \omega \mapsto \omega(v)\right) \in V^{* *} .
$$

Evidently, this map is linear and univalent.
Now suppose V is finite dimensional. Let B be a basis for V. One easily verifies that

$$
\iota(b)=b^{* *}, \quad b \in B
$$

Thus, since ι carries the basis B to the basis $B^{* *}$ it must be an isomorphism. It is called the canonical isomorphism from V onto $V^{*} *$.

Definition. Suppose U is a linear subspace of the vector space V. We let

$$
U^{\perp}=\left\{\omega \in V^{*}: \omega \mid U=0\right\}
$$

and note that U^{\perp} is a linear subspace of V^{*}.
Theorem. Suppose U is a linear subspace of the finite dimensional vector space V. Then

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

Proof. Let B be a basis for U and let C be a basis for V such that $B \subset C$. Evidently, $\left\{b^{*}: b \in C \sim B\right\} \subset U^{\perp}$. Moreover, for any $\omega \in U^{\perp}$ we have

$$
\omega=\sum_{b \in c} \omega(b) b^{*}=\sum_{b \in C \sim B} \omega(b) b^{*} .
$$

Definition. Suppose V and W are vector spaces and $L: V \rightarrow W$ is linear. We define

$$
L^{*} \in \mathbf{L}\left(W^{*} ; V^{*}\right)
$$

by letting

$$
L^{*}(\omega)=\omega \circ L, \quad \omega \in W^{*} .
$$

One easily verifies that \cdot^{*} carries $\mathbf{L}(V ; W)$ linearly into $\mathbf{L}\left(W^{*} ; V^{*}\right)$ and that, under appropriate hypotheses,
(i) $L^{* *}=L$ and
(ii) $(L \circ M)^{*}=M^{*} \circ L^{*}$.

The map .* is called the adjoint. Note that this term is used in the context of inner product spaces in a similar but different way and that it occurs in the theory of determinants in a totally different way.

Theorem. Suppose V and W are finite dimensional vector spaces and $L: V \rightarrow W$ is linear. Then

$$
(\mathbf{r n g} L)^{\perp}=\operatorname{ker} L^{*} \quad \text { and } \quad(\operatorname{ker} L)^{\perp}=\operatorname{rng} L^{*}
$$

Remark. It is evident that the right hand side in each case is contained in the left hand side.
Proof. Let C be a basis for $\mathbf{r n g} L$ and let D be a basis for W containing C. Let A be a subset of V such that $\{L(v): v \in A\}=C$ and note that A is independent. Let B be the union of A with a basis for ker L and note that B is a basis for V.

Note that $\left\{d^{*}: d \in D \sim C\right\}$ is a basis for $(\boldsymbol{\operatorname { r n g }} L)^{\perp}$ and that $\left\{b^{*}: b \in A\right\}$ is a basis for $(\boldsymbol{\operatorname { k e r }} L)^{\perp}$.
For any $d \in D$ we have

$$
\begin{aligned}
L^{*}\left(d^{*}\right) & =\sum_{b \in B} L^{*}\left(d^{*}\right)(b) b^{*} \\
& =\sum_{b \in B} d^{*}(L(b)) b^{*} \\
& =\sum_{b \in B \sim A} d^{*}(L(b)) b^{*} \\
& = \begin{cases}b^{*} & \text { if } d=L(b) \text { for some } b \in A \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Thus $\left\{b^{*}: b \in A\right\}$ is a basis for $\boldsymbol{\operatorname { r n g }} L^{*}$ and $\left\{d^{*} ; d \in D \sim C\right\}$ is a basis for $\boldsymbol{\operatorname { k e r }} L^{*}$.
Theorem. Suppose V is a finite dimensional vector space. There is one and only one

$$
\text { trace } \in \mathbf{L}(V ; V)^{*}
$$

such that

$$
\begin{equation*}
\operatorname{trace}(\omega(v))=\omega(v), \quad \omega \in V^{*}, v \in V \tag{5}
\end{equation*}
$$

Moreover, if B is a basis for V then

$$
\begin{equation*}
\operatorname{trace} L=\sum_{b \in B} b^{*}(L(b)) . \tag{6}
\end{equation*}
$$

Proof. Let B be a basis for V. Then the formula in (6) defines a member of $\mathbf{L}(V ; V)$ which satisfies (5).
Theorem. Suppose U and W are subspaces of V. Then

$$
\operatorname{dim} U+W+\operatorname{dim} U \cap W=\operatorname{dim} U+\operatorname{dim} W
$$

Proof. Let A be a basis for $U \cap W$. Extend A to a basis B for U and a basis C for W. Verify that $A \cup B \cup C$ is a basis for $U+W$.

