
Two examples illustrating the Inverse Function Theorem.

0.1. Example One. Let L(x) = x for x ∈ R, a = 0,let

p(x) =


0 if x ≤ −1,

x+ 1 if −1 < x ≤ 0,

1− x if 0 < x ≤ 1,

0 if 1 < x.

Note that Lip (p) = 1 on any interval containing 0 and that

β = inf{|L(x)| : |x| = 1} = 1.

Let f(x) = L(x) + p(x). Since f is constant on [0, 1] we see that f is not invertible
on any set whose interior contains 0. Thus the hypothesis α < β in the Inverse
Function Theorem cannot be weakened.

0.2. Example Two. Let
f :R 2 →R 2

be such that f(x) = (sin(x1 + x2), exp(x1) + exp(−2x2)) for x ∈R 2. Evidently,
f(0
¯
) = 0

¯
and

m
¯
(∂f(x)) =

[
cos(x1 + x2) cos(x1 + x2)

exp(x1) −2 exp(−2x2)

]
.

Let L = ∂f(0
¯
); evidently,

m
¯
(L) =

[
1 1
1 −2

]
.

Now traceL = −1 and detL = −3 so the eigenvalues of L are the roots of

0 = λ2 − (traceL)λ+ detL = λ2 + λ− 3

which are −1±
√
13

2 . Since m
¯
(L) is symmetric we find that

−1 +
√
13

2
|x| ≤ |L(x)| ≤ 1 +

√
13

2
|x| whenever x ∈ R

¯
2

and that these inequalities are sharp. Hence

||L|| = 1 +
√
13

2
and β =

−1 +
√
13

2
where we have set

β = inf{|L(x)| : x ∈R 2 and |x| = 1}.
Let us set

p(x) = f(x)− L(x), x ∈R 2.

Then
∂p(x) = ∂f(x)− L

so

m
¯
(∂p(x)) =

[
cos(x1 + x2)− 1 cos(x1 + x2)− 1

exp(x1)− 1 −2(exp(−2x2) + 2)

]
.

Set
α(R) = Lip (p|B0

¯(R)), 0 < R < ∞.

From earlier work know that

α(R) = sup{||∂p(x)|| : x ∈ B0
¯(R)}.
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From Taylor’s theorem with the Lagrange form for the remainder we have

| cos(t)− 1| ≤ |t|, | exp(t)− 1| ≤ exp(|t|)|t|, t ∈ R.

Thus for x ∈ B0
¯(R) the absolute value of the terms in the first row of the matrix

of ∂p(x) do not exceed 2R and the absolute value of the terms in the second row
of the matrix of ∂p(x) do not exceed 2 exp(2R)R. Consequently,

α(R) ≤ 4 exp(2R);

(We have used here the fact that the || · || norm of a linear transformation from one
Euclidean space to another does not exceed either the square root of the dimension
of the domain times the maximum length of any column of its standard matrix or
the square root of the dimension of its range times the the maximum length of any
row of its standard matrix. See below.) Thus the Inverse Function Theorem applies
if

4 exp(2R)R <
−1 +

√
13

2
.

Life would have been easier had we taken f(x) = (sin(x1+x2), exp(x1)+exp(−x2)).

In this case we have ||L|| = β =
√
2. But I decided to do an ugly one ...

0.3. More stuff on norms. Suppose X and Y are inner product spaces and L ∈
B
¯
(X;Y ). Then

||L|| = sup{L(x) • y : x ∈ X, |x| ≤ 1, y ∈ Y, |y| ≤ 1}.

Indeed,

||L|| = sup{|L(x)| : x ∈ X, |x| ≤ 1}
= sup{sup{L(x) • y : y ∈ Y, |y| ≤ 1} : x ∈ X, |x| ≤ 1}
= sup{L(x) • y : x ∈ X, |x| ≤ 1, y ∈ Y, |y| ≤ 1}.

Since

sup{L(x) • y : x ∈ X, |x| ≤ 1, y ∈ Y, |y| ≤ 1}
= sup{x • L∗(y) : x ∈ X, |x| ≤ 1, y ∈ Y, |y| ≤ 1}
= sup{L∗(y) • x : y ∈ Y, |y| ≤, x ∈ X, |x| ≤ 1}

we find that

||L|| = ||L∗||.

Finally, if X is finite dimensional and u1, . . . , un is an orthonormal basic sequence
for X then

|L(x)| = |
n∑

j=1

(x • uj)L(uj)|

≤
( n∑
j=1

|x • uj |
)
max{|L(uj) : j ∈ {1, . . . , n}

≤
√
n|x|max{|L(uj) : j ∈ {1, . . . , n}.
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We also have

|L(x)|2 = |
n∑

j=1

(x • uj)L(uj)|2

≤
( n∑
j=1

(x • uj)
2
)( n∑

j=1

|L(uj)|2
)

= |L|2|x|2

where |L| =
√
traceL∗ ◦ L is the Euclidean norm of L.


