Inversion.

Let

$$
\iota: \underline{\mathrm{C}} \sim\{0\} \rightarrow \underline{\mathrm{C}} \sim\{0\}
$$

be inversion; that is

$$
\iota(z)=\frac{1}{z} \quad \text { whenever } z \in \underline{\mathrm{C}} \sim\{0\} .
$$

Let's give two proofs that

$$
\iota^{\prime}(z)=-\frac{1}{z^{2}}, \quad z \in \underline{\mathrm{C}} \sim\{0\}
$$

Suppose $a \in \underline{C} \sim\{0\}$. Let

$$
g(h)=\frac{1}{a+h}-\frac{1}{a}-\left(-\frac{h}{a^{2}}\right) \quad \text { for } h \in \underline{\mathrm{C}} \sim\{-a\}
$$

Proof One. Let $\epsilon>0$ and We have

$$
\begin{aligned}
|g(h)| & =\left|\frac{\left.a^{2}-a(a+h)+h(a+h)\right)}{a^{2}(a+h)}\right| \\
& =\left|\frac{h^{2}}{a^{2}(a+h)}\right| \\
& \leq 2 \frac{|h|^{2}}{|a|^{3}} \quad \text { provided }|h| \leq \frac{|a|}{2} \\
& \leq \epsilon|h| \quad \text { provided }|h| \leq \frac{\epsilon|a|^{3}}{2}
\end{aligned}
$$

So

$$
g(h) \leq \epsilon|h| \quad \text { if } \quad 0<|h| \leq \epsilon=\min \left\{\frac{|a|}{2}, \epsilon \frac{|a|^{3}}{2}\right\}
$$

Proof Two. We have

$$
\frac{1}{a+h}=\frac{1}{a} \frac{1}{1-\left(-\frac{h}{a}\right)}=\frac{1}{a} \sum_{m=0}^{\infty}\left(-\frac{h}{a}\right)^{m}
$$

whenever $a+h \in D=\{w \in \underline{\mathrm{C}}:|w-a|<|a|\}$. Thus

$$
g(h)=\frac{h^{2}}{a^{3}} \sum_{m=2}^{\infty}\left(-\frac{h}{a}\right)^{m}
$$

Our assertion now follows from our theory of infinite series.
The second proof is amenable to generalization as follows. Let X be a Banach space and let \mathcal{I} be the set of invertible members of $\mathrm{B}(X ; X)$. Thus $A \in \mathcal{I}$ if $A \in \underline{\mathrm{~B}}(X ; X)$ and there is $B \in \underline{\mathrm{~B}}(X, X)$ such that $A B$ and $B A$ equal the identity map of X. One easily verifies that such a B is unique and we denote it by

$$
A^{-1}
$$

Let

$$
\iota(A)=A^{-1} \quad \text { whenever } A \in \mathcal{I}
$$

As an exercise show that \mathcal{I} is open and that ι is differentiable at A and determine its differential at A. Use the above to try to guess what the differential at A is.

Here is a big hint as to how to proceed. Suppose $A \in \mathcal{I}$ and $H \in \underline{\mathrm{~B}}(X ; X)$ is such that

$$
\begin{equation*}
\|H\|<\frac{1}{\|A\|} \tag{1}
\end{equation*}
$$

If $A+H \in \mathcal{I}$ we have

$$
(A+H)^{-1}=A^{-1}\left(1-\left(-H \circ A^{-1}\right)\right)=A^{-1} \sum_{m=0}^{\infty}\left(-H \circ A^{-1}\right)^{m}
$$

Justify this; that is, show that that if (1) holds then the series converges absolutely. Then show its sum is $(A+H)^{-1}$. Finally, show that ι is differentiable at A and determine what it's differential is.

Bonus question. Show that ι has derivatives of all orders.

